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Abstract. A heterogeneous mathematical model (elastic body - Timoshenko shell) has
been applied for the analysis of some elastic structures. The boundary and variational
formulation of the heterogeneous mathematical problem are presented. Bubble functions —
Finite Element Method — have been applied for the numerical analysis.
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1. Formulation of the problem

1.1. Introductory remarks. Many structures encountered in engineering practice
consist of shell parts linked to the solid continua. In the numerical analysis these
structures cannot be approximated well with the lower dimensional theories of shells.
If the reliability and accuracy of the computed data are to be ensured, one must
use multifield modelling in numerical simulation of the structures [1]. An approach
to the analysis of multistructures, based on the asymptotic theory of shells and the
theory of elasticity was suggested in the work by P.Siarlet [2]. D - adaptive analysis
of multistructures is considered in the work by E. Stein [3]. Here we suggest another
approach to the analysis of multistructures, which is based on the Timoshenko shell
theory and the theory of elasticity.

Let the elastic continuum occupy the bounded and connected domain €2y N 93,
(Figure 1), where €, 25 are three-dimensional domains with the Lipshitz boundaries
I'1,T%. Let us suppose, that the three-dimensional domain €; is referred to a Carte-
sian coordinate system x1, X2, x3. The three mutually orthogonal unit vectors on the
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X

Figure 1. Thin shell embedded into a 3D body

boundary I'; are denoted by 71, Vs , 73 (71 is the outer normal to I';). We also
suppose that the three-dimensional domain €23 is thin, i.e., one of its dimensions, the
thickness h, is considerably smaller then the two others. We refer the domain 5 to
the curvilinear coordinate system (1, (2, (3
X h h
Q25 =190,0:G:0,¢E Qz,—§ <@ < 5[

defined on the middle surface S C R3, which is an image of the set Qy C R? (with
the boundary I's) through a map

xi:SOi(ChCQ)v C17<26927 Z:]~7273 (1)

Let us denote the three orthogonal right—-handed unit vectors on the curve 95 (95
is the map of I'y with respect to (1)) by Ty, 5, '3, where T’y is the unit normal to
OT'5 that lies in the tangent plane of the middle surface S; 15 is the unit tangent to
the curve I'y; and T3 is a unit normal to the middle surface S.

1.2. Equations of the theory of elasticity. Let

u=(up (x), us (x), us(x)), x=2ax1,z9,1xs, (2)

be the displacement vector of the elastic continuum. The components e;; (u) of the
deformation tensor are given by the relations

L (8“" al”) i =123 3)

i = 5 8.’5]‘ 8262
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The stress components are denoted by o;;. The stress strain relations are of the form

3
05 = Z Cijkl () ext (4)

k=1
where c;ji; stands for the elastic parameters. For a homogeneous and isotropic con-
tinuum equation (4) can be rewritten in the form
O = O —+ 2/L€” 5 1= ]., 2, 3, (5)
oij = 2pei,  iFJ, 4,7 =123
where
0 =e1 + e +e33,

while B B
12

= — d -_——_—

A aroasm ™M rTraay

are the Lame coefficients.

The components of the stress tensor satisfy the equilibrium equations

8Uzk

o +fi=0,i=12,3; (6)

where f; denote the components of the body forces applied to the elastic continuum
in the domain ;.

1.3. Equations of the Timoshenko shell theory [5]. The vector defined by the
equation

v =(v1(§),v2(8),w(§),m(£),72(£), §=E1,¢2, (7)

involves the displacements vy (§) ,v2 (£) ,w (£) and the angles of rotations 1 (§) ,¥2 (§)
on the middle surface.

The deformation of a shell is described by the characteristics
1

Con = A—aﬁava i A ———g0gAn + kaw,
_ Aa L A8y v
2€“ﬁ_AﬁaﬁA 1,00,
1
€a3 = —kalUa + _a(xw + Ya (8)

A,
= La 0sAq
Xaa = A, o Yo + A, A 1 18O

ko kg kg
2Xaﬁ = A_BaB'Ya_A A 'Uaa,é’A +A 80/7,6’_

ko Aoy o Asgy 28
__Fa Aa 4 Za
T, 10 As + 085t GOy

where «,8 € {1,2};a # 8., 0, = %, Aq, ko are Lame coefficients and main
curvatures of the middle surface of the shell, respectively.
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The force and moment characteristics 1o, To3, Mog can be given in terms of the
deformation characteristics of the shell €44, €03, Xag, & 8 € {1,2} via the material
law:

Eh

Toa = m (Eaa + 1/655) R
Eh
Ta = 577 . . faBs
P o)
Tag = le/hé‘a;g s (9)
Eh3
Maa = T571 .o\ aa ’
Eh3
Myg=———
BTt o)
where k' is the shear coefficient, G’ is the shear module. For isotropic materials
5 E
kK== G =——.
6’ 2(1+v)

The force and moment characteristics introduced should satisfy the equilibrium
equations
1
AaAs

1
AZ Ay

ks
A
ﬁaﬂhT% +p3=0,

1
Az Ay

aaAgTaa — aa(A/g)T,@/g + agAiTa/a + ko T o3+

1
A Az

+ a/BAakoéMoég + a,@(Aa)Maﬁ +pa =0,

AL Ag
1

1
A Ag

h h h h
P = (14—1@15) (1—&-1@5) O';:;-i- (1—1615) (1—k2§> O3t

h/2

+ / (14 k1G3) (1 + k2(3) fidCs, i=1,2,3;
—hy2

h h\ b h h\ h _
o= (1) (1 8) B (1 08) (3-8 B

h/2

+ / (1+k1Gs) (1 + k2G3) fiG3dGs, j=1,2;

—h/2

—Tns + aaAgMaa — aa(Ag)Mﬁg —+ agAiMaﬁ + mq =0,

A Ag
(10)

where

(11)

in which f; stands for the components of body forces in the domain 25, 0;5, 0,5 are
the components of the surface forces on the shell surfaces (3 = +h/2, (3= —h/2.
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1.4. Boundary and junction conditions. We shall assume that boundary I'y con-
sists of parts FY), that is

5 5
=, o) Ny =o0. (12)
i=1 i5=1,
T2

Boundary I's of the thin domain 25 consists of the side surface I'§ and the two face
surfaces F;r, I'; . The side surface I'§ is a cylindrical one, which is generated by the
motion of the normal to the middle surface S along the boundary 95 of the middle
surface. The boundary 9S of the middle surface is the curve S C R3, which is
the map (1) T'y C R2. Let us suppose that I'y consists of parts ng), which satisfy
conditions

3 3
r,=re, r? )y’ =o. (13)
i=1 i,j=1,
i#]

The following boundary conditions are imposed on the parts of the boundary
D r@ p@ pE@).
1 »+1 »+2 »+2

ul =0, u5 =0, u;y =0, zGFgl);
of1 =0, 075=0, o3 =0, xEFSQ);
v} =0, =0, w=0,~97=0, 75 =0, Cl,(gefgl);
Ty =0, Ty =0, Tjy =0, My =0, M{y=0, G,&ely,

where uY, uf, uf, v7, vy, 77, 75 are the normal deflections and rotation angles on
the boundaries I'y and I'y; o7/, T(’jﬁ” T, M(ZB are the normal stresses, forces and
moments on the boundaries I'y and I's.

We shall also assume that 1"(13) and 1"%3) satisfy the relations

h

h
) = {Ch(z,(z HCNCES F§3)ﬁ§ <@< 5} :

On this part of the boundary perfect contact of two elastic continua, which occupy
domains €2,€3, is carried out. On the part of the boundary the following relations
exist (Figure 2)

- = - = —
1=—1nN1, Vo=—1 Vy=n

2 3

On the boundary P§3) we specify the following junction conditions.

Geometrical conditions:
v __ n n
uy = —vy — (377,

uy = —vy — (373, (18)
uy =w.
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Figure 2. Junction of a thin shell to a 3D elastic body

Statical conditions:

h/2 h/2
—/ o1y (1 +ky¢3)dCs = T77 , —/ o1y (L +ky(3)dCz =TTy,

—h/2 —h/2
h/2
/ 0%y (L -+ kyCs) dCs = TV, (19)
—h/2
h/2 h/2
- / oG (L RG)dGs = M, / ots (14 hyCa) dGs = M
—h/2

where k, is the curvature of the normal section along the boundary curve of the shell.

Figure 3. Embedding of a thin shell into a 3D elastic body on the
upper face
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Let us define junction conditions on the surfaces I‘YL) =T (see Figure 3). They
have the following forms:

Geometrical conditions:
h h
W = —w, g =+ ST, =+ b (20)
Statical conditions:
oy = *U:;rsa oYy = Uﬁy ofy = U;rs- (21)

Figure 4. Embedding of a thin shell into a 3D elastic body on the
lower face

We shall also define junction conditions on the surfaces 1"(15) =T (see Figure 4).
Geometrical conditions:

h
=75 (22)

h
v o__ v o __ n n v __ n
up =W, Uy =Up - g, Uy = Uy — g

2
Statical conditions:
011 =Ppn, Ola =Py, O3 =Dy (23)
Thus heterogeneous mathematical model [6] consists of the equations (6), (3) - (5),
(8) - (10); boundary conditions (14) - (17); and junction conditions (18) - (23).

2. Variational formulation

Let us consider the function space

Vo= {U:(U,V),u:(Ul,’LLQ,Ug),V:(’Ul,UQ,w,’}/l,’YQ),UGng) (Ql)a

v e W (), conditions (14), (16), (18), (20), (22)} .

We shall formulate two equivalent variational problems for the heterogeneous math-
ematical model: theory of elasticity and Timoshenko shell theory in displacements.
Find a solution U which minimizes the functional (principle of the minimum of po-
tential energy)

F(U) - min, UeV (24)
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and find a U, which satisfies the variational equation (weak formulation):
ay (u, 1) + az (v, V) = (P,ﬁ) L U=(uv)eV,YU=@v) eV . (25
Here
F(U) =ay (u,u)+az(v,v)—2(P,U) ,

a1 (ua ﬁ) =2 wWh (u7 ﬁ) dQl )
1951

W1 (l.l7 l~l> = % [611 (ll) 011 (l~l) + ...+ €23 (u) 023 (ﬁ)} s

as (v,v) =2 Wo (v, v)dQs , (26)
Qo

Wa (v, v) = % [e11 (V) T11 (V) + €22 (V) T2 (V) + €12 (V) Th2 (V) +
+e13 (v) Tiz (V) + €23 (v) Taz (V) + x11 (V) M1y (V) + 2x12 (V) Ma2 (V)]

ro)-

3
Z u; fid€ + / (v1p1 + vap2 + wps + y1my + yame) dSs .

1i=1 22
3. Penalty variational formulation

Consider a penalty variational formulation of the heterogenous mathematical model
in the following two forms:

F.(U.) > min, U, €V, e -0 (27)
and
~ - 1 ~ ~
a1 (ug,a) + ag (ve, v) + gag (UE, U) = (P,U) , (28)
Us:(usavs), UEG‘/;:,6>05 e—0,
vU € V.,
V. = {U =(u,v),u= (u1,us,uz),v=(v1,v2,w,71,72),U € Wél) (),
v e W () , conditions (14), (16), (20), (22)}.
Here

1
F, (Us) = a1 (115, us) + ag (Vaavs) + ga3 (U€7 UE) -2 (P, UE) y

o3 (U 02) = [, A0+ 08+ Gort) @ + 77 + ) +
1

+ (ug + vy + (372) (g + 03 + (375) + (ug — w) (ug —v5)}dl.
The penalty item %ag (U, U,) is introduced to avoid satisfying the geometrical
conditions on the boundary ng)

v o__ n n
uy = —v) — (371,
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1% n n
uy = —vy — (373,
uy = w,

which are difficult to satisfy in a finite element algorithm.

4. Numerical examples

4.1. Example 1. As a test problem we shall consider a one-dimensional problem, i.r.
a plate subjected to uniform pressure py = const. The plate is simply supported.

It‘s well known [5], [7] that there appears the locking effect if we use the FEM to the
analysis of shells on the base of Timoshenko‘s shell theory, To remove the inaccuracy
in results generated by the locking effect, we suggest to use bubble-approximation for
the unknown displacements.

h=0.01
1.60E+04 )L )L
I/zs/ .
1,40E+04 //
1,20E+04 /
i —e— Seriesl
1,00E+04
N / / —8— Series2
©  800E+03 —2— Series3
]
z / —%— Series4
W 6,00E+03 )
/ —%— Series5
4,00E+03 /
2,00E+03 /
0,00E+00 & 1
2 4 8 16 32 64 128 256
NEL

Figure 5. Convergence of the FEM solution

We map the finite element
Q={G: ¢ <G <}
onto the standard element
Qu={{:-1<£< 1}

with the mapping
1-¢ k1, 148

G=—"G + Tﬁf )
and select the following shape functions [4]
1-— 1+ .
4P1=T£, <P2=T£a i =0i1(§) i=3,4,..m,
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h=0.001
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1,40E+07

1,20E+07 /
f

1,00E+07 /
8,00E+06

ENERGY

6,00E+06 //

4,00E+06 /

/E]

2,00E+06

—

-

0,00E+00 &
2 4 8 16 32

NEL

B3
5}

64
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256

—o— Seriesl
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—*— Series5

Figure 6. Convergence of the FEM solution

h=0.0001

1,60E+10

o

>4

1,40E+10 /

1,20E+10 P/

1,00E+10 /

—— Seriesl
B— Series2

B Series3

ENERGY

8,00E+09 /

O Seriesd

¥ Series5

6,00E+09

4,00E+09 /

0,00E+00

2,00E+09 /
) m m m m
1 2 3 4 5

NEL

Figure 7. Convergence of the FEM solution

where

2j—1 (¢
cpj:,/JT/le,l(t)dt, j=23,...

in which P; is the j-th Legendre polynomial.
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Figures 5-7 illustrate the convergence of the FEM solution in energy norm for
different thicknesses (h/l) depending on the number of elements (Series 1: exact
value; Series 2: m = 2; Series 3: m = 3; Series 4: m = 4; Series 5: m = 5).

4.2. Example 2. Let us apply the heterogeneous mathematical model for the nu-
merical analysis of a tube junction (Figure 8) which is subjected to inner pressure[8].

Figure 8. Tube junction

Ozzlp
8|0

4.
1)
"
H
Y

160 |

,
ou/p

A C 0] 0 B D

Figure 9. Graphs of stresses in the tube junction
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The data are as follows:
Ry =05Ry, h=0.05Ry, | =17TRy, L=22R,,
EFE=21x10°p, v=03, e=10"

For the analysis we used FEM with quadratic approximation on two-dimensional
(theory of shell) and three-dimensional (theory of elasticity in shaded region).

In Figure 9 the graphs of stresses o22/p along the line ACOBD are shown. The
solid line corresponds to the analysis by the FEM based on the heterogeneous model.
The dotted line corresponds to the analysis by the FEM based on the theory of
coupled shells. The point O is the point where the middle surfaces meet. The value
of stresses in this point obtained using the theory of coupled shells is not adequate.
Bold dots represent the results of experimental data.
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