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Abstract. In this overview of loaded stiffened plates various plate types, loadings, and
stiffener shapes are investigated. Mikami [1] and API [2] methods are used for the optimum
design and comparison of the two methods and uniaxially compressed plates stiffened by
ribs of various shapes. Both methods consider the effect of initial imperfection and residual
welding stresses, but their empirical formulae are different. The elastic secondary deflection
due to compression and lateral pressure is calculated using the Paik’s solution [3] of the
differential equation for orthotropic plates, and the self-weight is also taken into account.
Besides this deflection some more deformations are caused by lateral pressure and the shrink-
age of longitudinal welds. The unknowns are the thickness of the base plate as well as the
dimensions and number of stiffeners. The cost function to be minimized includes two kinds
of material and three kinds of welding costs.
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1. Introduction

Stiffened welded plates are widely used in various load-carrying structures, e.g. ships,
bridges, bunkers, tank roofs, offshore structures, vehicles, etc. They are subject to
various loadings, e.g. compression, bending, shear or combined load. The shape of
plates can be square, rectangular, circular, trapezoidal, etc. They can be stiffened in
one or two directions by stiffeners of flat, L, trapezoidal or other shape.

Various plate types, loadings and stiffener shapes have been investigated. In this
paper two kinds of loads are investigated [6], [7]. These are uniaxial compression and
lateral pressure. Structural optimization of stiffened plates has been worked out by
Farkas [8], Farkas and Jármai [9], and applied to uniaxially compressed plates with
stiffeners of various shapes [10], biaxially compressed plates [11].

This paper contains the minimum cost design of longitudinally stiffened plates us-
ing the strength calculation methods. Deflections due to lateral pressure, compression
stress and shrinkage of longitudinal welds are taken into account in the stress con-
straint. The self-weight is added to the lateral pressure. The local buckling constraint
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of the base plate strips is formulated as well. The cost function includes two kinds
of material and three kinds of welding costs. The unknowns are the thickness of the
base plate as well as the dimensions and number of stiffeners.

2. Geometric characteristics

The stiffened plates are shown in Figures 1 and 2. The plates are simply supported at
four edges. Geometrical parameters of plates with flat, L- and trapezoidal stiffeners
can be seen in Figures 3-5.

Figure 1. Longitudinally stiffened plate loaded by uniaxial compression

Figure 2. Longitudinally stiffened plate loaded by uniaxial compres-
sion and lateral pressure

Figure 3. Dimensions of a flat stiffener
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The geometrical parameters of the flat stiffener are calculated as follows

AS = hStS , (2.1)

hS = 14tSε, (2.2)
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Figure 4. Dimensions of an L-stiffener

The calculations of geometrical parameters of the L-stiffener are

AS = (b1 + b2) tS (2.9)

b1 = 30tSε, (2.10)

b2 = 12.5tSε, (2.11)
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Ix =
bt3F
12

+ btF y
2
G +

b31tS
12

+

+b1tS

µ
b1
2
− yG

¶2
+ b2tS (b1 − yG)

2 ,
(2.13)

IS =
b31tS
3
+ b21b2tS , (2.14)

It =
b31tS
3
+

b32tS
3
. (2.15)

Figure 5. Dimensions of a trapezoidal stiffener

The calculations of geometrical parameters of the trapezoidal stiffener are

AS = (a1 + 2a2) tS , (2.16)

a1 = 90 [mm], a3 = 300 [mm], thus
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3. Design constraints in case of uniaxial compression

3.1. Global buckling of the stiffened plate. According to Mikami [1] the effect of
initial imperfections and residual welding stresses is considered by defining buckling
curves for a reduced slenderness

λ = (fy/σcr)
1/2 . (3.1)

The classical critical buckling stress for a uniaxially compressed longitudinally stiff-
ened plate is

σcr =
π2D

hB2

µ
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+ 2 + α2R

¶
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1/4, (3.2)
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1/2
i

for αR ≥ αR0. (3.3)

Figure 6. Global buckling curve considering the effect of initial im-
perfections and residual welding stresses

When the reduced slenderness is known the actual global buckling stress can be
calculated according to Mikami [1] as follows

σU/fy = 1 for λ ≤ 0.3, (3.4)

σU/fy = 1− 0.63 (λ− 0.3) for 0.3 ≤ λ ≤ 1, (3.5)

σU/fy = 1/
¡
0.8 + λ2

¢
for λ > 1. (3.6)

The global buckling constraint is defined by

N

A
≤ σU

ρP + δS
1 + δS

, (3.7)

in which δS is given by Equation 2.5,

A = BtF + (ϕ− 1)AS , (3.8)
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and the factor is

ρp = 1 if σUP > σU , (3.9)

ρP = σUP /fy if σUP ≤ σU . (3.10)

Figure 7. Global buckling curve according to Mikami and API

According to API [2]

σU/fy = 1 if λ ≤ 0.5, (3.11)

σU/fy = 1.5− λ if 0.5 ≤ λ ≤ 1, (3.12)

σU/fy = 0.5/λ if λ > 1. (3.13)

The global buckling constraint can be written as follows

N

A
≤ σU . (3.14)

3.2. Single panel buckling. This constraint eliminates the local buckling of the
base plate parts between the stiffeners. From the classical buckling formula for a
simply supported panel uniformly compressed in one direction

σcrP =
4π2E

10.92

µ
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b

¶2
, (3.15)
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and the actual local buckling stress considering the initial imperfections and residual
welding stresses is

σUP /fy = 1 for λP ≤ 0.526, (3.17)

σUP
fy

=

µ
0.526

λP

¶0.7
for λP > 0.526. (3.18)
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The single panel buckling constraint is

N

A
≤ σUP . (3.19)

3.3. Local and torsional buckling of stiffeners. These instability phenomena
depend on the shape of stiffeners and will be treated separately for L stiffener.

The torsional buckling constraint for open section stiffeners is

N

A
≤ σUT . (3.20)

The classical torsional buckling stress is

σcrT =
GIT
IP

+
EIω
L2IP

, (3.21)

where G = E/2.6 is the shear modulus, IT is the torsional moment of inertia, IP is
the polar moment of inertia and Iω is the warping constant. The actual torsional
buckling stress can be calculated as a function of the reduced slenderness

λT = (fy/σcrT )
1/2 , (3.22)

σUT /fy = 1 for λT ≤ 0.45, (3.23)

σUT /fy = 1− 0.53 (λ− 0.45) for 0.45 ≤ λ ≤ 1.41, (3.24)

σUT /fy = 1/λ
2 for λ > 1.41. (3.25)

Figure 8. Limiting curves for local plate buckling (χP ) and torsional
buckling of open section ribs (χT )
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4. Design constraints in case of uniaxial compression and lateral pressure

4.1. Calculation the deflection due to compression and lateral pressure.
Paik et al. [3] used the differential equations of large deflection orthotropic plate
theory and the Galerkin method to derive the following cubic equation for the elastic
deflection Am of a stiffened plate loaded by uniaxial compression and lateral pressure
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Since the self-weight is taken into account, the lateral pressure is modified as

p = p0 +
ρV g

BL
, (4.4)

where g is the gravitation constant, 9.81 [m/s2].

The flexural and torsional stiffnesses of the orthotropic plate are as follows:
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The deflection due to lateral pressure is

Aom =
5qL4

384EIx
; q = pb; b = B/ϕ. (4.10)
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The solution of equation (4.1) is

Am = − C2
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+ k1 + k2, (4.11)
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4.2. Deflection due to shrinkage of longitudinal welds. According to [9] the
deflection of the plate due to longitudinal welds is as follows

fmax = CL2/8, (4.14)

where the curvature for steels is

C = 0.844x10−3QT yT /Ix, (4.15)

QT is the heat input, Ix is the moment of inertia of the cross-section containing a
stiffener and the base plate strip of width b, yT is the weld eccentricity

yT = yG − tF /2. (4.16)

The heat input for a stiffener is

QT = 2x59.5a
2
W . (4.17)

4.3. The stress constraint. The stress constraint includes several effects as follows:
the average compression stress and the bending stress caused by deflections due to
compression, lateral pressure and the shrinkage of longitudinal welds.

σmax = σxav +
M

Ix
yG ≤ σUP , (4.18)

where

M = σxav (A0m +Am + fmax) +
qL2

8
, (4.19)

According to [1], the calculation of the local buckling strength of a face plate strip
of width

b1 = max(a3, b− a3), (4.20)

is performed taking into account the effects of initial imperfections and residual weld-
ing stresses

σUP = fy when λP ≤ 0.526, (4.21)
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µ
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5. Cost function

The objective function to be minimized is defined as the sum of material and fabri-
cation costs

K = Km +Kf = kmρV + kf
X

Ti, (5.1)

or in another form
K

km
= ρV +

kf
km

(T1 + T2 + T3) , (5.2)

where ρ is the material density, V is the volume of the structure, Km andKf as well as
km and kf are the material and fabrication costs as well as cost factors, respectively,
Ti are the fabrication times as follows:

time for preparation, tacking and assembly

T1 = Θd
p
κρV , (5.3)

where Θd is a difficulty factor expressing the complexity of the welded structure, κ is
the number of structural parts to be assembled;

T2 is time of welding, and T3 is time of additional works such as changing of
electrode, deslagging and chipping. T3 ≈ 0.3T2 , thus,

T2 + T3 = 1.3
X

C2ia
n
wiLwi, (5.4)

where Lwi is the length of welds, the values of C2ianwi can be obtained from formulae or
diagrams constructed using the COSTCOMP [4] software, aw is the weld dimension.

Welding technology aw [mm] 103C2a
n
w

SAW 0-15 0.2349a2w
SMAW 0-15 0.7889a2w
GMAW-M 0-15 0.3258a2w

Table 1. Welding times versus weld size aw [mm] for longitudinal
fillet welds, downhand position

6. Optimiztion method

Rosenbrock’s hillclimb [5] mathematical method is used to minimize the cost function.
This is a direct search mathematical programming method without derivatives. The
iterative algorithm is based on Hooke & Jeeves searching method. It starts with a
given initial value, and takes small steps in the direction of orthogonal coordinates
during the search. The algorithm is modified so that secondary searching is carried out
to determine discrete values. The procedure finishes when the convergence criterion
is satisfied or the iterative number reaches its limit.
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7. Numerical data and optimum results

7.1. Longitudinally stiffened plate loaded by uniaxial compression. The given
data are width B = 6000 [mm], length L = 3000 [mm], compression force N =
1.974 × 107 [N], Young modulus E = 2.1 × 105 [MPa] and density ρ = 7.85 × 10−6
[kg/mm3]. The yield stress is fy = 355 [MPa]. The unknowns — the thicknesses of
the base plate and the stiffener and the number of the ribs - are limited in size. For
without fabrication cost the welding cost is not considered, the material minima is
not shown in Tables 4, 5, 6 and 7.

3 ≤ tF ≤ 40[mm],
3 ≤ tS ≤ 12[mm], (7.1)

3 ≤ ϕ ≤ 10.

kf/km tF [mm] tS [mm] φ K/km [kg]
Mikami 0 22 6 10 5166

1 22 6 10 6152
2 22 6 10 7138

API 0 19 10 10 5224
1 21 7 10 6249
2 21 7 10 7367

Table 2. Optimum dimensions with L- stiffener (SAW)

kf/km tF [mm] tS [mm] φ K/km [kg]
Mikami 0 9 7 9 3424

1 12 6 9 4920
2 17 5 9 6518

API 0 9 7 9 3424
1 9 7 9 4761
2 12 6 9 6097

Table 3. Optimum dimensions with trapezoidal stiffener (SAW)

kf/km tF [mm] tS [mm] φ K/km [kg]
Mikami 1 22 6 10 7232

2 24 5 10 8846
API 1 21 7 10 7546

2 21 7 10 9960

Table 4. Optimum dimensions with L- stiffener (SMAW)

kf/km tF [mm] tS [mm] φ K/km [kg]
Mikami 1 19 4 9 6452

2 19 4 9 8538
API 1 15 5 9 6444

2 21 3 10 7955

Table 5. Optimum dimensions with trapezoidal stiffener (SMAW)
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kf/km tF [mm] tS [mm] φ K/km [kg]
Mikami 1 22 6 10 6329

2 22 6 10 7493
API 1 21 7 10 6462

2 21 7 10 7793

Table 6. Optimum dimensions with L—stiffener (GMAW-M)

kf/km tF [mm] tS [mm] φ K/km [kg]
Mikami 1 11 6 9 4992

2 16 5 9 6750
API 1 9 7 9 5099

2 16 5 9 6532

Table 7. Optimum dimensions with trapezoidal stiffener (GMAW-M)

7.2. Longitudinally stiffened plate loaded by uniaxial compression and lat-
eral pressure. The given data are width B = 4000 [mm], length L = 6000 [mm],
compression force N = 1.974 × 107 [N], Young modulus E = 2.1 × 105 [MPa]
and density ρ = 7.85 × 10−6 [kg/mm3]. There are three values of lateral pressure
p0 = 0.05, 0.1, 0.2 [MPa] and two values of yield stress fy = 255, 355 [MPa]. The
unknowns — the thicknesses of the base plate and the stiffener and the number of the
ribs - are limited in size. The results are shown in Tables 8-13. The optimum results
are given in bold type.

3 ≤ tF ≤ 40[mm],
3 ≤ tS ≤ 12[mm],
3 ≤ ϕ ≤ 10.

(7.2)

fy p0 tF tS φ K/km [kg]
[MPa] [MPa] [mm] [mm] kf/km = 0 kf/km = 1.5
235 0.1 38 12 10 8014 11758
235 0.05 30 12 6 6127 8362
355 0.1 28 12 10 6568 10137
355 0.05 20 12 9 4825 7914

Table 8. Optimum dimensions with flat stiffener for kf/km = 0, the
material minima

fy p0 tF tS φ K/km [kg]
[MPa] [MPa] [mm] [mm] kf/km = 0 kf/km = 1.5
235 0.1 38 12 10 8014 11758
235 0.05 30 12 6 6127 8362
355 0.1 28 12 10 6568 10137
355 0.05 21 11 8 4852 7312

Table 9. Optimum dimensions with flat stiffener for kf/km = 1.5,
the cost minima
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fy p0 tF tS φ K/km [kg]
[MPa] [MPa] [mm] [mm] kf/km = 0 kf/km = 1.5
235 0.2 31 12 5 6993 8933
235 0.1 21 12 7 5686 8230
235 0.05 20 10 7 4969 6952
355 0.2 22 12 7 6107 8641
355 0.1 18 9 10 5036 7389
355 0.05 17 7 10 4313 6302

Table 10. Optimum dimensions with L-stiffener for kf/km = 0, the
material minima

fy p0 tF tS φ K/km [kg]
[MPa] [MPa] [mm] [mm] kf/km = 0 kf/km = 1.5
235 0.2 34 11 4 7132 8584
235 0.1 27 10 5 5888 7422
235 0.05 24 8 6 5162 6564
355 0.2 28 9 6 6528 8149
355 0.1 22 8 7 5247 6801
355 0.05 19 8 7 4626 6129

Table 11. Optimum dimensions with L-stiffener for kf/km = 1.5, the
cost minima

fy p0 tF tS φ K/km [kg]
[MPa] [MPa] [mm] [mm] kf/km = 0 kf/km = 1.5
235 0.2 28 12 4 6974 8549
235 0.1 24 10 4 5723 6975
235 0.05 18 10 5 4993 6466
355 0.2 21 11 5 6108 7780
355 0.1 15 10 6 4944 6635
355 0.05 13 8 7 4148 5611

Table 12. Optimum dimensions with trapezoidal stiffener for
kf/km = 0, the material minima

fy p0 tF tS φ K/km [kg]
[MPa] [MPa] [mm] [mm] kf/km = 0 kf/km = 1.5
235 0.2 35 9 3 7250 8223
235 0.1 24 10 4 5723 6975
235 0.05 23 8 4 5122 6132
355 0.2 28 8 4 6530 7589
355 0.1 21 7 5 5111 6284
355 0.05 16 7 6 4264 5560

Table 13. Optimum dimensions with trapezoidal stiffener for
kf/km = 1.5, the cost minima
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8. Conclusions

• The results show that the trapezoidal stiffener is the most economic one. The
cost saving can be 69 % compared with various ribs.

• In general the Mikami method gives thinner basic plates than those given by
API.

• Materials with higher yield stress give cheaper results. The cost saving can
be 40 % compared with the lower one. Higher strength steel is 10 % more
expensive.

• In most cases the material and cost minima are different, the number of
stiffeners is smaller at cost minima due to welding cost effects. SAW is the
cheapest welding process if we do not consider investment cost.

• It can be seen from Tables 8 and 9 that there are no solutions for the highest
lateral pressure (p0 = 0.2 [MPa]) for flat stiffeners due to the size limits.

• In case of uniaxially and laterally loaded plate the ratio between material
cost and welding cost ranged from 13 % (for flat stiffener, higher yield stress
and minimum lateral pressure) to 64 % (in case of trapezoidal stiffener, lower
yield stress and maximum lateral pressure).

• For L- and trapezoidal stiffeners the number of stiffeners decreases if the
lateral pressure is increased, but it increases if the yield stress of the material
is increased.

• For flat stiffeners the number of stiffeners increases if the lateral pressure is
increased and the yield stress of the material is increased.
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