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Abstract. A new laminate model is presented for the dynamic analysis of laminated curved
bands. The collocation curved band is used to denote a cylinder panel in the plane strain
state. The differential equations which govern the free vibrations of a curved band and
the associated boundary conditions are derived by Hamilton’s principle considering bending,
shear and normal deformation of all layers. The author used a new iterative process to
successively refine the stress/strain field in the sandwich curved band. The model includes
the effects of transverse shear and rotary inertia. The iterative model is used to predict the
modal frequencies and damping of simply supported sandwich curved band. The solutions
for a three-layer curved band are compared to a three-layer approximate model.
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1. Introduction

Laminated composite curved beams have been used in engineering applications for
many years. Design applications of isotropic and curved bars, rings and arches of
arbitrary shape are assisted by a well-developed theory and proven design guidelines
[1 − 4]. The development of the theory and design guidelines for composite curved
beams is much less satisfactory. Earlier works are related to sandwich beams or closed
composite rings [5 − 9]. The finite element method was used to study the dynamic
response of sandwich curved beams by Ahmed [5 − 6]. Free and forced vibrations
of a three-layer damped ring were investigated by Di Taranto [7]. Lu and Douglas
[8] investigate the damped three-layered sandwich ring subjected to a time harmonic
radially concentrated load. The paper gives an analytical solution for the mechanical
impedance at an arbitrary point on the surface of the damped structure as a function
of the forcing frequency. Furthermore, an experimental procedure is employed to
measure the driving point mechanical impedance as a verification of the calculated
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results. Transient response was studied for three-layer closed rings by Sagartz [9].
Damping properties of curved sandwich beams with viscoelastic layer were studied by
Tatemichi et al. [10]. Viscoelastic damping in the middle core layer was emphasized.

Nelson and Sullivan [11] analyzed the complete circular ring consisting of a layer
soft viscoelastic material sandwiched between two hard elastic layers. The equations
which govern the forced vibration of a damped circular ring were solved by the method
of damped forced modes. The essence of the damped forced mode method is the use of
harmonic forcing functions which are in-phase with local velocity and proportional to
local inertia loads. The constant of proportionality is the loss factor of the composite
structure, ηn. A clear alternative to a damped forced mode solution is to set all the
forcing functions to zero and solve the resulting complex eigenvalue problem. Isvan
and Nelson [12] investigated the natural frequencies and composite loss factors of
free vibration of a soft cored circular arch simply supported at each end. Although
harmonic motion is assumed, what is not stated is that some harmonic excitation is
required to maintain such motion in the presence of damping. The dynamic eigenvalue
problem is then posed for an unforced system. Kovacs [13] solved the problem of free
vibrations of a stiff cored sandwich circular arch. All the tangential displacement
components are assumed to be piecewise linear across the thickness, thus implying
the inclusion of shear deformations and rotary inertia.

The incremental equations of motion based on the principle of virtual displace-
ments of a continuous medium are formulated using the total Lagrangian description
by Liao and Reddy [14]. They developed a degenerate shell element with a degenerate
curved beam element as a stiffener for the geometric non-linear analysis of laminated,
anisotropic, stiffened shells. Bhimaraddi et al. [15] presented a 24-d.o.f. of isopara-
metric finite element for the analysis of generally laminated curved beams. The rotary
inertia and shear deformation effects were considered in this study. Qatu developed
a consistent set of equations for laminated shallow [16] and deep arches [17] . Exact
solutions are presented for laminated arches having general boundary conditions by
Qatu and Elsharkawy [18]. The in-plane free vibrational analysis of symmetric cross-
ply laminated circular arches is studied by Yildirim [19] . The free vibration equations
are derived based on the distributed parameter model. The transfer matrix method
is used in the analysis. The rotary inertia, axial and shear deformation effects are
considered in the Timoshenko analysis by the first-order shear deformation theory.
Vaswani, Asnani and Nakra [20] derived a closed form solution for the system loss fac-
tors and resonance frequencies for a curved sandwich beam with a viscoelastic core by
the Ritz method. Rao and He [21] used the energy method and Hamilton’s principle
to derive the governing equation of motion for the coupled flexural and longitudinal
vibration of a curved sandwich beam system. Both shear and thickness deformations
of the adhesive core are included. Equations for obtaining the system modal loss
factors and resonance frequencies are derived for a system having simply supported
ends by the Ritz method.

It is well-known that the accurate determination of the stress field in the lami-
nate configurations is particularly important for ‘stress critical’ calculations such as
damping and delamination. Zapfe and Lesieutre [22] developed an iterative process to
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refine successively the shape of the stress/strain distribution for the dynamic analysis
of laminated beams. The iterative model is used to predict the modal frequencies and
damping of simply supported beams with integral viscoelastic layers.

The eigenproblem of the plane bending of circular arch shaped layered beams was
investigated by using the finite element method [23]. The finite element model of the
structure has two-two elements along the face thickness and three elements along the
thickness of the core. The two edges of the circular arch are simply supported. The
corresponding model is formed by eight node hexahedron elements (280 pcs.).

Flexure of the three-layer sandwich arch results in energy dissipation due to strains
induced in the viscoelastic layer. In a symmetrical arrangement with identical elastic
layers, most of the damping is due to shear of the viscoelastic layer. In an unsym-
metrical arrangement, with dissimilar elastic layers, one might expect damping due
to direct strain as well as shear in the viscoelastic layer, the former being known as
extensional damping and the latter as shear damping. Both these effects have been
included by Kovacs [24]. However, the stress-strain law assumed for the viscoelastic
layer was not strictly correct and was only an approximation if extensional effects were
considered. An analysis of the vibration of transversely isotropic beams, which have
small constant initial curvature was presented in Rossettos [25], Rossettos and Squires
[26]. A closed-form general solution to the governing equations was derived. Natural
modes and frequencies were determined for both clamped and simply supported end
conditions. In Khdeir and Reddy [27], an analysis of the vibration of slightly curved
cross-ply laminated composite beams is presented. Hamilton’s principle is used to
derive the equations of motions of four theories. Exact natural frequencies are deter-
mined for various end conditions using the state space concept. The combined effects
of initial curvature, transverse shear deformation, orthotropicity ratio, stacking se-
quence and boundary conditions are evaluated and discussed. Yildirim [28] offers a
comprehensive analysis of free vibration characteristics of symmetric cross-ply lami-
nated circular arches vibrating perpendicular to their planes. Governing equations of
symmetric laminated circular arches made of a linear, homogeneous, and orthotropic
material are obtained in a straightforward manner based on the classical beam theory.
The transfer matrix method is used for the free vibration analysis of the continuous
parameter system.

The present research offers a new laminated model for the dynamic analysis of
laminated curved bands, which includes both transverse shear and transverse nor-
mal effects. The differential equations which govern the free vibrations of a curved
band and the associated boundary conditions are derived by Hamilton’s principle
considering bending, shear and normal deformation of all layers. The author used
a new iterative process to successively refine the stress/strain fields in the sandwich
band. The model includes the effects of transverse shear and rotary inertia. The
current model is developed for the specific case of a simply supported curved band
with uniform properties along the length.
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2. Governing equations of motion

The geometry of interest and the notations used are shown in Figure 1. As indicated
in the Figure, the curved band ends are simply supported. The collocation curved
band is used to denote a cylinder panel in the plane strain state. Consider the curved
band with a cylinder middle surface and the radius of curvature R of the middle
surface. The curved band consists of three different layers of homogeneous materials
bonded together to form a composite structure. Subscript i, where i = 1, 2, 3 is used
to denote quantities in the various layers, starting from the outermost layer, so that
layers 1,3 represent the elastic layers while layer 2 represents the viscoelastic layer. A
state of plane strain is assumed, as well as the fact that the materials in each layer
of the band are homogeneous and isotropic. Perfect bonding of the layers and linear
elasticity are also assumed in the analysis. The composite band is lightly damped
and it is assumed that all the energy dissipated is dissipated in the viscoelastic layer.
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Figure 1. Geometry of the laminated curved band

The form of the displacement field over the domain of the curved band is

t(r, ϕ, t) = u(r, ϕ, t)eϕ + w(r, ϕ, t)er =

=

·
v0(ϕ, t)− r −R

R

µ
∂w0
∂ϕ
− v0(ϕ, t)

¶
+ f(r)v1(ϕ, t)

¸
eϕ+[w0(ϕ, t) + g (r)w1(ϕ, t)] er

(2.1)
where f (R) = 0 and g (R) = 0, so (v0, w0) denote the displacement of a point (R,ϕ)
of the centre-surface along the circumferential and radial directions, respectively.

The terms f(r)v1(ϕ, t) and g (r)w1(ϕ, t) can be thought to be correction to account
for transverse shear and normal deformation effects, respectively. The functions f(r)
and g (r) represent the shape of the corrections through the thickness of the curved
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band, while v1(ϕ, t) and w1(ϕ, t) determine its distribution along the circumferential
direction. The solution of a given problem requires the determination of the unknown
functions v0(ϕ, t), v1 (ϕ, t) , w0 (ϕ, t) , w1 (ϕ, t) , f(r) and g (r) . By using the standard
expressions

t = wer + ueϕ, εϕ =
1

r

∂ u

∂ϕ
+

w

r
, γrϕ =

1

r

∂ w

∂ϕ
+

∂ u

∂ r
− u

r
, εr =

∂ w

∂r
,

the strain tensor of each layer can be computed from equations (2.1):

εϕ =
1

r

·
∂v0
∂ϕ
− r −R

R

µ
∂2w0
∂ϕ2

− ∂v0
∂ϕ

¶
+ f(r)

∂v1
∂ϕ

+ w0 + g (r)w1(ϕ, t)

¸
, (2.2)

γrϕ =

·
df

dr
− f (r)

r

¸
v1(ϕ, t) +

g (r)

r

∂w1
∂ϕ

, (2.3)

εr =
dg

dr
w1(ϕ, t) , (2.4)

where

f(r) =

 f1 (r) if R1 ≤ r ≤ R2
f2 (r) if R2 ≤ r ≤ R3
f3 (r) if R3 ≤ r ≤ R4


and

g(r) =

 g1 (r) if R1 ≤ r ≤ R2
g2 (r) if R2 ≤ r ≤ R3
g3 (r) if R3 ≤ r ≤ R4


are single-valued functions defined at each point through the thickness.

From equation (2.3), it can be seen that the functions df
dr − f

r and
g
r represent the

shape of the transverse shear strain field through the thickness of the curved band at
a given ϕ -location. While the assumed form of the functions, f(r) and g (r) changes
from one iteration to the next, at any given iteration they can be treated as known
functions.

The curved band vibrates in the rϕ-plane. It is assumed that the plane strain state
occurs within the structure and thus within each i-th layer. By treating the problem
as a plane strain one and assuming that the materials in each layer are homogeneous
and isotropic, we have the following stress-strain relations:

σri =
Ei

(1− 2νi) (1 + νi)
((1− νi) εri + νiεϕi) , (2.5)

σϕi =
Ei

(1− 2νi) (1 + νi)
((1− νi) εϕi + νiεri) , (2.6)

τrϕi = Giγrϕi , (2.7)

where Ei is the Young’s modulus and Gi is the shear modulus within the i-th layer of
the structure. Also νi is the Poisson’s coefficient, which characterises the compression
in the radial direction due to tension in the circumferential direction, and vice versa.
In addition the stresses τϕzi, τrzi are equal to zero.
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The strain energy stored in the curved band is given by:

U =
b

2

3X
i=1

ϑZ
ϕ=0

Ri+1Z
Ri

[σriεri + σϕiεϕi + τrϕiγrϕi] rdrdϕ . (2.8)

The kinetic energy, which includes components associated with transverse, in plane
and rotary inertia, is given by

T =
b

2

3X
i=1

ϑZ
ϕ=0

Ri+1Z
Ri

ρi

µ ·
ti

¶2
rdrdϕ , (2.9)

where the dots over t1 , t2 and t3 denote the partial derivative with respect to time.
The differential equations of motion and boundary conditions are derived using Hamil-
ton’s principle. The equations of motion for the four unknown functions, w0 (ϕ, t) ,
w1 (ϕ, t) , v0 (ϕ, t) and v1 (ϕ, t) are

A11
∂ 4w0
∂ϕ4

+A12
∂ 2w0
∂ϕ2

+A13
∂ 3v0
∂ϕ3

+A14
∂ 3v1
∂ϕ3

+A15
∂ v0
∂ϕ

+A16
∂ v1
∂ϕ

+A17
∂2w1
∂ϕ2

+

+A18w0+A19w1 = D11
∂ 4w0
∂ϕ2∂ t2

+D12
∂ 3v0
∂ϕ∂ t2

+D13
∂ 3v1
∂ϕ∂ t2

+D14
∂ 2w0
∂t2

+D15
∂ 2w1
∂t2

,

(2.10)

A21
∂ 3w0
∂ϕ3

+A22
∂ w0
∂ϕ

+A23
∂ 2v0
∂ϕ2

+A24
∂ 2v1
∂ϕ2

+A25
∂ w1
∂ϕ

+A26v1 =

= D21
∂ 3w0
∂ϕ∂ t2

+D22
∂ 2v0
∂ t2

+D23
∂ 2v1
∂ t2

, (2.11)

A31
∂ 2w0
∂ϕ2

+A32
∂ 2w1
∂ϕ2

+A33
∂ v0
∂ϕ

+A34
∂ v1
∂ϕ

+A35w0+A36w1 = D31
∂ 2w0
∂ t2

+D32
∂ 2w1
∂ t2

,

(2.12)

A41
∂ 3w0
∂ϕ3

+A42
∂ w0
∂ϕ

+A43
∂ 2v0
∂ϕ2

+A44
∂ 2v1
∂ϕ2

+A45
∂ w1
∂ϕ

=

= D41
∂ 3w0
∂ϕ∂ t2

+D42
∂ 2v0
∂ t2

+D43
∂ 2v1
∂ t2

, (2.13)

where Aij and Dij are given in the Appendix. K1−18 and M1−8 are section stiffness
and mass coefficients, given by

K[1,...,7] = b
3X
i=1

Ri+1Z
Ri

Ei (1− νi)

(1− 2νi) (1 + νi)

·
1, r,

1

r
, fi, gi,

1

r
fi,
1

r
gi

¸
dr , (2.14)

K[8,17,18] = b
3X
i=1

Ri+1Z
Ri

Gi

"
1

r
g2i , r

µ
dfi
dr
− fi

r

¶2
,

µ
dfi
dr
− fi

r

¶
gi

#
dr , (2.15)
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K[9,...,12] = b
3X

i=1

Ri+1Z
Ri

Ei (1− νi)

(1− 2νi) (1 + νi)

"
1

r
f2i ,

1

r
g2i ,

1

r
figi,

1

r

µ
dgi
dr

¶2#
dr (2.16)

K[13,...,16] = b
3X

i=1

Ri+1Z
Ri

Eiνi
(1− 2νi) (1 + νi)

·
r
dgi
dr

,
dgi
dr

, fi
dgi
dr

, gi
dgi
dr

¸
dr , (2.17)

M[1,2,3,4,5,6,7,8] = b
3X

i=1

Ri+1Z
Ri

ρi
£
r, r2, r3, rfi, r

2fi, rf
2
i , rgi, rg

2
i

¤
dr , (2.18)

where fi = fi (r) and gi = gi (r) . The kinematic and natural boundary conditions
specified at ϕ = 0 and ϕ = ϑ , are given by

KINEMATIC NATURAL
v0 = 0 or F11

∂2 w0
∂ϕ2 + F12

∂ v0
∂ϕ + F13

∂ v1
∂ϕ + F14w0 + F15w1 = 0 ,

w0 = 0 or F21
∂ 3w0
∂ϕ3 + F22

∂2 v0
∂ϕ2 + F23

∂2 v1
∂ϕ2 + F24

∂ 3w0
∂ϕ2∂t+

+F25
∂2 v0
∂t2 + F26

∂2 v1
∂t2 = 0 ,

v1 = 0 or F31
∂2 w0
∂ϕ2 + F32

∂ v0
∂ϕ + F33

∂ v1
∂ϕ + F34w0 + F35w1 = 0 ,

∂ w0
∂ϕ = 0 or F41

∂2 w0
∂ϕ2 + F42

∂ v0
∂ϕ + F43

∂ v1
∂ϕ + F44w0 + F45w1 = 0 ,

w1 = 0 or F51
∂ w1
∂ϕ + F52v1 = 0 ,

(2.19)

where Fij are constants. For the special case of a simply supported curved band, the
first, third and fourth natural boundary conditions are combined with the kinematic
condition, w0 = w1 = 0.

3. Solution for a simply supported curved band

Sinusoidal mode shapes that satisfy the boundary conditions are assumed. Conse-
quently, the assumed displacements are:

w0(ϕ, t) =W0 · sin(knϕ)eiωnt , (3.1)

w1(ϕ, t) =W1 · sin(knϕ)eiωnt , (3.2)

v0(ϕ, t) = V0 · cos(knϕ)eiωnt , (3.3)

v1(ϕ, t) = V1 · cos(knϕ)eiωnt , (3.4)

where kn = (nπ) /ϑ. Since the motion is now harmonic, it is justified to admit hys-
teretic damping into the viscoelastic layer by putting complex moduli. The Young’s
and shear modulus of the constituent materials are represented by the complex quan-
tities

E∗2 = E2(1 + iα2), G∗2 = G2(1 + iβ2) , (3.5)

where α2 and β2 denote the material loss factors in extension and shear, respectively.
Since G∗2 and E∗2 are used as complex moduli of the middle layer, the differential equa-
tions of motion will have complex coefficients. The substitution of equations (3.1),
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(3.2), (3.3) and (3.4) into equations (2.10-2.13), will result in a set of four simulta-
neous, homogeneous algebraic equations with symmetric and complex coefficients. In
matrix form, these equations are£−ω2n [M ] + [Y ]

¤ {U} = 0, {U} = {V0, V1,W0,W1} (3.6)

where Mij and Yij are in the Appendix. The complex eigenvalues give the desired
natural frequencies and mode shapes with their phase relations. The natural frequency
is approximately equal to the square root of the real part of the eigenvalue. The modal
loss factor for the n-th mode is approximately equal to the ratio of the imaginary part
of the eigenvalue to the real part of the eigenvalue

ηn = Im(ω
2
n)/Re(ω

2
n) . (3.7)

4. Improved estimate for shear correction functions f(r) and g(r)

An improved estimate for the correction functions f(r) and g (r) is derived from the
equation of elementary stress equilibrium. The equations of motion in plane strain

∂

∂ r

£
r2τrϕ

¤
+ r

∂σϕ
∂ϕ

= r2ρ
∂2u

∂t2
, (4.1)

r
∂σr
∂r

+ σr +
∂τrϕ
∂ϕ
− σϕ = rρ

∂2w

∂t2
, (4.2)

applied to the layered curved band with σϕi = Ei(εϕi + νiεri)/
¡
1− ν2i

¢
expressions,

are now in the form

∂

∂ r
(r2τrϕi) +

Ei (1− νi)

(1− 2νi) (1 + νi)

·
r

R

∂2v0
∂ϕ2

− r −R

R

∂3w0
∂ϕ3

+

+fi(r)
∂2v1
∂ϕ2

+
∂w0
∂ϕ

+ gi(r)
∂w1
∂ϕ

¸
+ r

Eiνi
(1− 2νi) (1 + νi)

dgi
dr

∂w1
∂ϕ

=

= r2ρi

·
∂2v0
∂t2

− r −R

R

µ
∂3w0
∂ϕ∂t2

− ∂2v0
∂t2

¶
+ fi(r)

∂2v1
∂t2

¸
, (4.3)

r
∂σr
∂r

+σr− 1
r

Ei (1− νi)

(1− 2νi) (1 + νi)

·
r

R

∂v0
∂ϕ
− r −R

R

∂2w0
∂ϕ2

+ fi(r)
∂v1
∂ϕ

+ w0 + gi(r)w1

¸
−

− Eiνi
(1− 2νi) (1 + νi)

dgi
dr

w1 +
∂τrϕi
∂ϕ

= rρi

µ
∂2w0
∂t2

+ gi(r)
∂2w1
∂t2

¶
, (4.4)

where i = 1, 2, 3 and Ri ≤ r ≤ Ri+1.

Using equations (2.3), (3.1), (3.2), (3.3) and (3.4), it is obvious that equations (4.3)
and (4.4) can be written the following form

d

dr
(r2τ

◦
rϕi) +

Ei (1− νi)

(1− 2νi) (1 + νi)

·
− r

R
k2nV0 +

r −R

R
k3nW0 − fi(r)k

2
nV1 +

+ k2nW0 + gi(r)k
2
nW1

¸
+ r

Eiνi
(1− 2νi) (1 + νi)

dgi
dr

knW1 =
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= −r2ρiω2n
·
V0 − r −R

R
(knW0 − V0) + fi(r)V1

¸
, (4.5)

r
dσ
◦
ri

dr
+ σ

◦
ri (r)−

1

r

Ei (1− νi)

(1− 2νi) (1 + νi)

·
− r

R
knV0 +

r −R

R
k2nW0 − fi(r)knV1 +

+W0+gi(r)W1

¸
− Eiνi
(1− 2νi) (1 + νi)

dgi
dr

W1−knτ ◦rϕi (r) = −rρiω2n (W0 + gi(r)W1) ,

(4.6)

where τrϕi (r, ϕ, t) = τ
◦
rϕi (r) cos(knϕ)e

iωnt and σri (r, ϕ, t) = σ
◦
ri (r) sin(knϕ)e

iωnt.
The shape of the shear stress distribution can be found by integrating equation (4.5)
through the thickness

τ
◦
rϕi (r) = −

1

r2

Z r

Ri

½
r2ρiω

2
n

·
V0 − r −R

R
(knW0 − V0) + fi(r)V1

¸
+

+r
Eiνi

(1− 2νi) (1 + νi)

dgi
dr

knW1− Ei (1− νi)

(1− 2νi) (1 + νi)

·
r

R
k2nV0 −

r −R

R
k3nW0 + fi(r)k

2
nV1

−k2nW0 − gi(r)k
2
nW1

¸¾
dr +

1

r2
ci , (4.7)

where

c1 = 0 , c2 = R22τ
◦
rϕ1 (R2) , c2 = R23τ

◦
rϕ2 (R3) . (4.8)

Then if equation (4.7) is used in equation (4.6), the shape of the normal stress distri-
bution can be found by integrating equation (4.6) through the thickness

σ
◦
ri (r) = −

1

r

Z r

Ri

½
rρiω

2
n (W0 + gi(r)W1)− Eiνi

(1− 2νi) (1 + νi)

dgi
dr

W1 − knτ
◦
rϕi (r)−

−1
r

Ei (1− νi)

(1− 2νi) (1 + νi)

·
− r

R
knV0 +

r −R

R
k2nW0 − fi(r)knV1 +W0 + gi(r)W1

¸¾
dr+

1

r
di ,

(4.9)
where

d1 = 0 , d2 = R2σ
◦
r1 (R2) , d2 = R3σ

◦
r2 (R3) . (4.10)

The shape of the tensile strain distribution εri is calculated using equation (4.9) and
the constitutive equation (2.5)

ε
◦
ri (r) =

¡
1− ν2i

¢ σ◦ri (r)
Ei

− νiε
◦
ϕi (r) , (4.11)

where εri (r, ϕ, t) = ε
◦
ri (r) sin(knϕ)e

iωnt and εϕi (r, ϕ, t) = ε
◦
ϕi (r) sin(knϕ)e

iωnt.

Upon substitution of equation (4.11) into equation (2.4), the new estimate for the
normal correction function g (r) obtained by integrating equation (2.4) through the
thickness, is given by
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g1 (r) =

Z R2

R

1

W1
ε
◦
r2 (r) dr +

Z r

R2

1

W1
ε
◦
r1 (r) dr, R1 ≤ r ≤ R2 , (4.12)

g2 (r) =

Z r

R

1

W1
ε
◦
r2 (r) dr, R2 ≤ r ≤ R3 , (4.13)

g3 (r) =

Z R3

R

1

W1
ε
◦
r2 (r) dr +

Z r

R3

1

W1
ε
◦
r3 (r) dr, R3 ≤ r ≤ R4 . (4.14)

Evidently g (R) = g2 (R) = 0 at the reference axis.

The shape of the shear strain distribution is calculated using equation (4.7) and
the constitutive relation

γ
◦
rϕi (r) =

τ
◦
rϕi (r)

Gi
, i = 1, 2, 3 (4.15)

where γrϕi (r, ϕ, t) = γ
◦
rϕi (r) cos(knϕ)e

iωnt.

Upon substitution of equation (4.15) into equation (2.3) and using equations (4.12-
4.14), the new estimate for the shear correction function f (r) obtained by integrating
equation (2.3) through the thickness, is given by

f1 (r) = r

"Z R2

R

1

r

"
γ
◦
rϕ2 (r)

G
− kn

W1g2 (r)

rG

#
dr +

Z r

R2

1

r

"
γ
◦
rϕ1 (r)

G
− kn

W1g1 (r)

rG

#
dr

#
,

(4.16)
where R1 ≤ r ≤ R2

f2 (r) = r

Z r

R

1

r

"
γ
◦
rϕ2 (r)

G
− kn

W1g2 (r)

rG

#
dr, R2 ≤ r ≤ R3

(4.17)
and

f3 (r) = r

"Z R3

R

1

r

"
γ
◦
rϕ2 (r)

G
− kn

W1g2 (r)

rG

#
dr +

Z r

R3

1

r

"
γ
◦
rϕ3 (r)

G
− kn

W1g3 (r)

rG

#
dr

#
(4.18)

where R3 ≤ r ≤ R4 and evidently f (R) = f2 (R) = 0 at the reference axis. The
integrals in equations (4.7-4.18) are evaluated numerically using a trapezoidal method
and f (r) and g (r) can be complex quantities. This new estimates of f (r) and g (r)
are used as the correction functions for the next iteration. As with any smeared
laminate model, there are two distinct ways to calculate the shear stress distribution:
from the material constitutive relations; or by the elementary stress equilibrium. The
ultimate goal of the iterative analysis is the determination of the functions, f (r) and
g (r), that cause the two stress distributions to be equal. This defines the convergence
point for the iterative functions f (r) and g (r), the point at which the stresses and
strains are self-consistent.
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Table 1

Variation of the lowest frequency and the loss factor with adhesive shear modulus

[20]z }| { Present theoryz }| {
G2
£
N/m2

¤
f [Hz] η f [Hz] η

6,88·104 7,898 0,0644 7,508 0,0624
6,88·105 11,36 0,2504 10,72 0.248
6,88·106 20,94 0,1696 19,81 0.173
6,88·107 25,8 0,0272 24,55 0.0281
6,88·108 26,47 0,0029 25,23 0,00348

5. Results and discussion

Numerical results were generated to observe the effects of curvature, core thickness and
adhesive shear modulus on the system natural frequencies ωn and modal loss factors
ηn. Vaswani et al. [20] assembled a series of design curves for the dynamic charac-
terization of a three-layer damped circular ring segment which is simply supported
at each end, see Fig.1. The model assumes that all transverse shear deformation and
energy dissipation occurs in the core material. The dissipation is modeled using a
complex modulus formulation. The resonant frequencies and the associated system
loss factor have been experimentally determined for four sandwich beam specimens
and the values compared with those obtained theoretically. Reasonably good agree-
ment is seen between the theoretical and experimental results. However, the model
of Vaswani et al. overpredicts natural frequencies by 5%, approximately. The present
smeared laminate model was compared to the design curves of Vaswani et al. for the
first transverse modes presented in the paper by Vaswani et al., with simply supported
boundary conditions.

Table 2

Variation of the lowest frequency with adhesive thickness
[20]z }| { Present theoryz }| {

2h2 [mm] f [Hz] f [Hz]
1,0 17,981 17,028
2,0 19,1 18,125
3,0 20,09 19,04
4,0 20,94 19,81
5,0 21,66 20,47

The adhesive shear modulus plays a very important role in the damping of a sand-
wich curved band. The variations of the lowest natural frequency and the associated
loss factor with respect to the shear modulus G2 (= real part of G∗2) are given in Table
1 for the three layer arch using the design curves of Vaswani et al. and the present
laminate model. The input data used here were h1 = h2 = h3 = 2.0 mm, υ = 1.0,
α2 = β2 = 0.5, R = 1.0 m, E1 = E3 = 6.88 ·1010 N/m2, G1 = G3 = 2.75 ·1010 N/m2,
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ρ1 = ρ3 = 2.7 · 103 kg/m3, ρ2 = ρ1/2. G2 varied from 6.88 · 104 N/m2 to 6.88 · 108
N/m2 and E2 = 2.5 ·G2. The present smeared laminate model frequency predictions
are generally consistent with the results of Vaswani et al. The slight discrepancy is
due to facesheet shear and rotary inertia, effects which the model of Vaswani et al.
does not consider. The model of Vaswani et al. overpredicts natural frequencies by
5%, approximately. The modal loss factors predicted by the present laminate model
are also in good agreement with the results of Vaswani et al. The variation of the
system loss factor η with the shear modulus G2 is similar to that obtained for straight
sandwich beams. For each core thickness, a maximum is observed which increases as
the core thickness increases and is also seen to occur at higher values of the shear mod-
ulus. At low values of the shear modulus, although the deformations are large, shear
stiffness is small, hence low damping is observed. At very high values of the shear
modulus, the shear stiffness is high and the deformations are small, again resulting
in low damping.

Table 3
Variation of the loss factor with adhesive thickness

[20]z }| { Present theoryz }| {
2h2 [mm] η η
1,0 0,0546 0.0562
2,0 0,1 0.102
3,0 0,138 0.141
4,0 0,1696 0.173
5,0 0,196 0,199

The effects of the adhesive thickness 2h2 on the system natural frequencies and loss
factors are also studied. The input data in this case were h1 = h3 = 2.0 mm, υ = 1.0,
α2 = β2 = 0.5, R = 1.0 m, E1 = E3 = 6.88 · 1010 N/m2, G1 = G3 = 2.75 · 1010
N/m2, ρ1 = ρ3 = 2.7 · 103 kg/m3, ρ2 = ρ1/2, G2 = 6.88 · 104 N/m2, E2 = 2.5 · G2.
The thickness 2h2 was increased from 1.0 mm to 5.0 mm in steps of 1.0 mm. The
variations of f and η with 2h2 are given in Tables 2-3. It can be seen from these
Tables that both f and η increase with 2h2.

Table 4

Variation of the lowest frequency with radius R
[20]z }| { Present theoryz }| {

R [mm] f [Hz] f [Hz]
800 29,75 28,1
900 24,78 23,42
1000 20,94 19,81
1100 17,9 16,95
1200 15,469 14,658
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The third parameter which effects the system natural frequencies and modal loss
factors is the radius of curvature R of the middle surface of the adhesive layer. In this
case, the angle υ is kept constant, while changingR. This means the total length of the
sandwich arch system will change with R. The variations of f and η with R are shown
in Tables 4-5. The input data was h1 = h2 = h3 = 2.0 mm, υ = 1.0, α2 = β2 = 0.5,
E1 = E3 = 6.88 ·1010 N/m2, G1 = G3 = 2.75 ·1010 N/m2, ρ1 = ρ3 = 2.7 ·103 kg/m3,
ρ2 = ρ1/2, G2 = 6.88 · 104 N/m2, E2 = 2.5 ·G2. R varied from 800 mm to 1200 mm
in steps of 100 mm. It can be seen that f decreases with R. The variations of f with
R are obvious, as the total length of the curved sandwich beam system increases with
any increase in R.

Table 5

Variation of the loss factor with radius R.
[20]z }| { Present theoryz }| {

R [mm] η f [Hz]
800 0,211 0,214
900 0,1895 0,193
1000 0,1696 0,173
1100 0,1516 0,155
1200 0,1357 0,1388

6. Conclusions

A new iterative laminate model has been presented for a thin sandwich arch that
can accurately determine the dynamic stress distribution in soft as well as hard cored
sandwich arches. This represents an advance over previous smeared laminate mod-
els, in which accurate estimates of the stress field were only possible if the assumed
displacement field was a reasonable approximation of the actual diplacement field.
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Appendix A. NOMENCLATURE

b width of the curved band
Ei elastic modulus of layer i
E∗2 complex modulus in tension
er unit vector in the radial direction
eϕ unit vector in the transverse direction
ez unit vector in the z-direction
εϕ i tensile strain of layer i in the transverse direction
εri tensile strain of layer i in the radial direction
f(r) shear correction function
g (r) normal correction function
γrϕ i shear strain of layer i
G∗2 complex modulus in shear
Gi shear modulus of layer i
hi half-thickness of layer i
ϕ circumferential coordinate
n mode number
r cylindrical coordinate
R radius of middle surface of the curved band
T kinetic energy
σϕ i tensile stress of layer i in the transverse direction
σr i tensile stress of layer i in the radial direction
τrϕ i shear stress of layer i
ti displacement vector of layer i
R1 radius at the bottom of the first layer
R2 radius at the top of the first layer
R3 radius at the bottom of the third layer
R4 radius at the top of the third layer
α2 material loss factor in tension of the second layer
β2 material loss factor in shear of the second layer
ηn composite loss factor for the n-th mode
ωn frequency of oscillation in radians for the n-th mode
fn frequency of oscillation in Hertz for the n-th mode
ρi density of layer i
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ϑ opening angle of the curved band
v0 tangential displacement of the middle surface
w0 radial displacement of the middle surface

Appendix B. Definitions for the various coefficients

Equations (2.10) to (2.13) in the main text contain certain Ai j and Di j terms which
are defined as follows:

A11 = K3 +K2/R
2 − 2K1/R, A12 = 2K3 − 2K1/R, A13 = −K2/R

2 +K1/R

A14 = K6 −K4/R, A15 = K1/R, A16 = K6, A17 = K14 +K7 −K13/R−K5/R

A18 = K3, A19 = K14 +K7, A21 = K4/R−K6, A22 = −K6, A23 = −K4/R,

A24 = −K9, A25 = K18 −K15 −K11, A26 = K17

A31 = −K13/R+K14 −K5/R+K7, A32 = −K8, A33 = K13/R+K5/R

A34 = K15 +K11 −K18, A35 = K7 +K14, A36 = K12 + 2K16 +K10

A41 = K2/R
2 −K1/R, A42 = −K1/R, A43 = −K2/R

2, A44 = −K4/R

A45 = −K13/R−K5/R

D11 =M1 − 2M2/R+M3/R
2, D12 =M2/R−M3/R

2, D13 =M4 −M5/R

D14 = −M1, D15 = −M7, D21 = −M4 +M5/R, D22 = −M5/R

D23 = −M6, D31 = −M7, D32 = −M8, D41 = −M2/R+M3/R
2

D42 = −M3/R
2, D43 = −M5/R.

Equation (3.6) in the main text contain Yij and Mij terms which are defined as
follows:

Y11 =
¡
2k2n − 2k4n

¢
K1/R+ k4nK2/R

2 +
¡
1− 2k2n + k4n

¢
K3

Y12 = Y21 = −knK6 + k3n (K6 −K4/R) ,

Y14 = Y41 = −knK1/R+ k3n
¡
K1/R−K2/R

2
¢
,

Y13 = Y31 = K14 +K7 − k2n (K14 +K7 −K13/R−K5/R) , Y22 = K17 + k2nK9

Y23 = Y32 = kn (K18 −K15 −K11) , Y24 = Y42 = k2nK4/R, Y44 = k2nK2/R
2

Y33 = K12 + 2K16 +K10 + k2nK8, Y34 = Y43 = −kn (K13/R+K5/R)

M11 =M1 + k2n
¡
M1 +M3/R

2 − 2M2/R
¢
, M12 =M21 = kn (M4 −M5/R)

M13 =M31 =M7, M14 =M41 = kn
¡
M2/R−M3/R

2
¢
, M22 =M6

M24 =M42 =M5/R, M33 =M8, M44 =M3/R
2

M23 =M32 =M24 =M42 = 0.


