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Abstract. This paper presents some ideas and doubts about some assumptions on the
validity and proofs of the Onsager—Casimir reciprocal relations. Presuming the validity
of the Onsager—Casimir reciprocal relations, exact proofs can be constructed for Newton’s
second and third laws, moreover, for the formula of the Lorentz—force. This way, the axioms
of both mechanics and electrodynamics would become theorems in a theory in which the
Onsager—Casimir reciprocal relations have been proved phenomenologically. We incline to
believe that neither the axioms mentioned nor the Onsager—Casimir reciprocal relation can
be proved, nevertheless, they are valid. The statement that if something is true then it can
be proved is false.
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1. Introduction

The Onsager—Casimir reciprocal relations play important role in non-equilibrium ther-
modynamics [1, 2, 3, 4, 5, 6]; their validity deserves attention even if they have been
discussed several times, (see e.g. [7,8,9,10,11] and [12], especially, [13,14,15,16,17,18,
19, 20] as weel as [21, 22]). Furthermore they are somehow related to the celebrated
and persistent problems of the increase in the entropy and thermalization in statistical
manifolds [23,24].

The original proof based on the principle of microscopic reversibility suggests that
they hold for statistical ensembles – in accordance with the opinion that entire ther-
modynamics does – and other methods introducing them did not result in anything
new [5]. The generality and some applications hardly belonging to the realm of
statistics inspired efforts for a phenomenological proof. The attempts to prove the
reciprocal relations on a phenomenological basis have failed. One may think that the
failure proves the statistical validity. Here we show that the reciprocal relations are
closely related to very basic principles. We show here that the desired phenomeno-
logical proof of the reciprocal relations would be equivalent to a proof of fundamental
laws of physics.
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The equivalence of the reciprocal relations and the principle of detailed balance
are well known. What is more the latter has hardly any meaning, e.g., in particle
mechanics or in Maxwell’s theory. The thermodynamic theory of diffusion–see e.g.
[25]– shows that the reciprocal relations for the diffusion coefficients are equivalent
to Newton’s third law.

Some simple models can elucidate the intimate relation of the reciprocity to New-
ton’s laws and to the fundamental principles of electromagnetism.

2. The diffusion

The entropy production density in an isothermal multicomponent system is (see [5]
eq. XI.171, p. 265.)

σ =
1

T

nX
k=1

Jak{Fk − (gradµk)T }, (2.1)

where the vectors Jak = ρk(vk−v) are the diffusion flows with respect to any reference
velocity (v), Fk stands for the body forces acting on the unit amount of each chemical
species in a frame travelling and accelerating together with the local center of mass,
the scalars µk are the chemical potentials, and T is the thermodynamic temperature.
Here ρk stands for the densities and vk for the velocities of the components. The
Onsager equations read

Fi − (gradµi)T =
nX

k=1

RikJ
a
k. (2.2)

From the fact that a simple translation of the material does not result in any dissi-
pation,

nX
k=1

Rikρk = 0 (2.3)

follows. Eliminating the diagonal elements from the right-hand side of equation (2.2),
we get

Fi − (gradµi)T =
X
k 6=1

Rikρk(vk − vi). (2.4)

The right-hand side gives account of the forces exertied by the other components on
the unit amount of the i-th one. Referring to unit volume, equation (2.4) transforms
into

ρi(Fi − (gradµi)T ) =
X
k 6=1

Rikρkρi(vk − vi). (2.5)

One can see that Onsager’s reciprocal relations follow from Newton’s third law; exactly
as Truesdell concluded [25]. To decide whether they are equivalent or not needs a
detailed axiomatic investigation difficult for such a complex system. The possibilities
are more transparent in case of simpler models.
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3. Newton’s second law

The simplest model we use is a small — point like — particle and its motion is discussed
by recalling the ideas of thermodynamics. The idea of work and Galilean relativity
are presumed but Newton’s second and third axioms are not. Remember that the idea
of work is much older than Newton’s theory (Archimedes). The reciprocal relation
and the possibility of reversible motion yields Newton’s second axiom.

Assume the conservation of energy for a particle. Heat — unlike pure mechanical
considerations — is also taken into account as friction or drag may always be present.

de

dt
= Iq +Fv. (3.1)

Here e is the energy of the thermodynamic system (i.e. the particle and its immediate
environment, e.g. in a fluid), Iq is the heat flow into, and F is the force exerted on
it. The entropy is supposed to depend on the energy and on a — not yet specified —
β-type vector variable;

s = s(e,β). (3.2)

The Morse — lemma [26] ensures that the form of the above function becomes

s = s(e− 1
2
β2) (3.3)

with a suitable independent variable. The second law of thermodynamics reads

ds

dt
=

Iq
T
+ Ps (3.4)

with non-negative entropy production;

Ps ≥ 0 .
If we do not want to take on the difficulties of discussing the possible details of heat
exchange we had better suppose reversible heat effects, which results in

∂s

∂e
=
1

T
.

The actual form of the entropy production is

Ps =
1

T

½
Fv− β dβ

dt

¾
. (3.5)

The Onsager equations are

F = R11v+R12
dβ

dt
,

−β = R21v+R22
dβ

dt
(3.6)

with Casimir’s reciprocal relation

R21 = −R12 . (3.7)



160 J. Verhás

The energy dissipation rate — TPs — is given by

TPs = R11v
2 +R22

½
dβ

dt

¾2
.

In the reversible limit both R11 and R22 equal zero; Onsager’s equations turn into

F = R12
dβ

dt
,

−β = −R12v, (3.8)

which results in

F = R212
dv

dt
; (3.9)

obviously, the positive quantity R212 is m, the mass of the particle. The dropped
coefficient R11 may give account of drag if the particle moves in a fluid, while the
coefficient R22 results in a term approximating electromagnetic radiation [27] or emis-
sion of acoustic waves, etc.

The entropy function (3.3) in the reversible case is

s = s(e− 1
2
mv2) .

Newton’s second law has been shown by Onsager’s linear theory. The relativistic
formulae result in a non-linear theory.

4. Newton’s third law

Combining two particles and applying the previous result as well as the homogeneity
of space lead to the third axiom if and only if the Onsager—Casimir reciprocal relation
holds. For the sake of simplicity, suppose that no external forces act on the particles;
the change of the energy is due to heat. The first law of thermodynamics reads

de

dt
= Iq . (4.1)

Take the entropy in the form

s = s
¡
e− 1

2
m1v

2
1 −

1

2
m2v

2
1, r1 − r2

¢
. (4.2)

The entropy function expresses the fact that the space is homogeneous and the inter-
action of the two particles is influenced by their distance. Dropping again the heat
effects and evaluating the entropy production leads to

TPs = Γ(v1 − v2)−m1v1
dv1
dt
−m2v2

dv2
dt

or rearranged

TPs =

µ
Γ−m1

dv1
dt

¶
v1 −

µ
Γ+m2

dv2
dt

¶
v2, (4.3)

where the symbol Γ stands for the gradient of the entropy with respect to r1;

Γ =
∂s

∂(r1 − r2) .
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The Onsager equations areµ
Γ−m1

dv1
dt

¶
= R11v1 +R12v2,

−
µ
Γ+m2

dv2
dt

¶
= R21v1 +R22v2, (4.4)

where Onsager’s reciprocity is not assumed. Galilean invariance requires

R11 +R12 = 0,

R21 +R22 = 0,

as the left hand sides of the equations (4.4) contain only differences of position vectors
and velocities–they are objective– while on the right hand sides absolute velocities
stand except the above equalities hold. The sum of the equations–after multiplying
both sides by -1–results

m1
dv1
dt

+m2
dv2
dt

= (R21 −R12)(v1 − v2), (4.5)

which leads to the conservation of the linear momentum if and only if Onsager’s
reciprocity holds.

5. Lorentz—force

The idea of the electric field and a β-type field — generated by the motion of charges — is
presumed. Onsager’s reciprocal relation gives the formula of Lorentz’s force together
with the definition for the B-vector.

The balance equation for the internal energy u = e− 1/2mv2 reads
du

dt
= Iq + qEv , (5.1)

where q is the electric charge and E is the electric field strength. The entropy function
is

s = s(u) (5.2)

and the entropy production reads

Ps =
1

T
qEv. (5.3)

The form of Onsager’s equation is

qE = Rv , (5.4)

where the resistivity tensor R depends on the aforementioned β-type field quantity
β, the tensorial order of which has not been specified. Onsager’s reciprocal relation
takes the form

RT (β) = R(−β), (5.5)
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which says that the skew-symmetric part of the resistivity tensor is an odd function
on β while the symmetric part is even. Denote the symmetric part by R+, and the
vector invariant of the skew-symmetric part by −qB. Equation (5.4) turns into

qE = R+v− qB× v. (5.6)

The last term on the right—hand side is proportional to the charge q; it can be reasoned
the same way as for the electric force qE. The quantity B is characteristic for the
field and may be accepted — trivially — as the magnetic field strength. The first term
on the right—hand side gives account of drag.

6. Conclusion

The arguments presented show clearly that a general phenomenological proof for the
Onsager—Casimir reciprocal relations would be also proof for Newton’s axioms and
for the axioms of electromagnetism.

I hardly believe that it is possible.
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