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Abstract. This paper presents the results of a numerical study on a two-dimensional free-
surface channel flow over a bottom obstacle. Of main interest is the capability of commercial
CFD codes to solve such problems. ANSYS CFX 10.0 was used with its built-in two-phase
flow model. While keeping the upstream water level in the channel constant, the downstream
water level is systematically decreased, which results in increasing flow rate, supercritical
flow, transcritical flow and weak hydraulic jump. The surface shapes of the subcritical CFD
computations are compared to the results of the classic 1D theory. In the supercritical case,
the parameters – wave crest and toe heights – of undular hydraulic jumps obtained by CFD
are compared to the classic theory and to experimental results.
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1. Introduction

Free-surface flows and hydraulic jumps are important for environmental engineering
(river flows, sediment distribution), ship engineering, water turbine engineering, etc.
The actual problem motivating this paper was the need for open-surface channel
modelling for the steady-state calculation of an urban water supply network. The
basic concept was to verify the results of the model based on the classic 1D theory
by means of 2D Computational fluid dynamics (CFD) simulations. Furthermore,
the classic theory gives only a limited description of the flow but cannot handle e.g.
supercritical cases. Also, there are parameters (notably the friction coefficient), which
are hard to estimate. Finally, two-dimensional (and three-dimensional) effects are
interest as understanding these issues might help to improve the simple 1D models.

The classic models on free-surface flows are based on the shallow water equations
(see [1] or [2]), neglecting the deviation from the hydrostatic pressure distribution
(vertical accelerations). These simple models are suitable only for purely subsonic
or supersonic flows and more sophisticated models are needed for transonic flows
and hydraulic jumps. A hydraulic jump is a spectacular phenomenon, with a lot of
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turbulence, waves, unsteadiness and air entrainment, hence seems to be an appropriate
test case for advanced numerical techniques of fluid mechanics.

Hydraulic jumps (analogous to shock waves in gas dynamics) are easily formed
in free-surface flows as the wave velocity (

√
gh in rectangular channels, h being the

fluid depth) is often in the same order of magnitude as the flow velocity scale. The
transition from supercritical to subcritical flows occurs via hydraulic jumps, through
which the well-known 1D models describing the surface shape are not valid. Hydraulic
jumps are not only challenging from the theoretical viewpoint (e.g. lack of an inviscid
solution, deviation from the hydrostatic pressure distribution [3], presence of multiple
scales [10]) but also raise problems in numerical modelling due to the sharp local
gradient in the surface shape near the jump. Advanced numerical techniques employed
to solve such problems start from finite difference methods [11], include local time
stepping techniques [13] and generalised Riemann solvers [12] and attain full growth
in the 3D RANS models as e.g. in [6] or [5]. Systematic measurements were also
performed, see e.g. [3], [4], [9] and [8]. Ohtsu in [8] and Chanson in [9] give flow
conditions for undular jump formation in terms of the Froude number (the ratio of
flow and wave velocity) and channel width, consider Reynolds number effects, describe
the main flow patterns and classify hydraulic jumps. They also report on the velocity
and pressure distribution under the wave crests and at the wave toes.

The aim of the present paper is to test the capabilities of a commercial CFD code
(ANSYS CFX 10.0) in terms of free-surface flows on a test case with subcritical and
weakly supercritical flows. The paper is organised as follows. First, the classic theory
is briefly summarised. Then, the CFD set-up (grid, turbulence model, boundary
conditions, etc.) is presented. The results are split into two groups; subcritical
and supercritical cases. The results of subcritical cases are compared to the classic
1D theory. The numerical results of the supercritical cases are finally compared to
measurements.

2. Theory

In this section we briefly summarise some classic theoretical results of the correspond-
ing literature. Consider the free-surface flow of an incompressible fluid in a channel
of uniform width. In the case of steady-state behaviour, the losses in the flow (fric-
tion head loss) are compensated by the bottom slope. The flow is governed by the
Bernoulli (energy) equation

d

dx

(

y + z +
v2

2g
+ h′

)

= 0, (2.1)

where y denotes the water height, z represents the bottom contour and h′ is the head
loss. The continuity equation can be written as

Q = Byv = const. (2.2)

with channel width B and average flow velocity v. Note that (2.1) assumes uniform
velocity distribution (straight streamlines) and hydrostatic pressure distribution along
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the depth. For most open-channel flows, the friction factor is independent of the
Reynolds number and is only a function of the wall roughness. Its actual value is
usually calculated by means of the Chézy rule by virtue of

dh′

dx
=

v2

C2 Rh
, where C = R

1/6

h /n. (2.3)

Here Rh is the hydraulic radius (Rh = A/P , i.e. wetted area over wetted perimeter)
and n is a roughness coefficient having different values for different types of channel
wall roughness.

Our study neglects 3D effects, thus only a segment of the flow with width B is
considered, without side walls. We assume that B ≫ y. Thus, A = By, P = B,
Rh = y and q = yv [m2/s]. Inserting (2.2) and (2.3) into (2.1) we arrive at the
ordinary differential equation for the water surface y(x)

(

1 − q2

g y3

)

dy

dx
= i − q2 n2 y10/3, (2.4)

where the new notation i = −dz/dx was introduced. Note that if the term on the
right-hand side vanishes, the slope of the surface does not change. This flow rate is
called the normal flow rate and is given by

qn =
i y10/3

n
. (2.5)

On the other hand, if the term on the left-hand side vanishes, the slope of the
surface becomes infinite. Let us rewrite this term as

1 − q2

g y3
= 1 −

(

v
√

gy

)2

= 1 − Fr2. (2.6)

The Froude number Fr is the ratio of the fluid and wave velocity and is analogous
to the Mach number in gas dynamics. As Fr → 1, dy/dx → ∞, which is not possible.
Indeed, with a strongly curved water surface, the assumptions of straight streamlines
and hydrostatic pressure variations are no longer valid. If Fr < 1, the flow is called
subcritical while if Fr > 1, the flow is called supercritical.

The transition from subcritical to supercritical flow (or vice versa) cannot be com-
puted by means of (2.4). Instead, let us apply the frictionless momentum equation,
i.e.

v2

1

g
y1 +

y2

1

2
=

v2

2

g
y2 +

y2

2

2
. (2.7)

By making use of the continuity equation, it is easy to show that

y2

y1

=
1

2

(

√

1 + 8 Fr2
1
− 1

)

. (2.8)

Equation (2.8) gives the connection between the upstream and downstream ve-
locities and water heights across a hydraulic jump, where subscript ’1’ refers to the
upstream side and subscript ’2’ to the downstream side of the jump.
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3. CFD setup

The commercial computational fluid dynamics code ANSYS CFX 10.0 was used for 2D
steady-state numerical simulation. The set of equations solved by CFX 10.0 are the
unsteady Reynolds-averaged Navier-Stokes equations in their conservation form, see
[7] for details. An additional general transport equation is solved for each component’s
volume fraction. The total length of the bottom obstacle was L = 0.355m (see
Figure 1) and the computational domain stretched 3L length before and 10L after the
obstacle. The height of the domain was 0.5m. A two-dimensional structured mesh was
created, with a thickness of 0.01m in the span-wise direction. Mesh sensitivity tests
were performed with three different mesh densities on the same blocking structure
and the middle one containing approx. 25k of cells was found to be adequate. (These
results are not reported here; the difference in mass flow rate was below 1% for the
middle and the finest mesh. The computational effort on the finest mesh was almost
unbearable; a typical computation needed approx. 6 days on our 2.4 GHz PC with
1GB RAM.) Due to visibility reasons, a blow-up of the coarsest mesh close to the
obstacle is shown in Figure 2. The actual (middle) mesh used in the computations
contained a four times denser mesh in the vertical direction and a twice denser one
in the horizontal direction. The cell aspect ratio was between 0.025 and 0.9996, the
skewness was between 0.646 and 1.000 and the maximal volume ratio was between
1.0004 and 4.9.

Figure 1. Geometry of the bottom obstacle

The inclination of the bottom was set to i = 3 × 10−4, which was taken into
account by defining the appropriate components of the gravity force gx and gy. Water
level boundary conditions were set on the upstream and downstream side prescribed
through hydrostatic pressure profiles. A rough wall with 0.5 mm wall roughness was
set for the channel bottom and an opening boundary condition with a uniform static
pressure of 1 bar was set for the upper boundary. A high resolution spatial difference
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scheme was applied and a relatively small, 0.01 s physical time step was prescribed.
Note that as the wave velocity was typically 1.32 m/s (yu = 0.18 m) and the overall
length of the computational domain was 4.97 m, the characteristic time was 3.73 s. Yet
numerical experiments showed that a maximal time step of 0.01 s was needed for stable
simulation, which resulted in a large number of iterations, typically between 5000 and
10000. The convergence was judged by means of mass flow rate balance at the inlet
and outlet because it was found that during the computations, the usual convergence
criteria for the residuals (typically, 10−5) do not guarantee a mass balance error
smaller than 0.1%. A homogenous multiphase model was used, which handles the
two phases as a single mixture with different volume fractions. The surface tension,
interphase mass transport and interphase forces were neglected. A standard k − ǫ
turbulence model was adopted.

Figure 2. The coarsest computational mesh close to the obstacle, see
text for details

4. Overview of the results

Table 1 gives a general overview of the simulations. The upstream water height
was kept constant at yu = 0.18 m while the downstream water height was decreased
systematically, from yd = 0.18 m to yd = 0.11 m. The water surface is defined as an
isosurface with 50% volume fraction of water. The water surface shapes are depicted
in Figure 3.

The very first simulation with the same upstream and downstream water level
allows us to calculate the normal flow rate and thus to identify the wall roughness
parameter n defined in (2.3), which was found to be n = 0.0149. Note that this value
is consistent with the literature, e.g. for smooth metal flumes, cement mortar surfaces
or unplaned plank flumes, [14, p. 435] gives n = 0.011 . . .0.015.
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Table 1. Summary of the CFD runs. †: indicates that the undular
jump stretched outside the computational domain. For all calcula-
tions yu = 0.18m.

yd [m] Q × 103 [m3/s] Frmax [−] Comment

0.180 0.667 0.334 subcritical
0.175 1.104 0.630 subcritical
0.170 1.256 0.791 subcritical
0.160 ≈1.410 ≈0.958 unstable
0.155 1.402 1.076 undular jump
0.150 1.422 1.236 undular jump
0.145 1.429 1.415 undular jump
0.140 1.432 1.411 undular jump
0.130 1.463 1.402 undular jump †
0.120 1.487 1.395 undular jump †
0.110 1.529 1.349 undular jump †

Figure 3. Fluid surface shapes for several downstream water heights
(see Table 1 for the actual values). The different line widths are only
for visibility reasons

As the downstream water level was decreased, the flow rate increased. Calculating
the maximal Froude number along the channel shows that the subcritical/supercritical
transition occurs at approx. yd = 0.16 m. Indeed, this calculation was unstable and
only approximate values of flow rate and Froude number were obtained. (By ‘unstable’
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a periodic oscillation with an amplitude of about 10% of the flow rate is meant. During
the oscillation, the RMS value of the residuals was continuously below 10−5.)

By decreasing the downstream water height below 0.16 m, the flow became super-
critical. As it is known from the literature (e.g. [3]), for small Froude numbers of
1 < Fr < 1.7, undular jumps are formed. In the last three simulations, the Froude
number was between 1.4 and 1.35 yet no undular jumps were observed, which is prob-
ably due to the insufficient length of the computational domain in the downstream
direction. This issue needs further study and the analysis of these results is not ad-
dressed in this paper, however for the sake of completeness, the main parameters of
these runs and the corresponding surface shapes are also given.

5. Analysis of the subsonic results

In the case of subcritical flow (the first three simulations in Table 1), the CFD results
are compared to the surface predicted by the 1D model. The ordinary differential

Figure 4. Subcritical computations, comparison of 1D model and
CFD results. Note that for better visibility, the bottom obstacle
was shifted by 0.15 m in the y (vertical) direction

equation (2.4) together with the upstream and downstream water heights defines
a boundary value problem with two boundary conditions and one free parameter,
namely the flow rate. The problem was solved with Matlab’s boundary value solver
bvp4c. The roughness parameter n was kept constant (0.0149) during the calculations.
The 1D model predicts the subcritical/supercritical transition to yd ≈ 0.172 m, thus
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the solution obtained with yd = 0.173 m was plotted vs. the CFD result with 0.17 m.
Note that the boundary value problem was solved on the same domain as the CFD
calculations (total length of 14 times the obstacle length) but for better visibility,
only the region close to the obstacle is presented in Figure 4.

As the flow rate increases (yd decreases), an increasing difference between the 1D
model and the CFD results is observed. The main reason for this increasing deviation
is the increasing curvature of the streamlines and thus the loss of validity of the
1D assumptions (uniform flow profile, hydrostatic pressure distribution). It is also
interesting that the 1D model predicts much sharper surfaces and the wavy contour
after the obstacle is missed. This suggests that although (2.4) remains physically
meaningful up to Fr = 1, it provides acceptable results only for a much narrower
range of the Froude number, i.e. for flows with a slightly curved surface.

6. Analysis of the supercritical results

For slightly supercritical flows with 1 < Fr1 < 1.7 undular jumps are formed, see
e.g. [9] for details. The situation is sketched in Figure 5: the supersonic (Fr1 > 1)
upstream flow slows down to subsonic flow via a hydraulic jump. As the energy is
not dissipated by rollers or regions of high turbulence intensity, the energy losses are
radiated forward in a train of stationary waves. The most important parameters are
the Froude number and the water height at the toe of the jump and at the first wave
crest. According to the classic 1D theory, these values are connected by (2.8).

Figure 5. Parameters of the undular hydraulic jump

The experiments of Ohtsu et al. [8] are used as reference for validating the compu-
tations. Also, some preliminary measurements were performed on the recently built
channel of the Department of Hydrodynamic Systems but as the experimental rig is
not yet fully set up these results are only for rough checking. The authors in [8] give the
following conditions for the classification of undular jumps (UJ): 1 ≤ Fr1 ≤ Fr1limit

for breaking UJ and Fr1limit ≤ Fr1 ≤ Fr1u for nonbreaking UJ, where

Fr1limit = 1.79 − 0.03 (10 − B/y1)
1.35

, (6.1)

Fr1u = 2.10 − 0.03 (12 − B/y1)
1.35

, (6.2)
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with 2 ≤ B/y1 ≤ 10 and 2 ≤ B/y1 ≤ 12 for (6.1) and (6.2), respectively. Here B is
the channel width. As only 2D simulations were performed in this study, we use the
largest value of the B/y1 values, which gives Fr1limit = 1.78 and Fr1u = 2.1. Indeed,
the largest Froude number (at the toe of the UJ) in the simulation was 1.457 and
undular jumps were observed in the computations.

Let ywc denote the height of the first wave crest and ywt stand for the height of
the first wave toe, see Figure 5. Then, according to [8], we have

ywc

y1

= −0.76 (Fr1 − 1)
2

+ 2.3 (Fr1 − 1) + 1, (6.3)

ywt

y1

= 0.90 (Fr1 − 1)
2.5

+ 0.2 (Fr1 − 1) + 1. (6.4)

Table 2 presents the comparison between the CFD results, (2.8) (with y2 = ywc)
and Ohtsu’s formula (6.3) from [8]. The water heights at the first wave crest predicted
by the classic theory and those of the CFD computations agree well. Note that as
the energy dissipation in undular jumps is very low, the classic analytical formula
(2.8) is well applicable. From the CFD point of view, as wild recirculation zones
with high turbulence intensity and air entrainment (e.g. rollers) are not present,
turbulence modelling is not a primary issue and also as the interface of the two phases
remains well-defined (no air entrainment or bubble formation), there is no need for
inhomogeneous multiphase models. Ohtsu’s formula slightly overpredicts the height
but it should be emphasised that this formula has been developed for a much wider
Froude number range.

Table 2. Undular hydraulic jump: comparison of the classic theory,
CFD results and Ohtsu’s formula (6.3) in [8]

yd y1 Fr1 Frwc ywc/y1, (2.8) ywc/y1, CFD ywc/y1, (6.3)
[m] [m] [−] [−] [−] [−] [−]

0.155 0.1192 1.179 0.617 1.241 1.233 1.387
0.150 0.1091 1.310 0.631 1.419 1.412 1.640
0.145 0.1010 1.460 0.678 1.624 1.624 1.897
0.140 0.0970 1.457 0.684 1.620 1.690 1.892

Figures 6 and 7 provide a visual interpretation of Table 2. Starting with Figure 6,
we conclude again that the CFD results show a satisfactory agreement with the classic
theory (2.8) while (6.3) gives slightly larger values. It is not clear for the authors
why (6.3) is inconsistent with (2.8): at least for the Fr1 → ∞ limit (6.3) should
tend asymptotically to (2.8). Due to the uncertainties in water level measurement,
the experimental results are hard to judge. The error in the height measurement is
estimated to be 3 mm, the velocity measurement (performed with a metering orifice)
is loaded with max. 1% error. This results in a relative error in Fr1 between 2.7%
and 5.7%, and 6.3 . . . 13.3% in ywc/y1 and ywt/y1.

The parameters of the first wave toe depicted in Figure 7 are again very hard to
judge. On one hand, the measurements are close to Ohtsu’s formula (6.4) apart from
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Figure 6. Dimensionless wave crest height vs. upstream Froude num-
ber. Circles denote measurement, the asterisk stands for CFD results,
the continuous line is (2.8) and the dashed line is (6.3)

Figure 7. Dimensionless wave toe height vs. upstream Froude num-
ber. Circles denote measurement with error bars, the asterisk stands
for CFD results and the dashed line is (6.4)
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the two points of high wwt/y1. On the other hand, the measurements and Ohtsu’s
results do not coincide with the CFD results but it is not clear that if CFD predicts
the first wave crest height properly, why should it miss the first wave toe. However,
one should be aware that during the post-processing of the CFD results, another
uncertainty is introduced: the extracted water heights depend on the volume fraction
level through which the surface is defined (50% in this paper): by varying the volume
fraction level (say, to 90%), the surface also changes. This issue needs further study
and notably a systematic CFD study coupled with experiments.

Figure 8. Dimensionless pressure distribution vs. dimensionless
depth at the crest of the first wave. The parameters in the legend
refer to yd

Next, the pressure distributions are studied. Figures 8 and 9 depict the dimen-
sionless pressure distributions across the depth at the toe of the jump and at the
first wave crest. The reference pressure was set to pref = ρ g ywc and pref = ρ g ywt

(respectively), i.e. the hydrostatic pressure according to the water height. The results
are in good accordance with [4] and [15], especially the profiles beneath the first wave
crest. Clearly, the pressure distribution is not hydrostatic beneath the undulations;
the pressure gradients were larger when the free-surface was curved upwards (i.e. con-
cave) and less than the hydrostatic gradient when the surface was convex. Note that
no recirculation zones have been observed in these calculations. For the last two cases
(yd = 0.145 and yd = 0.14) the hydrostatic pressure distribution was regained at the
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Figure 9. Dimensionless pressure distribution vs. dimensionless
depth at the toe of the hydraulic jump. The parameters in the legend
refer to yd

toe of the jump, however, for yd = 0.155 and yd = 0.15 a higher pressure gradient
has been observed. Figure 10 provides a visual interpretation of the highly curved
streamlines in the undular hydraulic jump.

Figure 10. Streamlines beneath the undular jump, yd = 0.145m

7. Conclusions

It was shown that commercial CFD codes offer the possibility of analysing free-surface
flows without differentiating between or separately modelling subcritical, transcritical
and supercritical cases. The price is the computational effort: one steady-state run
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for the problem presented would require 10-15 hours of computation on a 2.4 GHz
PC with 1GB RAM. Two-dimensional features of such flows were highlighted, no-
tably non-hydrostatic pressure distribution. Weak hydraulic jumps (undular jumps)
were studied; classic theory, recent experiment-based formulae, CFD results and ex-
periments were compared. Although several questions have not yet been solved (e.g.
why CFD and measurement do not coincide at the first wave toe), it is clear that
commercial CFD codes – under careful supervision – are useful tools for analysing
such problems. However, whether stronger jumps (larger Fr numbers) with wilder
transition zones, air entrainment and unsteady phenomena can be analysed with such
numerical techniques is an issue the authors wish to study in the future.
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