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Abstract. Optimization of internal joint connections is the inverse problem of structural
optimization. There are three types of internal joints: rigid connection, flexible connection
and no connection. A continuous function is chosen to design the type of every joint. These
functions are determined by the optimization. The methods presented in this paper can be
used for topological design as well. The paper presents the mathematical formulation. The
examples shown are compared with the usual topological optimization forms.
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1. Introduction

The boundary conditions, defined as external foundations and/or internal joint con-
nections, basically determine the shape and design of structures. Earlier analysis is
presented in [1] and [2], and a summary is given in [3]. In practice the boundaries are
given, and the calculations are carried out in order to find a minimal weight design
without changing the earlier defined form and stress distribution of the structure.
The topology optimization methods modify the stress distribution by changing the
value of the cross-sectional area. By using the method the area of all unnecessary
elements will converge to zero while the other elements will approach full stress. The
disadvantage of those optimization forms – cross-section optimization in the fol-
lowing - is that they keep and use the unnecessary elements. The aim of this paper
is to define a topological optimization form based on the internal joint connections –
referred to as connection optimization in the following - and compare it to cross-
section optimization. Both optimizations are analyzed in the case of bar structures.
Section 2 presents the mathematical background. Section 3 is devoted to topological
optimization and the corresponding examples.

The analysis we have presented is based on the equilibrium and compatibility equa-
tions of bar structures. The problem formulations are based on the following precon-
ditions:
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• the geometrical data are known,
• the external loads are given,
• the external supports are given,
• the material is homogeneous and linearly elastic,
• the displacements are small,
• buckling is not treated.

The state equation of FEM analysis concerns the displacements only. To take the
internal forces as optimization limits into consideration, it is useful to separate the
equilibrium and compatibility equations (1.1). Thus the equation system is:

[

C G
GT F

] [

v
s

]

=

[

q
0

]

, (1.1)

where C is the diagonal matrix of the displacement supports, G and its transpose
are the geometrical matrices, F is the flexibility matrix, v is the vector of node
displacements, s is the vector of the internal forces acting in the bars and q is the
external load vector [4]. We assume that there are no permanent deformations and
initial displacements at the supports: 0.

2. The connection/disconnection problem

2.1. General formulations for the connection modification. In FEM design
the connections between the nodes and elements are defined fix as default. Other
types of connections (e.g. hinge, elastic, etc. can be taken into consideration by
subtracting a suitable dyad from the stiffness matrix K:

K̃ = K −
1

kii

kik
T

i , (2.1)

where kii is an element in the main diagonal of K, ki and kT
i

are the column and the
row in K that involve kii. The flexible connections are defined by the spring constants
ρi and are taken into consideration via a dyad which is also to be subtracted from K:

K̃ = K −
ρi

1 + ρikii

kik
T

i . (2.2)

For ρi → ∞ the limit of equation (2.2) coincides with equation (2.1) [4] – see Figure 1
for details which graphically represent the connection.
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connection
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connection
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Figure 1. Model of supports and connections in FEM design
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To present the same effect in the separated equation system (1.1), the symmetric
flexibility matrix F of a structural element has to be diagonalized:

F = U〈F̂〉UT , (2.3)

where 〈F̂〉 is the diagonal flexibility matrix and U and its transpose UT are the

matrices of the transformation. By adding the spring variable ρi to
〈

F̂i

〉

we have

〈F̃〉 = 〈F̂〉 + 〈ρ〉 . (2.4)

Generating the stiffness matrix we obtain (a) equation (2.1) if ρi = − 1

〈Fi〉
(b) K if

ρi = 0 and (c) equation (2.2) otherwise. The system we have generated can be used
for connection optimization design.

2.2. The example structure. The structure we shall analyze as an example is a well
known nine-bar truss [5]. The optimal form of the structure is taken from literature [6]
– see Figure 2. These two forms are used for making comparisons. The advantage of
the example structure is that the flexibility matrix is a diagonal one. Consequently,
there is no need for a diagonalization. The values of the vertical loads acting on the
nodes 2 and 3 are the same, i.e., 400kN. The Young modulus of all elements is 2.1 ·105

MPa. The initial cross-sectional area is 85 cm2, σe = 160 MPa is the elastic stress
limit and the largest bar force equals 1333 kN.
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Figure 2. The nine bar truss to be investigated and its optimal form

2.3. Cross-section modification in case of the example structure. In case of
the example structure the flexibility matrix of an element contains only one element,
〈Fi〉 = li

EAi

, where the Young modulus E and the length of the bar li are constant

values. Ai is the cross-sectional area. Multiplying the element 〈Fi〉 by ρi ∈ 1..1e4
or regarding the problem as a simple inverse one and dividing by spring variable
ρ̂i ∈ 1e − 4..1, we obtain

〈F̃i〉 = 〈Fi〉〈ρi〉 =
liρi

EAi

(2.5)
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or

〈F̃i〉 =
〈Fi〉

〈ρ̂i〉
=

li

EAiρ̂i

, i = 1..9. (2.6)

The system we have generated is adaptable for cross-section modification, thus usable
for a cross-section optimization design.

2.4. Comparison. To check formulas (2.4) and (2.5), the admissible form of the
example structure is solved in three different ways, see Figure 2 and Table 1. The
results obtained by comparing the different techniques (Section 2.1, 2.3) for the exam-
ple structure (presented in Section 2.2) show that disconnecting the elements unused
the bar forces and the displacements at the fixed points are much closer to the real
values in Table 1.

9 bar 4 bar structure

structure using

eq. (2.5)

using

eq. (2.4)

analytical

solution

1x .1333e-2 .1333e-2 .1333e-3 .1333e-2

1y -.3879e-3 -.1037e-6 -.2824e-11 0

2x -.1188 -.2974 -.2987 -.2975

2y .4027 .9385 .9426 .9387

D
is

p
la

ce
m

en
ts

 (
cm

)

3x -.7124e-2 -.1629 -.1629 -.1629

3y .5847 1.235 1.240 1.235

4x .1173 .1862 .2154

4y .3743 .8034 .7621

5x -.1333e-2 -.1333e-2 -.1333e-3 -.1333e-2

5y -.4121e-3 -.7999e-3 -.8000e-4 -.8000e-3

1 -536.0 -1333. -1333. -1333.

2 168.5 .8037e-1 .1805e-4

3 529.5 .8370e-1 .2155e-4

F
o
rc

es
 i

n
 M

em
b

er
s

(k
N

) 4 -142.1 -499.9 -500.0 -500.0

5 190.5 -.1466e-1 -.1571e-5

6 -433.2 -.1324 -.4590e-4

7 -471.4 -.1193 -.2851e-4

8 527.9 1166. 1167. 1167.

9 393.3 412.4 412.3 412.3

Table 1. Results obtained by applying different techniques

3. The optimization problem with examples

The optimization was carried out for the example structure in Figure 2 with both
methods mentioned in Section 2. The aim of the design was to find the best statically
determinate form of the structure.

The optimization is implemented by a sequential quadratic programming method
for solving nonlinear problems. The following variables are the unknowns in the
program developed:
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• ρ1..9 are the variables to be modified,
• v1..10 are the node displacements,
• s1..9 are the values of the bar forces.

obj1 =
9
∑

i=1

si obj4 =
9
∑

i=1

(si − ρi)

obj2 = −
9
∑

i=1

ρi obj5 =
9
∑

i=1

(

si − s2
i

〈

F̃i

〉)

obj3 = −sT
〈

F̃
〉

s = −
9
∑

i=1

s2
i

〈

F̃i

〉

obj6 = −
9
∑

i=1

(

s2
i

〈

F̃i

〉

+ ρi

)

Table 2. The objective functions

There are six objective functions given in Table 2, defined as a summation of the
internal bar forces, of the spring variables, of the compliance and of three of their
variations, respectively.

In both cases of topological optimization, the mathematical programming problems
are formulated as follows:

obj n = min! Objective function from Table 2
Cv + Gs − q = 0 Equalities

GTv +
〈

F̃
〉

s = 0

LL ≤ ρi=1...9 ≤ 1e4 Inequalities
−1.8 ≤ vi=1...10 ≤ 1.8 [cm]

−1335 ≤ si=1...9 ≤ 1335 [kN]

(3.1)

The lower limit LL is zero for connection optimization and is equal to one for cross-
sectional optimization.

Note: The value of the variables to be modified should fall between two positive
limits. The admissible form needs a higher value. Therefore a negative sign is used
to ensure the minimal optimum.

9 bar 4 bar structure

structure using

eq. (2.5)

using

eq. (2.4)

analytical

solution

Compliance 398.8 873.0 873.6 873.6
∑

si 227.0 -254.6 -253.7 -253.7
∑

si, si > 0 1809.7 1578.4 1579.3 1579.3
∑

si, si < 0 -1582.7 -1833.1 -1833 -1833

Table 3. Results obtained by the three different techniques

The comment on the positive and negative signs of other objective functions is in
Table 3. The compliance of a statically determinate structure is much higher than
that of an indeterminate one. A negative sign is used to present the maximum value
in a minimization process, obj3. The sum of the internal bar forces is less, negative,
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in case of a statically determinate structure. The number of bars in compression is
more than that of the bars in tension. In addition the compressive stress is quite
large. Since the bars are in compression the sign of the normal stress is neglected
when we seek for a minimum, obj1.

Results: The cross-section optimization gives four different results, three stat-
ically determinate structures and an indeterminate one – see Table 4, 6 – 14. The
statically indeterminate form is due to compliance obj3. The simple summation obj1

and obj2, and the combination obj4 are the dominant objective functions. Compliance
obj3 only slightly modifies the result.

Cross-section optimization

ρi [dimensionless] vi [cm] si [kN]

1 1 4 1 7 1 1x .133e-2 1 -725.5

2 1 5 1 8 57 1y -.451e-3 2 894.0

3 557 6 120 9 1 2x -.161 3 4.953

2y 1.32 4 -865.1

3x .031 5 -742.0

3y 1.78 6 -9.635

4x .617 7 -748.2

4y 1.17 8 41.7

5x -.133e-2 9 1335

5y -.348e-3

Table 4. Results of the mathematical programming problem (3.1)
with (2.5) and obj1 from Table 2

Connection optimization

ρi [dimensionless] vi [cm] si [kN]

1 2e-5 4 0 7 0 1x .133e-2 1 -729.0

2 0 5 0 8 .016 1y -.453e-3 2 900.6

3 .083 6 2.1 9 0 2x -.174 3 7.52

2y 1.33 4 -872.8

3x .025 5 -745.8

3y 1.8 6 -.197

4x .622 7 -755.2

4y 1.18 8 38.49

5x -.133e-2 9 1335

5y -.347e-3

Table 5. Results of the mathematical programming problem (3.1)
with (2.4) and obj1 from Table 2
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Cross-section optimization

ρi [dimensionless] vi [cm] si [kN]

1 9.4 4 1e4 7 1e4 1x .133e-2 1 -532.0

2 1e4 5 1e4 8 1 1y -.200e-3 2 .144

3 1e4 6 1 9 2 2x -1.12 3 .163

2y 1.8 4 .728

3x .156 5 -.016

3y 1.8 6 -826.0

4x .363 7 -.219

4y 1.56 8 655.7

5x -.133e-2 9 825.4

5y -.599e-3

Table 6. Results of the mathematical programming problem (3.1)
with (2.5) and obj2 from Table 2

Connection optimization

ρi [dimensionless] vi [cm] si [kN]

1 0 4 3e-5 7 0 1x .133e-2 1 -536.0

2 2e-5 5 2e-5 8 ∼ 0 1y -.388e-3 2 168.5

3 0 6 ∼ 0 9 ∼ 0 2x -.119 3 529.5

2y .406 4 -142.1

3x -.008 5 190.5

3y .593 6 -433.2

4x .117 7 -471.4

4y .374 8 527.9

5x -.133e-2 9 393.3

5y -.412e-3

Table 7. Results of the mathematical programming problem (3.1)
with (2.4) and obj2 from Table 2

Cross-section optimization

ρi [dimensionless] vi [cm] si [kN]

1 ∼ 1 4 ∼ 1 7 5.69 1x .133e-2 1 -536.0

2 13.8 5 ∼ 1 8 6.67 1y -.388e-3 2 168.6

3 ∼ 1 6 3.85 9 2.19 2x -.119 3 529.4

2y 1.8 4 -142.1

3x -.144 5 190.4

3y 1.8 6 -433.2

4x .117 7 -471.4

4y 1.41 8 527.8

5x -.133e-2 9 393.4

5y -.412e-3

Table 8. Results of the mathematical programming problem (3.1)
with (2.5) and obj3 from Table 2
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Connection optimization

ρi [dimensionless] vi [cm] si [kN]

1 0 4 ∼ 0 7 5e-5 1x .133e-2 1 -536.0

2 .008 5 .003 8 .002 1y -.388e-3 2 168.5

3 0 6 .001 9 4e-4 2x -.119 3 529.5

2y 1.8 4 -142.1

3x -.144 5 190.5

3y 1.8 6 -433.2

4x .117 7 -471.4

4y .414 8 527.9

5x -.133e-2 9 393.3

5y -412e-3

Table 9. Results of the mathematical programming problem (3.1)
with (2.4) and obj3 from Table 2

Cross-section optimization

ρi [dimensionless] vi [cm] si [kN]

1 144 4 23 7 1e4 1x .133e-2 1 -38.18

2 1e4 5 1e4 8 1 1y -.324e-3 2 .191

3 1e4 6 1 9 1 2x -1.23 3 .125

2y 1.8 4 309.3

3x -.046 5 -.082

3y 1.72 6 -1335

4x .278 7 -.238

4y 1.48 8 357.0

5x -.133e-2 9 1080

5y -.476e-3

Table 10. Results of the mathematical programming problem (3.1)
with (2.5) and obj4 from Table 2

Connection optimization

ρi [dimensionless] vi [cm] si [kN]

1 2e-5 4 0 7 0 1x .133e-2 1 -735.8

2 0 5 0 8 .012 1y -.448e-3 2 895.0

3 1.6 6 .56 9 0 2x -.176 3 .396

2y 1.33 4 -872.4

3x .025 5 -745.6

3y 1.8 6 -.735

4x .623 7 -746.1

4y .118 8 47.40

5x -.133e-2 9 1335

5y -.352e-3

Table 11. Results of the mathematical programming (3.1) with (2.4)
and obj4 from Table 2
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Cross-section optimization

ρi [dimensionless] vi [cm] si [kN]

1 1 4 1 7 1.07 1x .133e-2 1 -680.0

2 1 5 1 8 1e4 1y -.476e-3 2 923.2

3 71.1 6 1317 9 1 2x -.155 3 38.12

2y 1.36 4 -872.3

3x .025 5 -745.5

3y 1.8 6 -.895

4x .606 7 -793.2

4y 1.2 8 .243

5x -.133e-2 9 1335

5y -.324e-3

Table 12. Results for the mathematical programming problem (3.1)
with (2.5) and obj5 from Table 2

Connection optimization

ρi [dimensionless] vi [cm] si [kN]

1 0 4 0 7 3e-5 1x .133e-2 1 -705.5

2 0 5 0 8 .04 1y -.466e-3 2 908.8

3 .024 6 .04 9 0 2x -.158 3 24.76

2y 1.36 4 -864.9

3x .025 5 -741.8

3y 1.8 6 -9.99

4x .604 7 -772.8

4y 1.2 8 16.95

5x -.133e-2 9 1335

5y -.334e-3

Table 13. Results of the mathematical programming problem (3.1)
with (2.4) and obj5 from Table 2

Cross-section optimization

ρi [dimensionless] vi [cm] si [kN]

1 9.4 4 1e4 7 1e4 1x .133e-2 1 -532.0

2 1e4 5 1e4 8 1 1y -.200e-3 2 .147

3 1e4 6 1 9 2.1 2x -1.12 3 .167

2y 1.8 4 .728

3x .156 5 -.018

3y 1.8 6 -826.0

4x .373 7 -.227

4y 1.55 8 665.7

5x -.133e-2 9 825.4

5y -.600e-3

Table 14. Results of the mathematical programming problem (3.1)
with (2.5) and obj6 from Table 2
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Connection optimization

ρi [dimensionless] vi [cm] si [kN]

1 0 4 ∼ 0 7 3e-5 1x .133e-2 1 -536.0

2 .009 5 .003 8 .002 1y -.388e-3 2 168.5

3 0 6 .001 9 4e-4 2x -.119 3 529.5

2y 1.8 4 -142.1

3x -.145 5 190.5

3y 1.8 6 -433.2

4x .117 7 -471.4

4y .399 8 527.9

5x -.133e-2 9 393.3

5y -.412e-3

Table 15. Results of the mathematical programming problem (3.1)
with (2.4) and obj6 from Table 2

The connection optimization gives three different solutions: a statically deter-
minate structure and two indeterminate ones – see Tables 5, 7 and 15. In this case
the sum of internal bar forces obj1, and the compliance obj3 are the useful functions.

Figure 3. The results of limit modifications

The limits, used in inequalities, are important for the optimal form as well. In-
creasing the positive displacement limit and/or reduces the negative internal force
limit the optimal statically determinate form can change. In the case of the example
structure Figure 3 using obj4 the following happens: the result is the left figure if the
vertical displacement limit is 1.3cm and the internal bar force limit is 1335kN, the
middle structure if the displacement limit is increased to 1.8 cm, and finally the right
form if the internal force limit is changed to -1375kN.

The results of the optimization process with limits of (2.5) are presented in Tables
4 – Table 15.

4. Conclusion

The method we have presented in this paper is capable of solving the connection
– disconnection problem in structural design. From a mechanical point of view the
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problem is an inverse one. Mathematically it is a not a convex problem. The opti-
mization algorithm can find as many solutions as the number of the possible statically
determinate structures. The results of the optimization process are determined by
the objective functions. The limits set up for the displacement and the internal forces
influence the local optima.

The main objective of the analysis was to formulate and try a solution technique.
Thus the stability, safety and economy requirements are not fulfilled.

The method we have presented is developed for numerical optimization problems.
The example structure is a well–known one from the literature, and is practical for
demonstrating that the connection optimization technique developed gives good so-
lutions. The advantages of that simple structure are that the calculations can easily
be controlled, and the results obtained can easily be compared with those found in
the literature [5], [6] and [7].
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