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Abstract. An integration technique based on the use of discontinuous functions has been
applied to obtain the natural frequencies of free flexural vibrations in beams. The two
examples presented show the logical basis of the method in a detailed form.
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1. Introduction

In this paper discontinuity functions are applied to derive the frequency equation for
the flexural vibration of light beams. The designations and the definitions of the dis-
continuity functions are borrowed from the textbook by Gere, J. M. and Timoshenko,
S. P. [1]. We will use mainly Table 7-2 of the aforementioned textbook. Two examples
illustrate how to derive the frequency equation in the form of a determinant. The
sign rules we applied are shown in Figure 1. In the state of free flexural vibration all
quantities vary with time in the following form

X̃ = X sinωt X = v, ϕ, V,M,R, ... (1.1)

The factor independent of time in equation (1.1) is referred to as the amplitude of
the quantity X.

2. Examples

2.1. The first problem is that of a light beam with uniform cross-section.

The beam is clamped at its two ends. A massm is attached to point B and a torsional
spring is fixed to point C. In the present problem the Young modulus E of the beam
is constant.
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Figure 1. Sign rules for shear, bending, shape and deflection

The light beam with mass and spring is shown in Figure 2, and the free-body diagram
of the beam segment AD is given in Figure 3.
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Figure 2. Fixed beam

We shall apply the following designations:

RA, RB amplitudes of the reactions,
MA,MB amplitudes of reaction couples,
TB = mvBω

2 amplitude of the inertia force,
v displacement amplitude,
ω eigenfrequency of the free vibrations,
QC = −ϕC/γ amplitude of couple at the torsional spring,
γC amplitude of slope,
γ spring constant.
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Figure 3. Free-body diagram of the beam segment AD

By using the method of Clebsch-Macaulay we obtain the exact expressions for the
shear force V and the bending moment M :

V = RA +MA〈x〉
−1 + TB〈x− a〉0 +QC〈x− 2a〉−1 , (2.1)

M = RAx+MA + TB〈x− a〉1 +QC〈x− 2a〉0 . (2.2)

It is well-known [1] that the bending moment satisfies the equation

IEv′′ = −M . (2.3)

Here prime denotes the derivation with respect to x, i.e., v′′ = d2v
dx2

.

Combination of equation (2.2) with equation (2.3) yields the slope ϕ = v′ and the
deflection v:

IEϕ = −

(
RA

x2

2
+MAx+ TB

〈x− a〉2

2
+QC〈x− 2a〉1

)
+ C , (2.4a)

IEv = −

(
RA

x3

6
+MA

x2

2
+ TB

〈x− a〉3

6
+QC

〈x− 2a〉2

2

)
+ Cx+D . (2.4b)

where C and D are constants of integration. From the boundary conditions

v(0) = 0 , v′(0) = 0 , (2.5a,b)

we get

C = 0 , D = 0 . (2.6a,b)

The boundary conditions v(3a) = 0 and v′(3a) = 0 at point D lead to the following
equations:

4.5a2RA + 3aMA + 2a2TB +QCa = 0 , (2.7a)

4.5a3RA + 4.5a2MA + 1.3333a3TB + 0.5a2QC = 0 . (2.7b)

In the state of free vibration the relationship between the amplitude of inertia force
and the amplitude of displacement at point B is

vB =
TB
mω2

. (2.8)
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From the definition of spring constant γ it follows that

γC = v′ = −QCγ . (2.9)

By applying the expressions for the slope and deflection – these are given by equa-
tions (2.4a,b) – we can eliminate both vB and γC from equations (2.8), (2.9). These
eliminations give

0.16666a3RA + 0.5a2MA +
IE

mω2
TB = 0 , (2.10a)

2a2RA + 2aMA + 0.5a2TB − IEγQC = 0 . (2.10b)

We have four equations for the four unknown quantities RA,MA, TB , QC . Equations
(2.7a,b) and (2.10a,b) form a system of linear equations for the unknown ampli-
tudes RA,MA, TB , QC . There exists a non-trivial solution for the system of equations
(2.7a,b) and (2.10a,b) if the frequency determinant vanishes:

∣∣∣∣∣∣∣∣

4.5a2 3a 2a2 a
4.5a3 4.5a2 1.3333a3 0.5a2

0.1666a2 0.5a2 IE/mω2 0
2a2 2a 0.5a2 −IEγ

∣∣∣∣∣∣∣∣
= 0 . (2.11)

2.2. The second example is that of a simply supported beam with non-

uniform cross-section. In this case the material of the beam is also homogeneous,
that is the Young modulus E is constant. The beam with a rigid disc and springs
is shown in Figure 4. The spring constants are c and γ and the mass of the disc is
m. The second moment of the disc with respect to centroidal axis b is J . The main
centroidal axis b passes through point B and is perpendicular to the plane xy.

If the beam vibrates freely, it is loaded by a force and a couple at point B. This
force-couple system arises from the inertia effects and the action of springs. The
amplitude of the resultant force at point B is

TB =

(
mω2 −

1

C

)
vB . (2.12a)

The amplitude of the resultant couple at the same point is

QB =

(
Jω2 −

1

γ

)
ϕB . (2.12b)

The free-body diagram of the beam AD is shown in Figure 5.

The shear force V and the bending moment M are given by the following formulae:

V = RA + TB〈x− a〉0 +QB〈x− a〉−1 , (2.13)

M = RAx+ TB〈x− a〉1 +QB〈x− a〉0 . (2.14)

The boundary condition for the bending moment M at point D yields

M(4a) = 4aRA + 3aTB +QB = 0 . (2.15)
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Figure 4. Simply supported beam of non-uniform cross-section

The flexural rigidity is given by the equations

EI = EI0 , 0 ≤ x < 2a , (2.16a)

EI = 2EI0 , 2a < x ≤ 4a , (2.16b)

where E and I0 are constants.
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Figure 5. Free-body diagram for the non-uniform beam segment AD

Integrating equation (2.3) we obtain

−I0Ev′ = RA

x2

2
+ TB

〈x− a〉2

2
+QB〈x− a〉1 + C1 0 ≤ x < 2a , (2.17a)

−2I0Ev′ = RA

x2

2
+ TB

〈x− a〉2

2
+QB〈x− a〉1 + C2 2a < x ≤ 4a . (2.17b)
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After a new integration we arrive at the deflection:

−I0Ev = RA

x3

6
+ TB

〈x− a〉3

6
+QB

〈x− a〉2

2
+ C1x+D1 0 ≤ x < 2a , (2.18a)

−2I0Ev = RA

x3

6
+ TB

〈x− a〉3

6
+QB

〈x− a〉3

6
+ C2x+D2 0 ≤ x < 2a .

(2.18b)

By using the displacement boundary condition v(0) = 0 we get

D1 = 0 . (2.19)

In the present case we have six unknowns, namely RA, TB , QB , C1, C2, D2. The equa-
tions which we have to use to determine the above mentioned quantities are as follows:

M(4a) = 0 , v(4a) = 0 , (2.20a,b)

v′(2a− ε) = v′(2a+ ε) ε −→ 0 , (2.20c)

v(2a− ε) = v(2a+ ε) ε −→ 0 , (2.20d)

v(a) =
TB

mω2 − 1
c

, v′(a) =
QB

Jω2 − 1
γ

. (2.20e,f)

Equations (2.20c,d) are the joint conditions for the solutions which determine the
deflection and the slope in the intervals 0 ≤ x < 2a and 2a < x ≤ 4a. These solutions
can be obtained from the formulae (2.17a,b) and (2.18a,b). The preceding equations
form a system of linear equations for the six unknowns RA, TB , QB , C1, C2, D2. From
the condition of the existence of a nontrivial solution we get the frequency equation
in the form of a determinant:
∣∣∣∣∣∣∣∣∣∣∣∣

4a2 3a 1 0 0 0
0.5a2 0 I0E/(Jω2 − 1

γ
) 1 0 0

0.16666a3 I0E/(mω2 − 1

c
) 0 a 0 0

10.666a3 4.5a3 4.5a2 0 4a 1
2a2 0.5a2 a 2 −1 0

1.3333a3 0.16666a3 0.5a2 2a −a 1

∣∣∣∣∣∣∣∣∣∣∣∣

= 0 .

(2.21)

3. Conclusion

An integration technique for the discontinuous expressions has been applied to obtain
the frequency equation of the vibrations in beams. The two examples presented show
the logical basis of the method and illustrate well the scheme to be followed in order
to get the frequency equation for flexural vibrations. It is shown that this method can
also be used if discontinuities arise in the expression of the flexural rigidity EI. The
use of Macaulay’s brackets in an analysis of the beam problems results in a unified
method which has a pedagogical value in teaching the elementary theory of beams.
As regards the Macaulay-Clebsch method, a number of applications can be found
in Wittrick’s paper [2].
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More advanced mathematical methods based on the distribution theory of Schwarz
are applied to solve the static bending problems of beams with material, geometric
and loading discontinuities in the papers by Reddy, Yavari, Sarkani [3, 4, 5].
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