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Abstract. A heterogeneous mathematical model (elastic body - Timoshenko shell) has
been applied for the analysis of some elastic structures. The boundary and variational
formulation of the heterogeneous mathematical problem are presented. Bubble functions —
Finite Element Method — have been applied for the numerical analysis.
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1. Formulation of the problem

1.1. Introductory remarks. Many structures encountered in engineering practice
consist of shell parts linked to the solid continua. In the numerical analysis these
structures cannot be approximated well with the lower dimensional theories of shells.
If the reliability and accuracy of the computed data are to be ensured, one must
use multifield modelling in numerical simulation of the structures [1]. An approach
to the analysis of multistructures, based on the asymptotic theory of shells and the
theory of elasticity was suggested in the work by P.Siarlet [2]. D - adaptive analysis
of multistructures is considered in the work by E. Stein [3]. Here we suggest another
approach to the analysis of multistructures, which is based on the Timoshenko shell
theory and the theory of elasticity.

Let the elastic continuum occupy the bounded and connected domain Ω1 ∩ Ω∗2,
(Figure 1), where Ω1,Ω∗2 are three-dimensional domains with the Lipshitz boundaries
Γ1,Γ

∗
2. Let us suppose, that the three-dimensional domain Ω1 is referred to a Carte-

sian coordinate system x1, x2, x3. The three mutually orthogonal unit vectors on the
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Figure 1. Thin shell embedded into a 3D body

boundary Γ1 are denoted by
−→ν 1, −→ν 2 ,−→ν 3 (−→ν 1 is the outer normal to Γ1). We also

suppose that the three-dimensional domain Ω∗2 is thin, i.e., one of its dimensions, the
thickness h, is considerably smaller then the two others. We refer the domain Ω∗2 to
the curvilinear coordinate system ζ1, ζ2, ζ3

Ω∗2 =
½
ζ1, ζ2, ζ3 : ζ1, ζ2 ∈ Ω2,−h

2
≤ ζ3 ≤ h

2

¾
,

defined on the middle surface S ⊂ R3, which is an image of the set Ω2 ⊂ R2 (with
the boundary Γ2) through a map

xi = ϕi (ζ1, ζ2) , ζ1, ζ2 ∈ Ω2, i = 1, 2, 3. (1)

Let us denote the three orthogonal right—handed unit vectors on the curve ∂S (∂S
is the map of Γ2 with respect to (1)) by

−→n 1,−→n 2,−→n 3, where −→n 1 is the unit normal to
∂Γ2 that lies in the tangent plane of the middle surface S;

−→n 2 is the unit tangent to
the curve Γ2; and

−→n 3 is a unit normal to the middle surface S.

1.2. Equations of the theory of elasticity. Let

u = (u1 (x) , u2 (x) , u3 (x)) , x = x1, x2, x3, (2)

be the displacement vector of the elastic continuum. The components eij (u) of the
deformation tensor are given by the relations

eij =
1

2

µ
∂ui
∂xj

+
∂uj
∂xi

¶
, i, j = 1, 2, 3. (3)
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The stress components are denoted by σij . The stress strain relations are of the form

σij =
3X

k,l=1

cijkl (x) ekl , (4)

where cijkl stands for the elastic parameters. For a homogeneous and isotropic con-
tinuum equation (4) can be rewritten in the form

σii = λθ + 2µeii , i = 1, 2, 3; (5)

σij = 2µeij , i 6= j , i, j = 1, 2, 3;

where
θ = e11 + e22 + e33 ,

while

λ =
Eν

(1 + ν) (1− 2ν) and µ =
E

2 (1 + ν)

are the Lame coefficients.

The components of the stress tensor satisfy the equilibrium equations
3X

k=1

∂σik
∂xk

+ fi = 0, i = 1, 2, 3; (6)

where fi denote the components of the body forces applied to the elastic continuum
in the domain Ω1.

1.3. Equations of the Timoshenko shell theory [5]. The vector defined by the
equation

v = (v1 (ξ) , v2 (ξ) , w (ξ) , γ1 (ξ) , γ2 (ξ)) , ξ = ξ1, ξ2, (7)
involves the displacements v1 (ξ) , v2 (ξ) , w (ξ) and the angles of rotations γ1 (ξ) , γ2 (ξ)
on the middle surface.

The deformation of a shell is described by the characteristics

εαα =
1

Aα
∂αvα +

1

AαAβ
vβ∂βAα + kαw ,

2εαβ =
Aα

Aβ
∂β

vα
Aα

+
Aβ

Aα
∂α

vβ
Aβ

,

εα3 = −kαuα + 1

Aα
∂αw + γα , (8)

χαα =
1

Aα
∂αγα +

1

AαAβ
γβ∂βAα

2χαβ =
kα
Aβ

∂βγα − kβ
AαAβ

vα∂βAα +
kβ
Aα

∂αγβ −

− kα
AαAβ

γβ∂αAβ +
Aα

Aβ
∂β

γα
Aα

+
Aβ

Aα
∂α

γβ
Aβ

,

where α, β ∈ {1, 2} ;α 6= β., ∂α = ∂
∂ζα
, Aα, kα are Lame coefficients and main

curvatures of the middle surface of the shell, respectively.
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The force and moment characteristics Tαβ, Tα3,Mαβ can be given in terms of the
deformation characteristics of the shell εαβ , εα3, χαβ , α, β ∈ {1, 2} via the material
law:

Tαα =
Eh

1− ν2
(εαα + νεββ) ,

Tαβ =
Eh

2 (1 + ν)
εαβ ,

Tα3 = k0G0hεα3 , (9)

Mαα =
Eh3

12 (1− ν2)
(χαα + νχββ) ,

Mαβ =
Eh3

12 (1 + ν)
χαβ ,

where k0 is the shear coefficient, G0 is the shear module. For isotropic materials

k0 =
5

6
, G0 =

E

2 (1 + ν)
.

The force and moment characteristics introduced should satisfy the equilibrium
equations

1

AαAβ
∂αAβTαα − 1

AαAβ
∂α(Aβ)Tββ +

1

A2αAβ
∂βA

2
αTαβ + kαTα3+

+
1

AαAβ
∂βAαkαMαβ +

kβ
AαAβ

∂β(Aα)Mαβ + pα = 0 ,

−k1T1 − k2T2 +
1

A1A2
∂1A2T13 +

1

A1A2
∂2A1T23 + p3 = 0 ,

−Tα3 + 1

AαAβ
∂αAβMαα − 1

AαAβ
∂α(Aβ)Mββ +

1

A2αAβ
∂βA

2
αMαβ +mα = 0,

(10)

where

pi =

µ
1 + k1

h

2

¶µ
1 + k2

h

2

¶
σ+i3 +

µ
1− k1

h

2

¶µ
1− k2

h

2

¶
σ−i3+

+

h/2Z
−h/2

(1 + k1ζ3) (1 + k2ζ3) fidζ3 , i = 1, 2, 3;

mi =

µ
1+k1

h

2

¶µ
1 + k2

h

2

¶
h

2
σ+j3 −

µ
1− k1

h

2

¶µ
1− k2

h

2

¶
h

2
σ−j3+

+

h/2Z
−h/2

(1 + k1ζ3) (1 + k2ζ3) fiζ3dζ3 , j = 1, 2;

(11)

in which fi stands for the components of body forces in the domain Ω2, σ
+
i3, σ

−
i3 are

the components of the surface forces on the shell surfaces ζ3 = +h/2, ζ3 = −h/2 .
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1.4. Boundary and junction conditions. We shall assume that boundary Γ1 con-
sists of parts Γ(i)1 , that is

Γ1 =
5[
i=1

Γ
(i)
1 , Γ

(i)
1

5\
i,j=1,
i6=j

Γ
(j)
1 = ∅ . (12)

Boundary Γ∗2 of the thin domain Ω∗2 consists of the side surface Γc2 and the two face
surfaces Γ+2 ,Γ

−
2 . The side surface Γ

c
2 is a cylindrical one, which is generated by the

motion of the normal to the middle surface S along the boundary ∂S of the middle
surface. The boundary ∂S of the middle surface is the curve ∂S ⊂ R3, which is
the map (1) Γ2 ⊂ R2. Let us suppose that Γ2 consists of parts Γ

(i)
2 , which satisfy

conditions

Γ2 =
3[
i=1

Γ
(i)
2 , Γ

(i)
2

3\
i,j=1,
i6=j

Γ
(j)
2 = ∅. (13)

The following boundary conditions are imposed on the parts of the boundary
Γ
(1)
1 ,Γ

(2)
1 , Γ

(1)
2 ,Γ

(2)
2 :

uν1 = 0 , u
ν
2 = 0 , u

ν
3 = 0 , x ∈ Γ(1)1 ; (14)

σν11 = 0 , σ
ν
12 = 0 , σ

ν
13 = 0 , x ∈ Γ(2)1 ; (15)

vn1 = 0 , v
n
2 = 0 , w = 0 , γ

n
1 = 0 , γ

n
2 = 0 , ζ1, ζ2 ∈ Γ(1)2 ; (16)

Tn
11 = 0 , T

n
12 = 0 , T

n
13 = 0 , M

n
11 = 0 , M

n
12 = 0 , ζ1, ζ2 ∈ Γ(2)2 , (17)

where uν1 , u
ν
2 , u

ν
3 , v

n
1 , v

n
2 , γ

n
1 , γ

n
2 are the normal deflections and rotation angles on

the boundaries Γ1 and Γ2; σνij , T
n
αβ, T

n
α3, M

n
αβ are the normal stresses, forces and

moments on the boundaries Γ1 and Γ2.

We shall also assume that Γ(3)1 and Γ(3)2 satisfy the relations

Γ
(3)
1 =

½
ζ1, ζ2, ζ3 : ζ1, ζ2 ∈ Γ(3)2 ,−h

2
≤ ζ3 ≤ h

2

¾
.

On this part of the boundary perfect contact of two elastic continua, which occupy
domains Ω1,Ω∗2, is carried out. On the part of the boundary the following relations
exist (Figure 2)

−→ν 1 = −−→n 1, −→ν 2 = −−→n 2, −→ν 3 = −→n 3 .
On the boundary Γ(3)1 we specify the following junction conditions.

Geometrical conditions:

uν1 = −vn1 − ζ3γ
n
1 ,

uν2 = −vn2 − ζ3γ
n
2 , (18)

uν3 = w .
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Figure 2. Junction of a thin shell to a 3D elastic body

Statical conditions:

−
Z h/2

−h/2
σν11 (1 + kνζ3) dζ3 = Tn

11 , −
Z h/2

−h/2
σν12 (1 + kνζ3) dζ3 = Tn

12 ,Z h/2

−h/2
σν33 (1 + kνζ3) dζ3 = Tn

13 , (19)

−
Z h/2

−h/2
σν11ζ3 (1 + kνζ3) dζ3 =Mn

11 , −
h/2Z
−h/2

σν12ζ3 (1 + kνζ3) dζ3 =Mn
12 ,

where kν is the curvature of the normal section along the boundary curve of the shell.

n
ξ2

ξ1

ξ3

ν1

ν2

ν3

Figure 3. Embedding of a thin shell into a 3D elastic body on the
upper face
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Let us define junction conditions on the surfaces Γ(4)1 = Γ+2 (see Figure 3). They
have the following forms:

Geometrical conditions:

uν1 = −w, uν2 = un1 +
h

2
γn1 , u

ν
3 = un2 +

h

2
γn2 . (20)

Statical conditions:
σν11 = −σ+33, σν12 = σ+13, σ

ν
13 = σ+23. (21)

n
ξ2

ξ1

ξ3

ν1

ν2

ν3

Figure 4. Embedding of a thin shell into a 3D elastic body on the
lower face

We shall also define junction conditions on the surfaces Γ(5)1 = Γ−2 (see Figure 4).

Geometrical conditions:

uν1 = w, uν2 = un1 −
h

2
γn1 , u

ν
3 = un2 −

h

2
γn2 . (22)

Statical conditions:
σν11 = p−n , σ

ν
12 = p−1 , σ

ν
13 = p−2 . (23)

Thus heterogeneous mathematical model [6] consists of the equations (6), (3) - (5),
(8) - (10); boundary conditions (14) - (17); and junction conditions (18) - (23).

2. Variational formulation

Let us consider the function space

V =
n
U =(u,v) ,u = (u1, u2, u3) ,v = (v1, v2, w, γ1, γ2) ,u ∈W(1)

2 (Ω1) ,

v ∈W(1)
2 (Ω2) , conditions (14), (16), (18), (20), (22)

o
.

We shall formulate two equivalent variational problems for the heterogeneous math-
ematical model: theory of elasticity and Timoshenko shell theory in displacements.
Find a solution U which minimizes the functional (principle of the minimum of po-
tential energy)

F (U)→ min, U ∈ V (24)
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and find a U, which satisfies the variational equation (weak formulation):

a1 (u, eu) + a2 (v, ev) = ³P, eU´ , U =(u,v) ∈ V, ∀eU = (eu, ev) ∈ V . (25)

Here

F (U) = a1 (u,u) + a2 (v,v)− 2 (P,U) ,
a1 (u, eu) = 2Z

Ω1

W1 (u, eu) dΩ1 ,
W1 (u, eu) = 1

2
[e11 (u)σ11 (eu) + ...+ e23 (u)σ23 (eu)] ,

a2 (v, ev) = 2Z
Ω2

W2 (v, ev) dΩ2 , (26)

W2 (v, ev) = 1

2
[ε11 (v)T11 (ev) + ε22 (v)T22 (ev) + ε12 (v)T12 (ev)+

+ε13 (v)T13 (ev) + ε23 (v)T23 (ev) + χ11 (v)M11 (ev) + 2χ12 (v)M12 (ev)] ,³
P, eU´ = Z

Ω1

3X
i=1

uifidΩ1 +

Z
Ω2

(v1p1 + v2p2 + wp3 + γ1m1 + γ2m2) dΩ2 .

3. Penalty variational formulation

Consider a penalty variational formulation of the heterogenous mathematical model
in the following two forms:

Fε (Uε)→ min, Uε ∈ Vε, ε→ 0 (27)

and

a1 (uε, eu) + a2 (vε, ev) + 1
ε
a3

³
Uε, eU´ = ³P, eU´ , (28)

Uε = (uε,vε) , Uε ∈ Vε, ε > 0, ε→ 0 ,

∀eU ∈ Vε ,

Vε =
n
U =(u,v) ,u = (u1, u2, u3) ,v = (v1, v2, w, γ1, γ2) ,u ∈W(1)

2 (Ω1) ,

v ∈W(1)
2 (Ω2) , conditions (14), (16), (20), (22)

o
.

Here

Fε (Uε) = a1 (uε,uε) + a2 (vε,vε) +
1

ε
a3 (Uε,Uε)− 2 (P,Uε) ,

a3

³
Uε, fUε

´
=

Z
Γ
(3)
1

{(uν1 + vn1 + ζ3γ
n
1 ) (euν1 + evν1 + ζ3eγν1 )+

+ (uν2 + vn2 + ζ3γ
n
2 ) (euν2 + evν2 + ζ3eγν2 ) + (uν3 − w) (euν3 − evν3 )} dΓ.

The penalty item 1
εa3 (Uε,Uε) is introduced to avoid satisfying the geometrical

conditions on the boundary Γ(3)1
uν1 = −vn1 − ζ3γ

n
1 ,
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uν2 = −vn2 − ζ3γ
n
2 ,

uν3 = w,

which are difficult to satisfy in a finite element algorithm.

4. Numerical examples

4.1. Example 1. As a test problem we shall consider a one-dimensional problem, i.r.
a plate subjected to uniform pressure p0 = const. The plate is simply supported.

It‘s well known [5], [7] that there appears the locking effect if we use the FEM to the
analysis of shells on the base of Timoshenko‘s shell theory, To remove the inaccuracy
in results generated by the locking effect, we suggest to use bubble-approximation for
the unknown displacements.

h=0.01
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Figure 5. Convergence of the FEM solution

We map the finite element

Ωk =
©
ζ1 : ζ

k−1
1 ≤ ζ1 ≤ ζk1

ª
onto the standard element

Ωst = {ξ : −1 ≤ ξ ≤ 1}
with the mapping

ζ1 =
1− ξ

2
ζk−11 +

1 + ξ

2
ζk1 ,

and select the following shape functions [4]

ϕ1 =
1− ξ

2
, ϕ2 =

1 + ξ

2
, ϕi = Φi−1(ξ) i = 3, 4, ...m,
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Figure 6. Convergence of the FEM solution
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Figure 7. Convergence of the FEM solution

where

Φj =

r
2j − 1
2

Z ξ

−1
Pj−1(t)dt , j = 2, 3, . . .

in which Pj is the j-th Legendre polynomial.
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Figures 5-7 illustrate the convergence of the FEM solution in energy norm for
different thicknesses (h/l) depending on the number of elements (Series 1: exact
value; Series 2: m = 2; Series 3: m = 3; Series 4: m = 4; Series 5: m = 5).

4.2. Example 2. Let us apply the heterogeneous mathematical model for the nu-
merical analysis of a tube junction (Figure 8) which is subjected to inner pressure[8].

α1
α2

α1

α2

A

O

C

B

D

.

.

. .
.

R1

R 2

A

C
B DO

.

.. . .
.
.. . .

A1

C1

O1 B1 D1

L

l

h

h

Figure 8. Tube junction

σ22/p

0

2 0

4 0

6 0

8 0

.
. . . . .. . . .

.

A C O O B D

σ11/p

Figure 9. Graphs of stresses in the tube junction
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The data are as follows:

R1 = 0.5R2 , h = 0.05R2 , l = 1.7R2 , L = 2.2R2 ,

E = 2.1× 105p , ν = 0.3 , ε = 10−4

For the analysis we used FEM with quadratic approximation on two-dimensional
(theory of shell) and three-dimensional (theory of elasticity in shaded region).

In Figure 9 the graphs of stresses σ22/p along the line ACOBD are shown. The
solid line corresponds to the analysis by the FEM based on the heterogeneous model.
The dotted line corresponds to the analysis by the FEM based on the theory of
coupled shells. The point O1 is the point where the middle surfaces meet. The value
of stresses in this point obtained using the theory of coupled shells is not adequate.
Bold dots represent the results of experimental data.
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