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Abstract. Interests in variational theory of the problem discussed have grown rapidly
in recent years, various variational formulae have appeared in literature. But some of the
variational principles are wrong. The paper illustrates how to establish variational principles
by the semi-inverse method step by step. Comparison with Liu’s results reveals that the
present technique is much more convenient and reliable. Liu’s variational formulation is
based on technical, theoretical and conceptual errors, including misrepresentations of the
semi-inverse method.
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1. Introduction

The basic equations governing 2-D incompressible inviscid rotational flow under
gravity can be written in the form

∂u

∂x
+

∂v

∂y
= 0 , (1.1)

u
∂v

∂x
+ v

∂v

∂y
= −g − 1

ρ

∂P

∂y
, (1.2)

1

2
(u2 + v2) + gy +

P

ρ
= B(Ψ) , (1.3)

where B is the Bernoulli constant, which oes not change along the stream line, the
stream function Ψ = is also constant, u and v are velocity components in the x- and
y-directions respectively, g is gravitational acceleration, P is pressure.

Difficulty arises when we apply the finite element method to free surface problems.
In order to overcome the difficulty, an imaginary plane is introduced [1, Liu, 1995] [2,
He, 1998] since the value of the stream function Ψ on the free surface should be given
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according to the inlet condition. Therefore it will be convenient for us to introduce
an imaginary plane ξ −Ψ defined as

ξ = x , (1.4)

ψ = ψ(x, y) , (1.5)

where the stream function ψ takes the form

∂ψ

∂x
= −v, ∂ψ

∂y
= u . (1.6)

It is easy to find that

∂

∂x
=

∂

∂ξ

∂ξ

∂x
+

∂

∂ψ

∂Ψ

∂x
=

∂

∂ξ
− v

∂

∂ψ

and
∂

∂y
=

∂

∂ξ

∂ξ

∂y
+

∂

∂ψ

∂Ψ

∂y
= u

∂

∂ψ
.

Consequently we have the following basic equations in the imaginary plane:

∂

∂ξ
(
1

u
)− ∂

∂ψ
(
v

u
) = 0 , (1.7)

∂v

∂ξ
+

∂

∂ψ
(Π) = 0 , (1.8)

Π+
1

2
(u2 + v2) = B , (1.9)

where Π = gy + P/ρ.
Making use of equation (1.8) a general function Ω can be introduced [1, Liu, 1995]

∂Ω

∂ξ
= Π ,

∂Ω

∂ψ
= −v . (1.10)

Luke [3, 1967] first studied the variational principle for fluids with free surface in a
physical plane, and Liu [1, 1995] was the first to deduce variational principles in the
imaginary plane. Recently Liu [5, 2001] re-studied the problem by Liu’s systematic
method [6, 2000], but, unfortunately, the variational principles obtained are proved
to be wrong. We re-write two formulae for evaluation. Consider first the variational
formulations obtained by Liu:

JLiu1(Ω, v,Π, u) =

ZZ
1p

2(B −Π)− v2

½
v
∂Ω

∂Ψ
− ∂Ω

∂ξ
+ 2B −Π

¾
dA

−
ZZ ½

aun−2(u2 + v2 + 2Π− 2B)− 2a
n
un
¾
dA , (1.11)

JLiu2(Ω, u, v,Π) =

ZZ ½
v

u

∂Ω

∂Ψ
− 1

u

∂Ω

∂ξ
+

u2 + v2

u
+

B

u

¾
dA

−
ZZ ½

aΠn−1(u2 + v2 + 2Π− 2B)− 2a
n
Πn
¾
dA . (1.12)
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It is easy to prove that the above two functionals are wrong. As is pointed out by He
[7, 2000], Liu’s systematic method [6, 2000] contains a contradiction [8, 2000] leading
to very limited validity of this approach [9, He, 2000]. Liu’s method might result in
incorrect functionals, for example, the variational functional obtained by Liu et al.
in (Liu and Wang, [10, 1996]) is incorrect, which is corrected by He’s semi-inverse
method [11, 2000], [12, 1997].

2. Inverse problem of calculus of variations

In recent years the inverse problem of calculus of variations has brought about a
renewed interest in continuum mechanics. It emanates from the powerful applications
of the finite element methods (Zienkiewicz and Taylor [13], Liu [14]) and the meshfree
particle methods (He [15, 1999]).

In 1997, the present author proposed a powerful tool called the semi-inverse method
(He [12, 1997]) to search for various variational principles directly from the field
equations and boundary conditions. Applications of the semi-inverse method can be
found in the author’s previous publications (He [16], [17], [18]).

In 2000, Liu [6] proposed a systematic approach to the derivation of variational
principles from partial differential equations. Liu’s method consists of two major lines.
There are a number of books devoted to the issue of variational principles, e.g. the
classical monographs by Chien [19, 1983] and Hildebrand [20, 1965]. The first line of
Liu’s approach is also discussed by Chien [19, 1983] and Hildebrand [20, 1965] in great
detail. The question of determining whether a set of field equations can be derived
from a functional may be systematically elucidated by recourse to Veinberg’s theorem,
which also provides a formula for the computation of the corresponding functional.
Therefore the first line of Liu’s approach offers nothing new. The application of this
line can also be found in the literature (e.g. Meylan 2001). The key contribution
of Liu’s method lies in the second line, which provides a method for searching for a
generalized variational principle directly from field equations. But the application of
Liu’s method might lead to incorrect results.

Consider the equation system

∂u

∂x
+

∂v

∂y
= 0 , (2.1)

∂v

∂x
− ∂u

∂y
= 0 . (2.2)

By Liu’s approach one obtains the following functional [6, 2000a]

J(u, v) =

ZZ ½
v(
∂u

∂x
+

∂v

∂y
) + u(

∂v

∂x
− ∂u

∂y
)

¾
dxdy . (2.3)

We cannot obtain any Euler equation from the above functional. Consequently, Liu’s
method has been proved to be incorrect for the above equations.
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In view of the semi-inverse method [12, 1997], we can suppose that there exists an
unknown functional [7, 2001]

J =

ZZ
Fdxdy (2.4)

under the constraint (2.2). By the Lagrange multiplier method, we have

J(u, v,Ψ) =

ZZ ½
F +Ψ(

∂v

∂x
− ∂u

∂y
)

¾
dxdy , (2.5)

where Ψ is a Lagrange multiplier. The stationary conditions for the above functional
are as follows

∂v

∂x
− ∂u

∂y
= 0 , (2.6)

δF

δu
+

∂Ψ

∂y
= 0 , (2.7)

δF

δv
− ∂Ψ

∂x
= 0 . (2.8)

Here δF/δu is called variational derivative of F with respect to u, and is defined as

δF

δu
=

∂F

∂u
− ∂

∂x
(
∂F

∂ux
)− ∂

∂y
(
∂F

∂uy
) .

From equations (2.7) and (2.8), we have

∂

∂x
(
δF

δu
) +

∂

∂y
(
δF

δv
) = 0 , (2.9)

which should be the field equation ux + vy = 0. Hence we set

δF

δu
= u ,

and
δF

δv
= v , (2.10)

from which we identify the unknown F as follows

F =
1

2
(u2 + v2) . (2.11)

Therefore we obtain the following variational principle

J =

ZZ
1

2
(u2 + v2)dxdy (2.12)

and the following generalized variational principle

J(u, v,Ψ) =

ZZ ½
1

2
(u2 + v2) +Ψ(

∂v

∂x
− ∂u

∂y
)

¾
dxdy . (2.13)

The Lagrange multiplier now has a physical meaning, i.e., the stream function. To
search for a generalized variational principle, we always begin with an energy-like
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trial functional with an unknown function F . For example, we can construct a trial
functional in the form

J(u, v,Φ) =

ZZ ½
u
∂Φ

∂x
+ v

∂Φ

∂y
+ F

¾
dxdy , (2.14)

where Φ is the potential function for which

∂Φ/∂x = u, ∂Φ/∂y = v

while F is an unknown function of u, v, and their derivatives.

It is obvious that the stationary condition of the functional (2.14) with respect to
Φ results in (2.9). Calculating variation of functional (2.14) with respect to u and v,
we have

∂Φ

∂x
+

δF

δu
= 0 , (2.15)

∂Φ

∂y
+

δF

δu
= 0 . (2.16)

We search for such an F that the above two equations should become

∂Φ/∂x = u

and
∂Φ/∂y = v ,

respectively, so that we can immediately identify F as F = −(u2 + v2)/2.

There exist many alternative approaches to the construction of the trial functionals.
Illustrative examples can be found in the author’s previous publications.

3. Semi-inverse method and variational principles

We will apply the semi-inverse method (He [12, 1997]) to search for a variational
principle for the problem discussed above. The basic idea of the semi-inverse method
is to construct a trial functional with an unknown function.

If we want to establish a generalized variational principle with 4 independent vari-
ables (u, v, Ω and Π), we can construct a trialfunctional in the form

J(u, v,Ω,Π) =

ZZ ½
1

u

∂Ω

∂ξ
− v

u

∂Ω

∂ψ
+ F

¾
dξdψ , (3.1)

where F is the unknown function to be determined. We call the functional

L(u, v,Ω,Π) =
1

u

∂Ω

∂ξ
− v

u

∂Ω

∂ψ
+ F (3.2)

trial-Lagrangian.

The advantage of the above trial functional is that the Euler equation with respect
to Ω is equation (1.7). Now calculating the variation of equation (3.1) with respect
to u, we obtain the following trial-Euler equation

δu : − 1
u2

∂Ω

∂ξ
+

v

u2
∂Ω

∂ψ
+

∂F

∂u
= 0 . (3.3)
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In a view of equations (1.10), we have

∂F

∂u
=
1

u2
∂Ω

∂ξ
− v

u2
∂Ω

∂ψ
=
1

u2
(Π+ v2) . (3.4)

From equation (3.4), the unknown F can be identified as follows

F = − 1
u
(Π+ v2) + F1 , (3.5)

where F1 is a newly introduced unknown function, which should be free of the variables
u and Ω. Inserting equation (3.5) into equation (3.2), we obtain a renewed trial-
Lagrangian, which reads

L(u, v,Ω,Π) =
1

u

∂Ω

∂ξ
− v

u

∂Ω

∂ψ
− 1

u
(Π+ v2) + F1 . (3.6)

Now the trial-Euler equations for δv and δΠ can be easily obtained

δv : − 1
u

∂Ω

∂ψ
− 2v

u
+

∂F1
∂v

= 0 , (3.7)

δΠ : − 1
u
+

∂F1
∂Π

= 0 . (3.8)

By means of the field equations (1.10) and (1.9), we have

∂F1
∂v

=
1

u

∂Ω

∂ψ
+
2v

u
=

v

u
=

v√
2B − v2 −Π , (3.9)

∂F1
∂Π

=
1

u
=

1√
2B − v2 −Π . (3.10)

From the above relations (3.9) and (3.10), we can immediately identify the unknown
F1, which reads

F1 = −
p
2B − v2 −Π . (3.11)

Finally we obtain the following Lagrangian

L(u, v,Ω,Π) =
1

u

∂Ω

∂ξ
− v

u

∂Ω

∂ψ
− 1

u
(Π+ v2)−

p
2B − v2 −Π . (3.12)

Liu (1995) obtained a similar Lagrangian, which reads

LLiu(u, v,Ω,Π) =
1

u

∂Ω

∂ξ
− v

u

∂Ω

∂ψ
− u

2
− v

£
2(B −Π)− u2 + v2

¤
u
p
2(B −Π)− u2

. (3.13)

Supplementing the Lagrangian (3.12) or (3.13) by the field equation (1.9) as a side
condition, we obtain a constrained functional

J̃Liu1(Ω, v,Π) =

ZZ
1p

2(B −Π)− v2

½
v
∂Ω

∂Ψ
− ∂Ω

∂ξ
+ 2B −Π

¾
dA (3.14)

and

J̃Liu2(Ω, u, v) =

ZZ ½
v

u

∂Ω

∂Ψ
− 1

u

∂Ω

∂ξ
+

u2 + v2

u
+

B

u

¾
dA . (3.15)

The above two functionals are under the constrain of equation (1.9). Liu obtained
functionals (1.11) and (1.12), respectively, from the above functional (3.14) and (3.15)
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by eliminating the constraint of equation (1.9) through the so-called Liu’s systematic
method, which leads to incorrect results hereby. Our approach seems to be much more
straightforward and reliable. We can also readily obtain a variational principle with
three independent variables. For example, if we want to establish a sub-generalized
variational principle with 3 independent variables (u, v, and Ω), a trial-Lagrangian
can be constructed as follows

L1(u, v,Ω) =
1

u

∂Ω

∂ξ
− v

u

∂Ω

∂ψ
+ F , (3.16)

which is assumed to be under the constraint of equation (1.9).

The trial-Lagrangian (3.16) is similar to equation (3.2). The difference is that the
variable Π in equation (3.2) is an independent variable, while it is not involved in
equation (3.16). The variation of Π depends upon equation (1.9), i.e.,

δΠ = −uδu− vδv .

The stationary conditions can be readily obtained:

δu : − 1
u2

∂Ω

∂ξ
+

v

u2
∂Ω

∂ψ
+

∂F

∂u
= 0 , (3.17)

δv :
1

u

∂Ω

∂ψ
+

∂F

∂v
= 0 . (3.18)

In view of the field equations, we have

∂F

∂u
=
1

u2
∂Ω

∂ξ
− v

u2
∂Ω

∂ψ
=
1

u2
(Π+ v2) =

1

u2
(B − 1

2
u2 +

1

2
v2) , (3.19)

∂F

∂v
= −v

u
. (3.20)

Hence the unknown function F can be identified as follows

F = −B
u
− 1
2
u− v2

2u
. (3.21)

Substituting equation (3.21) into equation (3.16), we obtain the following Lagrangian:

L1(u, v,Ω) =
1

u

∂Ω

∂ξ
− v

u

∂Ω

∂ψ
− B

u
− 1
2
u− v2

2u
=
1

u

·
∂Ω

∂ξ
− v

∂Ω

∂ψ
−B − 1

2
(u2 + v2)

¸
.

(3.22)
Constraining the Lagrangian (3.22) by equations (1.10), we obtain

L2(Ω) = u =

s
2(B − ∂Ω

∂ξ
)− (∂Ω

∂ψ
)2 , (3.23)

which is valid under the constraints formed by equations (1.10) and (1.9).

4. Lagrange multiplier method and variational crises

Liu tried his best to remove the constraint of the functionals (3.14) and (3.15)
by Liu’s systematic method, but in vain. In this section we discuss the Lagrange
multiplier and its crises [19, 1, 21, 22, 23].
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Now eliminating the constraints of equations (1.10) in equation (3.23), we obtain

L̃2(Ω, u, v, λ1, λ2) = u+ λ1(
∂Ω

∂ξ
−Π) + λ2(

∂Ω

∂ψ
+ v) , (4.1)

where λ1 and λ2 are multipliers to be further determined, and the variation of Π
depends upon equation (1.9), i.e., it follows that

δΠ = −uδu− vδv .

According to the Lagrange multiplier method, the multipliers are considered as inde-
pendent variables. Thus we obtain the following Euler equations:

δλ1 :
∂Ω

∂ξ
= Π , (4.2)

δλ2 :
∂Ω

∂ψ
= −v (4.3)

δΩ : −∂λ1
∂ξ
− ∂λ2

∂ψ
= 0 , (4.4)

δu : 1 + λ1u = 0 , (4.5)

δv : λ1v + λ2 = 0 . (4.6)

Consequently, the multipliers can be determined as

λ1 = − 1
u
, λ2 =

v

u
. (4.7)

Substituting the identified Lagrange multipliers into equation (4.1) results in

L̃2(Ω, u, v) = u− 1
u
(
∂Ω

∂ξ
−Π) + v

u
(
∂Ω

∂ψ
+ v) , (4.8)

which is under the constraint of equation (1.9). Further eliminating the constraint
(1.9), we obtain

˜̃L2(Ω, u, v,Π, λ3) = u− 1
u
(
∂Ω

∂ξ
−Π)+ v

u
(
∂Ω

∂ψ
+v)+λ3

·
Π+

1

2
(u2 + v2)−B

¸
. (4.9)

Calculating variation with respect to Π, we can easily identify the multiplier, which
reads

λ3 = −1/u . (4.10)

Thus we have

˜̃L2(Ω, u, v,Π) = u− 1
u

·
∂Ω

∂ξ
−B +

1

2
(u2 + v2)

¸
+

v

u
(
∂Ω

∂ψ
+ v) . (4.11)

According to the Lagrange multiplier method, the above Lagrangian contains four
independent variables ( Ω, u, v,Π). But by a careful inspection, we find the constraint,
equation (1.9), is still kept as a non-variational constraint. So the Lagrange multiplier
method is not valid in this case, and it is called by He the second variational crisis
[21, 22, 23].
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Now we apply the Lagrange multiplier method to eliminate the constraint (1.9) of
equation (3.22):

L̃1(u, v,Ω,Π, λ3) =

1

u

·
∂Ω

∂ξ
− v

∂Ω

∂ψ
−B − 1

2
(u2 + v2)

¸
+ λ3

·
Π+

1

2
(u2 + v2)−B

¸
. (4.12)

The stationary condition with respect to Π is

λ3 = 0 . (4.13)

Consequently the constraint cannot be eliminated by the multiplier either. This
phenomenon is called the first variational crisis [19]. The same phenomenon will
appear if we use a multiplier to eliminate the constraint of equation (1.9) or of the
functionals (3.22) and (3.23).

As it was pointed out by He [12, 21, 16] the Lagrange multiplier can finally be
expressed in the form

λ = λ(u, v,Ω,Φ) . (4.14)

Thus we can introduce an unknown function F :

F = λ(u2 + v2 + 2Π− 2B) . (4.15)

The augmented functional (4.12), therefore, can be rewritten in the form

JHe1(Ω, v,Π, u) =

ZZ
1p

2(B −Π)− v2

½
v
∂Ω

∂Ψ
− ∂Ω

∂ξ
+ 2B −Π

¾
dA+ZZ

F (u, v,Φ,Π)dA , (4.16)

where F is the function of the variables u, v,Φ, and Π.

To eliminate the constraint of the functional (3.22), a similar augmented functional
can be constructed as follows

JHe2(Ω, u, v,Π) =

ZZ ½
v

u

∂Ω

∂Ψ
− 1

u

∂Ω

∂ξ
+

u2 + v2

u
+

B

u

¾
dA+

ZZ
F (u, v,Φ,Π)dA .

(4.17)
The unknown F can be identified by the same procedure as illustrated before. The
Euler equations of the functional (4.17) are

− ∂

∂Ψ
(
v

u
) +

∂

∂ξ
(
1

u
) +

δF

δΩ
= 0 , (4.18)

− v

u2
∂Ω

∂Ψ
+
1

u2
∂Ω

∂ξ
+

u2 − v2 − 2B
2u2

+
δF

δu
= 0 , (4.19)

1

u

∂Ω

∂Ψ
+

v

u
+

δF

δv
= 0 , (4.20)

δF

δΠ
= 0 . (4.21)
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We search an F such that the above 4 equations turn out to be the 4 field equations
, i.e., equations (1.7), (1.9) and (1.10). To this end, we set

δF

δΠ
= aHn = a

·
1

2
(u2 + v2) +Π−B (Ψ)

¸n
, (4.22)

where a is a nonzero constant, and n > 0. So the unknown F can be identified as

F =
a

n+ 1

·
1

2
(u2 + v2) +Π−B (Ψ)

¸n+1
+ F1(u, v,Φ) , (4.23)

where F1 is an unknown function of u, v, and Φ. Substituting F into (4.18)−−(4.20)
we search for an F1 that the left equations (4.18)−−(4.20) satisfy the left field equa-
tions (1.7) and (1.10). It is clear that F1 = 0. Therefore we obtain the following
generalized variational principle:

JHE2(Ω, u, v,Π) =

ZZ ½
v

u

∂Ω

∂Ψ
− 1

u

∂Ω

∂ξ
+

u2 + v2

u
+

B

u
+

+
a

n+ 1

·
1

2
(u2 + v2) +Π−B (Ψ)

¸n+1)
dA . (4.24)

Similarly the unknown F in (4.16) can be easily determined, and the following func-
tional is arrived at:

JHE1(Ω, v,Π, u) =

ZZ (
1p

2(B −Π)− v2

·
v
∂Ω

∂Ψ
− ∂Ω

∂ξ
+ 2B −Π

¸
+

+
a

n+ 1

·
1

2
(u2 + v2) +Π−B (Ψ)

¸n+1)
dA . (a 6= 0, n > 1) (4.25)

In view of equation (1.3), functional (4.17) can be re-written in the form

JHE3(Ω, v,Π, u) =

ZZ ½
1

u
(v
∂Ω

∂Ψ
− ∂Ω

∂ξ
+ 2B −Π) + F

¾
dA . (4.26)

The corresponding Euler equations are of the form

− ∂

∂Ψ
(
v

u
) +

∂

∂ξ
(
1

u
) +

δF

δΩ
= 0 , (4.27)

− 1
u2
(v
∂Ω

∂Ψ
− ∂Ω

∂ξ
+ 2B −Π) + δF

δu
= 0 , (4.28)

1

u

∂Ω

∂Ψ
+

δF

δv
= 0 , (4.29)

− 1
u
+

δF

δΠ
= 0 . (4.30)

Since the above equations should satisfy the field equations, we set

δF

δΩ
=

∂

∂Ψ
(
v

u
)− ∂

∂ξ
(
1

u
) = 0 , (4.31)
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δF

δu
=
1

u2
(v
∂Ω

∂Ψ
− ∂Ω

∂ξ
+ 2B −Π) = 1

u2
(−v2 + 2B − 2Π) = 1 , (4.32)

δF

δv
= − 1

u

∂Ω

∂Ψ
=

v

u
=

vp
2(B −Π)− v2

, (4.33)

δF

δΠ
=
1

u
=

1p
2(B −Π)− v2

. (4.34)

From the above relations, we have

F = u− 1
2

p
2(B −Π)− v2 . (4.35)

We obtain another variational principle in the form:

JHE3(Ω, v,Π, u) =

ZZ ½
1

u
(v
∂Ω

∂Ψ
− ∂Ω

∂ξ
+ 2B −Π) + u− 1

2

p
2(B −Π)− v2

¾
dA .

(4.36)

5. A modified Lagrange multiplier method

In the procedure of variation, the multipliers are also considered to be independent
variables. The present modification (He [21, 8]) considers the multipliers to be de-
pendent functions. The problem of the independent Lagrange multipliers as well as
the validity of the method are discussed in the paper [8] by He.

To overcome the problem the multipliers should be considered to be dependent
functions during the identification of the multipliers.

Now re-consider equation (4.9), where λ3 is not an independent variable. Thus the
Euler equations can be expressed as follows

1 +
1

u2

·
∂Ω

∂ξ
−Π

¸
− v

u2
(
∂Ω

∂ψ
+ v) +

∂λ3
∂u

·
Π+

1

2
(u2 + v2)−B

¸
+ λ3u = 0 , (5.1)

1

u
(
∂Ω

∂ψ
+ v) +

v

u
+

∂λ3
∂v

·
Π+

1

2
(u2 + v2)−B

¸
+ λ3v = 0 , (5.2)

∂

∂ξ
(
1

u
)− ∂Ω

∂ψ
(
v

u
) +

∂λ3
∂Ω

·
Π+

1

2
(u2 + v2)−B

¸
= 0 , (5.3)

1

u
+

∂λ3
∂Π

·
Π+

1

2
(u2 + v2)−B

¸
+ λ3 = 0 . (5.4)

It is obvious that equation (5.4) vanishes completely if the multiplier is identified as
λ3 = −1/u (See equation (4.10)). In order to recover equation (1.9) from equation
(5.4), we can identify the multiplier in the following form

λ3 = − 1
u
+ C

·
Π+

1

2
(u2 + v2)−B

¸
. (5.5)
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where C is a nonzero constant. In this way we obtain the following modified La-
grangian

˜̃L2(Ω, u, v,Π) = u− 1
u
(
∂Ω

∂ξ
−Π) + v

u
(
∂Ω

∂ψ
+ v)− 1

u

·
Π+

1

2
(u2 + v2)−B

¸
+

+ C

·
Π+

1

2
(u2 + v2)−B

¸2
. (5.6)

The multiplier in equations (4.12) and (4.13) can be identified in a similar way. The
variational crisis can also be eliminated by the semi-inverse method, for example, we
can re-write equation (4.9) in the form

˜̃L2(Ω, u, v,Π) = u− 1
u
(
∂Ω

∂?ξ
−Π) + v

u
(
∂Ω

∂ψ
+ v) + F . (5.7)

where F is an unknown function to be determined.

6. Conclusion

We illustrate the effectiveness and convenience of the semi-inverse method in searching
for variational principles for a physical problem, and also point out a difficulty in
Liu’s theory which leads to incorrect results. A modified Lagrange multiplier method
is suggested, i.e., the multipliers cannot be considered to be independent variables
during the procedure of their identification.
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