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Abstract. This paper discusses the possibility of detecting mechanisms with second-order
stiffness (resistance to the excitation of an infinitesimal mechanism) imposed by self-stresses
in highly symmetric structures. Coupled application of symmetry adapted first-order matrix
analysis and a second-order stiffness analysis is performed, then the symmetry adapted form
of that second-order analysis is presented, specifying conditions under which the stiffening
effect of multiple states of self-stress can be analyzed. Finally, a generalized bar-and-joint
model containing new kinematic scalar constraints and variables is proposed, with respect
to their applicability in symmetry adapted and second-order analyses. The results are illus-
trated on structural models of viruses in biology with icosahedral symmetry.

Mathematical Subject Classification: 74A05
Keywords : symmetry, polyhedral, finite mechanism, second-order stiffness, product force

1. Introduction

Living systems in nature and engineering structures - consequently, their mechanical
models as well - often show certain symmetry: it is enough to mention flowers, leaves,
micro-organisms and architectonical solutions. These models, for having some degree
of kinematical and statical indeterminacy, are usually highly indeterminate due to a
high order of symmetry. Inclusion of symmetry properties in the computation can
therefore be useful for two reasons: on the one hand, a given problem can often be re-
duced to a simpler one with less computational work by symmetry considerations, and
on the other hand, clear description and physical interpretation of a multi-parameter
system of self-stresses and displacements can hardly be made without using symmetry.

Since the first aim of this paper is to present a tool only for the detection and
categorization of these mechanisms and states of self-stress, all further arguments
and examples are based on the assumption of a perfectly rigid material behavior.

In the starting sections, a short review of existing analytical methods and a the-
oretical introduction of new ones are presented for classical bar-and-joint structures,
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even if this simple model is not always applicable (or practical) for many structures.
Our second aim is therefore to extend these analytical methods to generalized models
containing various kinematic constraints instead of the only classical constant bar
length, as well as to set up basic conditions for the type of extension that can match
the original symmetry adapted techniques.

2. First-order calculations in symmetry adapted coordinate systems

If a compatibility or equilibrium matrix of a structure is given in an arbitrary co-
ordinate system, it is a very simple task to determine the number of independent
infinitesimal mechanisms and states of self-stress, since it depends only on the rank
and dimensions of the matrix in case. Difficulties arise, however, when an attempt is
made to characterize these mechanisms given on a general basis, knowing that all their
linear combinations constitute another infinitesimal mechanism. A possible solution
to this problem can be the choice of a special, symmetry adapted basis in which the
compatibility matrix C (consequently, equilibrium and stiffness matrices G and R as
well) appears in a block-diagonal form according to symmetry properties.

The method of obtaining these bases was developed by Kangwai and Guest [1,2] and
it is built upon the foundations of group representation theory. In order to justify
some of the later arguments, it is necessary to reassume the essential definitions,
theorems and notations in this field.

Connection to group theory comes from the fact that symmetry can be interpreted
as a set of symmetry operations like rotation or reflection, etc, applied to a geometrical
object. It is a trivial statement that there always exists the identity operation and if
two of all existing operations are done successively, the resultant operation is always
found to be equivalent to one operation of the original set. For any operation there
must also exist an inverse operation such that its application to the original one
results in the identity operation. Fulfilling these conditions, symmetry operations of
an object constitutes a group, and it is possible to assemble the full multiplication
table of all operations of the group [3].

Operations in general have different representations among which the most common
one is the so-called matrix representation: an operation is represented by a matrix
multiplication that can express in the most natural way, for example, a coordinate-
transformation in 3D space. It is very important, however, that any set of square
matrices that obeys the multiplication table forms a matrix representation of the
group. Among the infinite number of representations, there is, for example, a natural
representation of the geometrical object that expresses transformations of all specific
coordinates (in bar-and-joint structures, these are nodal coordinates). This represen-
tation is called external, in contrast to a similar possible representation that concerns
transformations among internal forces and internal deformations belonging to the
respective constraints. For illustration, let us consider a simple planar structure in
Figure 1 with a classical - and instructive - C3v symmetry. In this symmetry group,
there are six operations: two rotations (by 120o and 240o, denoted as C3 and C23),
three reflections (σv) and the identity (E). Concentrating on a simple operation
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Figure 1. A structure with C3v symmetry — rotation by 120o counter-clockwise

(counter-clockwise rotation by 120 degrees), one can observe what happens, for in-
stance, to force F acting at node A. Looking only at the direction, new coordinates
can be obtained from a multiplication by the matrix of rotation by 120o as follows:·

xnew
ynew

¸
=

·
cos 120◦ − sin 120◦
sin 120◦ cos 120◦

¸ ·
xold
yold

¸
=MC3

·
xold
yold

¸
. (2.1)

Transformation matrices like in (2.1) can also be generated for all other operations
in C3v - these form a 2-by-2 representation of the group C3v in general. Taking
into account that a rotation of the object also shifts the nodes, equation (2.1) needs
correction: ·

xnew2

ynew2

¸
=MC3

·
xold1
yold1

¸
, (2.2)

and since all the three nodes move, rotation of the whole object is described by
xnew1

ynew1
...

ynew3

 =
 0 0 MC3

MC3 0 0
0 MC3 0




xold1
yold1
...

yold3

 , (2.3)

where the 6-by-6 matrix is an external representation of the object under C3 operation.

If internal forces and deformations are considered, the same rotation moves bar b1
into bar b2 etc., hence  bnew1

bnew2

bnew3

 =
 0 0 1
1 0 0
0 1 0

 bold1
bold2
bold3

 (2.4)

and the 3-by-3 matrix is an internal representation of the object under the same
operation. Note that general symbol b can refer to bar forces or elongations as well,
while xi, yi may equally denote nodal force or displacement coordinates.

Matrix representations - as it happens to quadratic matrices - can undergo unitary
transformations that generate another representation of the group. Some of them
have all matrices in block-diagonal form but usually it is impossible to diagonalise all
matrices of a representation with the same transformation. A set of blocks that cannot
be split into smaller blocks is called ‘irreducible representation’ but since a set of n-
by-n matrices can be operated on by further unitary transformations, the number
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of irreducible representations is still infinite. Within this infinite set, there can be
chosen only a few representations that cannot be transformed into each other by a
unitary transformation. Their name is ‘non-equivalent irreducible representation’ [3]
(note that the matrix forms of these few representations still depend on the vector
basis, therefore it is not uniquely defined unless the dimension of matrices is 1 by 1).

From the character tables for group theory [4], the number and matrix dimensions
of non-equivalent irreducible representations can be read, but beyond that, the table
itself gives the characters (traces of matrices) of each representation row by row:
in spite of the form of matrices, these are uniquely defined since left unchanged by
unitary transformations. For example, in group C3v there are three non-equivalent
irreducible representations, two of them are 1-dimensional and denoted by A1 and
A2, the third one (E) is 2-dimensional (dimension numbers of a representation are
always equal to the trace under identity in that representation). Since in C3v there
are 6 symmetry operations, it means 6 matrices and therefore 6 character values, but
some of the operations (those belonging to the same class) have regularly the same
character that is given in a single column. In our example there are three classes:
identity belongs to the first one, while two rotations and three reflections compose
the second and third ones, respectively. Thus, the character table for C3v is as shown
in Table 1:

E 2C 3 3σv
A1 1 1 1
A2 1 1 -1
E 2 -1 0

Table 1. Character table of group C 3v

There exists a method for generating also matrix forms of multi-dimensional non-
equivalent irreducible representations that are needed for further symmetry-analysis.
It is shown in [1] that using the Great Orthogonality Theorem of group theory, it
is possible to construct quadratic matrices that transform compatibility and rigidity
matrices into a block-diagonal form, once a full set of non-equivalent irreducible rep-
resentations of the group and an arbitrary internal and external representation of the
object are given.

For instance, block-diagonalisation of a compatibility matrix can be written in the
form

CS = VT
f ·C ·Vp, (2.5)

where superscript S means symmetry adapted form, whilstVf andVp are orthogonal
transformation matrices of internal and external quantities with subscripts f and p
referring to internal bar force and external nodal load. The block structure of CS

is determined by the number and dimension of non-equivalent irreducible represen-
tations: each representation means as many blocks as the dimension of its matrices.
For illustration, CS of a structure with C3v symmetry will assume the form shown in
Figure 2:
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Figure 2. Block structure of compatibility matrix in symmetry
adapted form with C3v symmetry

In this symmetry adapted form it is possible to perform an independent analysis of
each block that means practically a singular value decomposition: this is because any
state of self-stress given by the left nullspace or mechanisms coming from the right
nullspace of the matrix is within an invariant subspace associated with one of the
blocks.

In addition to the reduced matrix calculations, mechanisms and self-stresses be-
longing to a given block display well-defined symmetry properties: for example, a
mechanism or state of self-stress found in a block A must be left unchanged by any of
the symmetry operations, which is why they are said to have full symmetry. Mecha-
nisms and states of self-stress categorized by symmetry provide then a system where
physical interpretation of mobility or possibilities of pre-stressing turns out to be more
straightforward.

3. Problems of higher-order rigidity

Singular value decomposition accounts only for the existence of states of self-stress
and infinitesimal mechanisms. This latter category, however, covers now three differ-
ent cases. An infinitesimal mechanism can be a [5]

a) first-order infinitesimal mechanism with additional stiffness provided by pre-
stressing,

b) first-order infinitesimal mechanism without additional stiffness or higher-order
infinitesimal mechanism that can never be stiffened by pre-stressing,

c) finite mechanism, always without additional stiffness.

We notice that an infinitesimal mechanism is of n-th order if there is at least one
bar for which in the expansion of the Taylor-series of its elongation, the order of the
first non-vanishing term is n+ 1: a typical example for (a) is a linkage supported at
two endpoints, with all nodes lying along a straight line; a first-order infinitesimal
mechanism pertaining to case (b) is presented in [6]. In accordance with mechanisms,
we define second-order stiffness: when there is a state of self-stress, and an infini-
tesimal mechanism is activated, unbalanced nodal forces appear. If the virtual work
done by this force system on the mechanism is positive, then the self-stress is said to
be able to impart second-order stiffness to the mechanism; if it holds for all possible
mechanisms, then the whole structure has second-order stiffness.
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Interestingly enough, some of the finite mechanisms can be detected even with
first-order symmetry-analysis: if a block with full symmetry contains one or more
mechanisms but no self-stress, then all displacements in the subspace spanned by
vectors of these mechanisms must be finite [7]. Even if this procedure works only for
full symmetry, it is possible to find an appropriate group for any symmetric mech-
anism where the respective mechanism is fully symmetric, and symmetry adapted
diagonalization based on this group can also be performed. It is impossible to make
a decision in this way about finiteness, however, when at least one fully symmetric
state of self-stress appears.

Another approach to the question of rigidity leads to analyses of existence of ad-
ditional stiffness: once it is proven, finiteness of the motion is ruled out. A method
developed for this purpose by Pellegrino and Calladine [8] uses the concept of ‘product
force’, defined as a nodal resultant of forces in adjacent bars when a single-parameter
state of self-stress and a mechanism is activated to the structure. For example, a
collinear linkage supported at two endpoints has a uniform tensional self-stress; mov-
ing internal nodes infinitesimally off the axis will induce also product force F1 shown
in Figure 3.

sa sb sc ss

d1 d2

F1 F2

sa
sb

sc

Figure 3. State of self-stress, mechanism and product forces

Magnitude of F1 can be computed, based on the assumption of small displacements,
as

F1 = −d1 sa
la
− d1

sb
lb
+ d2

sb
lb
. (3.1)

It can be proved in the same way that a general formula for product force at point
Pi is

Fir = −dir
X
j

sij
lij
+
X
j

djr
sij
lij

, (3.2)

where ro = ox, oy, oz, di denotes displacement components at point Pi, while j runs
over all adjacent nodes; sij and lij are bar forces and lengths, respectively.

Consider a structure with n nodes and b bars. Let S denote a diagonal matrix
of self-stresses containing b diagonal blocks of dimension dim equal to that of the
Euclidean space that the structure is defined in: i-th block S(i) can be obtained as

S
(i)
(dim×dim) =

si
li
E(dim×dim). (3.3)
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Now a (dim × b)-by-(dim × n) matrix T can be constructed: let a block tij be -
E(dim×dim) or E(dim×dim) if Pj is starting or endpoint of the i-th bar, respectively.
With the help of T and S, the complementary stiffness matrix (Q) of the given
structure can be defined:

Q = TT · S ·T , (3.4)

and one can verify that if d is the vector of a mechanism, the product dTQ gives
exactly the coordinates of all product forces.

Existence of stiffening by pre-stressing is tested by the following criterion: if the
external work done by a displacement on the set of product forces generated by the
same displacement vector is zero, no stiffening effect exists [9]. In terms of linear
algebra, it means a quadratic form of zero value:

w = dTQd = 0 . (3.5)

The method is applicable also with k mechanisms: if these n column vectors are
collected in a matrix D, then the product

d = Da, (3.6)

gives their general linear combination (aT = [α01 . . .
oαk]). For this particular mech-

anism, the condition of zero external work (regarding that (Da)T = aTDT ) yields

aTDTQDa = 0 . (3.7)

Term DTQD is a symmetric n-by-n matrix called reduced complementary stiffness
matrix [10] and denoted byW, thus the left-hand side of (3.7) can again be written
as a quadratic form aTWa. If coefficients in a are considered to be variables, the
analysis can be extended to all possible mechanisms. In this case, there is additional
stiffness for all mechanisms if and only if matrixW is definite.

Nevertheless, there is still an open question: what happens when self-stresses are
multiple? For special two-parameter states of self-stress there can be found particular
solutions in [9] but the problem is more complex when a structure has several states
of self-stress with different symmetry properties.

4. Symmetry adapted second-order rigidity analysis

As shown, product force analysis does not require necessarily a symmetry adapted
treatment but in some cases one can make use of it. In this section, a new symmetry
adapted higher-order analysis will be described, pointing out some advantages and
restrictions of its application.

To avoid confusion, matrices S, Q and W will be indexed by serial numbers of
independent states of self-stress found in the first-order analysis. Suppose that S1 is
coming from the fully symmetric block: it is easy to see now that Q1 expresses full
symmetry as well, consequently it can be block-diagonalised with the formula

QS
1 = V

T
p ·Q1 ·Vp , (4.1)
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while the transformation formula of displacement vectors di into symmetry adapted
system is

dSi = V
T
p · di . (4.2)

It is possible then to perform the described matrix analysis in symmetry adapted
system where displacement vectors have all zero values except for those being in the
block of the representation where the displacement was found: in a fully symmetric
displacement vector, for instance, only the first few entries are nonzero.

Consider now a matrix DS containing vectors that belong to different blocks. The
structure of reduced complementary stiffness matrix can be illustrated by the scheme
in Figure 4:

=

Figure 4. Block structure of product (DS)T ·QS ·DS =WS

An important conclusion may be drawn at this stage: having a fully symmetric
state of self-stress, a reduced complementary stiffness matrix is always obtained in
block-diagonal form (note thatWS o = oW, irrespective of intermediate steps made
in the symmetry adapted system), hence a necessary condition for the existence of a
global stiffening effect can be formulated as each set of displacements belonging to a
given block must be stiffened by self-stress S1, or in other words, blocks inW must
be definite in themselves.

Altogether, it is a true objection that a simple check for definiteness does not
justify such amount of symmetry calculations: real applicability of symmetry adapted
analysis is experienced when there are multiple states of self-stress.

Imagine a state of self-stress Sk with lower symmetry than that of S1: formula
(4.1) now will not diagonalise the original matrix Q but QS will show considerable
regularity. If there is a mechanism dl that belongs to a different representation

A1 A2 E
A1 A1 A2 E
A2 A1 E
E Ao

1+
o[A2]o+E

Table 2. Direct product table of group C 3v

(therefore, certainly to a different block), the product force should ‘mix’ properties of
the two symmetries. This effect can be read from direct product tables of groups [4]
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and it says what kind of representations can ever appear in a direct product of two
objects belonging to two representations. For illustration, Table 2 gives the direct
product table of group C3v.

If, for example, Sk belongs to A2 and dl to E, representation of the resultant
product force system may contain E-blocks only. This property is reflected in the
structure of Qk in a way that in two block columns pertaining to E there are nonzero
blocks only in block rows that belong to E. Matrix Qk is therefore still sparse, and it
can happen that blocks in the main block diagonal are all empty. This is not simple
coincidence, since direct product tables often rule out nonzero blocks in rows and
columns pertaining to the same representation (e.g. from Table 2, it follows that a
block pertaining to block row and column of A2 must be empty, since a mechanism
that belongs to A2 cannot generate a product force system belonging to A2 but A1).
The second reason for frequent appearance of zero diagonal blocks is that in case of
representations with multiplicity µ there is a hyperblock of µ×µ blocks pertaining all
to the same representation, hence non-empty block(s) can be located off the diagonal.

Finding a matrix Qk with empty diagonal blocks, it is easy to see from arguments
like in Figure 4 that the main diagonal of W is empty as well. Since unitary trans-
formations used for the digitalization cannot modify the trace of matrix W, among
the eigenvalues ofW there must appear both positive and negative numbers, which
is a proof of indefiniteness.

Consider now a set of states of self-stress (S2,o, . . . , oSν) for which all comple-
mentary stiffness matrices in symmetry adapted form QS

2,
o . . . , oQS

ν have empty
diagonal blocks. In this case any linear combination of matrices QS

i gives a resul-
tant matrix with empty block-diagonal, therefore the respective matrixW must also
be indefinite. In mechanical aspect it means that any linear combination of these
self-stresses is insufficient to provide additional stiffness to any linear combination of
independent displacement vectors included in DS .

5. Generalized bar-and-joint structures: extension of results

The higher-order symmetry analysis presented in the previous section uses the sup-
position of kinematic constraints being constant bar lengths. This section deals with
possible extensions of constraint types that fit both symmetry adapted and product
force analyses in order that the analysis under Section 4 can also be performed.

Theoretically, symmetry adapted first-order computations are applicable to an ar-
bitrary type of constraints, provided it does not break the symmetry of the whole
object, or in other words, if there is an internal matrix representation for the object
that gives full account of the topology. Since bar lengths are given by scalars, this
representation contained only ones and zeros, but if a definite direction had been
associated with the constraints, internal representations should contain minus ones
as well (for example, rotation of a straight line segment about a perpendicular bi-
sector seems to do nothing, while the same operation applied to an arrow reverses
its direction). From the aspect of nodal coordinates, a generalization is possible by
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introduction of single vectors. It will be useful when a folded structure is modelled:
folding lines are inclined to each other with a given angle that can be prescribed by
constant difference (or constant scalar product) of two vectors of fixed length, lying
in the direction of folds. Similarly, an angle between a vector and a bar can also be
prescribed by a scalar product or vector difference. There is, however, a necessary
additional condition that vector lengths must be kept fixed. Numerically it means a
constraint of constant vector norm.

An application of generalized constraints and nodes in first-order analysis is pre-
sented in [11,12], here we restrict ourselves only to presenting a single example.

Consider two nodes Pi and Pj connected by a bar. Let this bar be an edge of a
rectangular plate that is determined by a vector vk in the model: length and direction
of vk is equal and parallel to the other edge of the modelled plate (Figure 5).

Pi Pj

vk

Pi Pj

vk ∆v

Figure 5. Bar and vector modelling a rectangular plate: difference of the vectors vk
and PiPj

It can be guaranteed by three types of constraint functions:

fb =

q
(xj − xi)

2 + (yj − yi)
2 + (zj − zi)

2 − lij (5.1)

is for constant bar length PiPj ,

fv =
q
x2k + y2k + z2k − lk (5.2)

fixes Euclidean norm of vk (here and in the sequel, xk, yk and zk are relative vector
coordinates, in contrast to absolute coordinates indexed by i and j), while

fd =

q
(xk − (xj − xi))

2 + (yk − (yj − yi))
2 + (zk − (zj − zi))

2 − lij,k (5.3)

expresses the constant difference of vectors PiPj and vk, denoted as ∆v in Figure 5.
Note that if there is a C2 axis within the plane of the rectangle that shifts Pi and Pj ,
representation of fb and fv is +1 under this C 2 operation but it is -1 for fd, otherwise
the direction of the difference vector would break the symmetry.

Constraint functions in (5.1-5.2) were all generated in a form of vector difference.
This is useful when a product force test is intended to be done. Method of con-
structing matrix Q is based now on the same principles as in Section 3: vector norms
and differences in constraints of type fv and fd generate force-like quantities along
the respective directions. Their effect can now be taken into account by assembling
matrices T and S in the same way as in the case of constraints fb: a 3-by-3 diagonal
block in T, associated with a function fv and fd are filled with +1 if columns refer
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to vector coordinates, while constraint of type fd will mean an additional diagonal
block of plus or minus ones in columns of edge starting or endpoints, respectively.

Note that entries of T divided by vector norms or difference vector lengths can
also be obtained as first-order approximation of second derivatives of the respective
constraint function according to the variable in question. This approach to the prob-
lem of second-order stiffness is based on a regular second-order analysis of the original
compatibility matrix of bar-and-joint structures [13]. For example, if fd and yk belong
to m-th row and n-th column, respectively, of the compatibility matrix of a structure,
entry tmn can be obtained from

tmn = lij,k
∂2fd
∂y2k

≈ lij,k
∂
yk−(yj−yi)

lij,k

∂yk
= +1. (5.4)

An important remark: a similar extension of higher-order symmetry analysis is pos-
sible by using other constraint functions instead of vector differences (e.g. a scalar
product), but the applicability of a product force test requires an exact statical inter-
pretation of self-stress induced by the respective constraint, which is not always an
easy problem to solve.

6. Expandohedra: a numerical example

For better understanding, in this chapter two sample problems will be presented
to illustrate practical applications for the theory above. The object of the analysis
will be in both cases an assembly with icosahedral symmetry, called expandohedron
[14]. Expandohedra are constructed to model the swelling of some viruses, and the
denomination refers to a fully symmetric finite expansion.

Figure 6. Cardboard model of an icosahedral expandohedron

6.1. Single-link icosahedral expandohedron. The assembly consists of rigid pen-
tagonal prisms connected by a triangle-rectangle-triangle folded linkage of C2 sym-
metry (connections between rigid elements are all revolute hinges). In the mechanical
model, prisms were substituted by determinate bipyramidal bar-and-joint networks
built upon the inner pentagonal faces, and new constraints shown in Section 5 were
used to reduce matrix dimensions. The physical and mechanical models are sketched
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in Figure 7, B and K are vertices of a bypiramid lying on its C5-axis, the constant
length of dotted difference vector ∆v fixes the constant angle of revolute hinges along
the two edges of the triangular plates.

B

K P

Q

B

K
P

Q

v

∆v

Figure 7. Physical (folded) and mechanical model for a single-link
icosahedral expandohedron

Irrespective of the applied numerical model, this expandohedron must have a compat-
ibility matrix with 12 rows less than the number of its columns, which means at least
12 independent displacement systems (six of them are due to rigid body motions).
Assuming a general - not fully open - configuration, first-order symmetry adapted
analysis showed that there are 9 extra mechanisms with 9 states of self-stress, in the
following distribution:

Represen- Number of
General Configuration

tation Blocks
Number of Number of States
Mechanisms of Self-stress

A 1 1 1
T 1 3 3x2 = 6 0
T 2 3 3x1 = 3 3x1 = 3
G 4 0 0
H 5 5x1 = 5 5x1 = 5

Table 3. Mechanisms and states of self-stress of a single-link icosa-
hedral expandohedron

Since there are both a fully symmetric mechanism and a state of self-stress, the finite
character of swelling motion cannot be proved by symmetry arguments (nevertheless,
there exists a geometrical proof). A simple product force test based on the fully
symmetric state of self-stress, however, accounts for the existence of additional stiff-
ness pertaining to all linear combinations of mechanisms except for that containing
only the fully symmetric one. In other words: without using serious higher-order
symmetry considerations we have proved the existence of exactly one finite (swelling)
mechanism, all others can be blocked by self-stresses.

6.2. Double-link icosahedral expandohedron. In this model adjacent pentagonal
bypiramids are connected by pairs of ball-jointed bars with C 2 symmetry.
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Figure 8. Ball-jointed connection of a double-link icosahedral expandohedron

Apart from rigid body motions, here are obtained six mechanisms again only from
counting rows and columns of matrix C. The result of first-order analysis is as follows:

Represen- Number of
General Configuration

tation Blocks
Number of Number of States
Mechanisms of Self-stress

A 1 1 0
T 1 3 3x1 = 3 0
T 2 3 0 3x1 = 3
G 4 0 0
H 5 5x1 = 5 0

Table 4. Mechanisms and states of self-stress of a double-link icosa-
hedral expandohedron

Lack of fully symmetric self-stress indicates now finite expansion directly. The sym-
metry adapted form of matrices Q based on each state of self-stress has all the empty
diagonal blocks, therefore neither of the linear combinations of self-stresses can stiffen
any linear combinations of mechanisms.

7. Conclusions

Symmetry-adapted higher-order mobility and stiffness analysis covers several sub-
methods that were partially developed earlier: the first-order matrix analysis in sym-
metry adapted coordinate system and the product force test also for asymmetric
structures are robust tools for investigation of bar-and-joint structures. It was shown,
however, that efficiency can be increased by coupling the two methods: if there exists
any, a fully symmetric state of self-stress - which is the most likely to impart second-
order stiffness to a structure - can be identified by symmetry analysis. Existence or
lack of second-order stiffness, however, can only be decided in a general case for a
given state of self-stress by second-order analysis. The symmetry adapted version of
this latter method simplifies calculations with fully symmetric states of self-stress and
in some cases it accounts for the non-existence of stiffening effect for arbitrary linear
combinations of self-stresses with lower symmetry.

A coupled symmetry and second-order stiffness analysis for bar-and-joint structures
could be generalized to more complex mechanical models containing free vectors and



78 F. Kovács

kinematic constraints formulated by a vector difference norm but it is possible to use
another type of scalar constraints once a product force can be defined and symmetry
group representations can be found.
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