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Abstract. A new stabilized FEM formulation for advective-diffusive-reactive problems is
presented. The new method, called Spotted Petrov-Galerkin (SPG), combines two pertur-
bations of quadratic Galerkin weight function: the first one is a generalized SUPG operator,
the second one a nodal spot-like controlling operator designed for reactive instabilities. The
formulation covers all the combinations of advective and reactive effects, associated with the
dimensionless element Peclet and reaction numbers. After an introduction to the method,
we assess the reliability of SPG in the control of reactivity related oscillations both in model
problems and in turbomachinery turbulence modelling. In the numerical experiments the
SPG performance has been compared to classical stabilization schemes, e.g. SUPG.
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1. Introduction

In this work we focus on the numerical solution of advective-reactive-diffusive prob-
lems using the Finite Element Method (FEM) on quadratic space of approximation.
Here, diffusion, advection and reaction refer to the terms in the partial differential
equations (PDEs) involving second, first and zero order derivatives of the unknowns.
This family of equations that governs several phenomena of industrial interest is
discussed here because of its importance in the modelling of turbomachinery fluid
dynamics.

Several sources of oscillations affect the solution of PDEs in fluid dynamics if stan-
dard schemes are used (e.g. central finite differences or Galerkin finite elements).
In the finite element framework a number of stabilized formulations have been pro-
posed during the last two decades as remedial strategies. Most of them were based
on a Petrov-Galerkin (PG) approach, where the stabilization is achieved preserving
the Euler-Lagrange condition’s consistency by adding a perturbation to the Galerkin
weights (such as SUPG [1-4], or PSPG [3], or Discontinuity Capturing [5] schemes).
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An additional origin of instabilities stems from the reaction or zero order derivative
terms. Local oscillations arise near boundaries or solution discontinuities and it is
not possible to obtain a global stability estimate in the H1 norm, though it could be
evaluated in L2 [6]. Moving towards the turbomachinery CFD, these terms are usually
related to the rotation of turbomachinery frame of reference (e.g. in the modelling
of Coriolis forces), but it is worth noting that they appear also in an absorption-
like fashion in the turbulence modelling closure equations (e.g. two equations eddy
viscosity models (EVM)).

To the best of the authors’ knowledge, in the open literature only equal order PG
formulations have been developed to control advective-diffusive-reactive flow prob-
lems, dealing with scalar equations (e.g. (SU+C)PG in [7]) or linear reactive operators
[8]. Few studies are concerned with reactive problems pertinent to real turbomachin-
ery fluid dynamics [6].

From this viewpoint, the present work addresses the definition of a new Petrov-
Galerkin stabilization scheme for the reactive flow limit, formulated on a quadratic fi-
nite element space of approximation. The use of a higher order stabilized formulation,
though its complexity is due to the non-negligibility of second order derivatives, guar-
antees the best compromise between solution stability and accuracy [9]. In particular,
the authors propose a stabilized formulation that performs well both in the advection
and in the reaction dominated case. The new method is called Spotted Petrov-Galerkin
(SPG) and possesses some distinctive features. For advection-diffusion problems it
behaves like a SUPG method, whereas in the reactive-diffusive limit the space in-
variant problem is controlled by a perturbation able to give rise to spot-like weight
functions, symmetric and concentrated around each nodal position. In intermediate
situations, the scheme combines the perturbation integrals using tuning or upwind
coefficients that depend on element Peclet and reaction numbers.

The remainder of the paper is organized as follows. In Section 2 the SPG formula-
tion is presented for linear scalar advective-diffusive-reactive equations. The extension
of the formulation to multi-dimensional case is discussed, and the family of weights for
Q2 element is shown. In Section 3 the reactivity features of general PDE that models
the budget of turbulent determining-scale variables are commented on. Finally in
Section 4 the performance of SPG is assessed in three test cases against solutions
provided by SUPG, Streamline Upwind or Galerkin.

2. Finite element scalar advective-diffusive-reactive problem

2.1. Introductory remarks. Let us take the general linear scalar advective-reactive-
diffusive problem statement on the closed domain Ω for the unknown φ:

ujφ,j − kφ,jj + cφ = f , (j = 1, nsd)
φ(Γg) = φg ,
φ,n(Γh) = θn ,

(2.1)

where nsd is the number of space dimensions, k > 0 is constant diffusivity, uj are the
velocity components, c > 0 is the reaction coefficient, and f is the source term. The
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boundary conditions are specified along Γ = Γh ∪ Γg (Γ h and Γg are closed, disjoint
subsets of Γ), including Dirichlet (φg) and Neumann conditions (θn).

A finite element partition of the original closed domain Ω into elements Ωe, e = 1,
nel (nel number of elements) reads as

∪eΩe = Ω and ∩e Ωe = ∅ (2.2)

with the definition of interior boundary as Γint = ∪eΓe − Γ.
Let us define the finite dimensional spaces of trial and weight functions as:

Sh = φh|φh ∈ H1h(Ω), φh = φg on Γg, φg ∈ H(1/2)h(Γg) (2.3)

Wh =
©
wh|wh ∈ H1h

0 , wh = 0 on Γg
ª

(2.4)

where H1h(Ω) and H1h
0 (Ω) are the Sobolev spaces for the continuous pair of finite

element functions, H(1/2)h(Γg) is their restriction to the domain boundary, and the
superscript h denotes the characteristic length scale of the domain discretization.

The Galerkin weak formulation of problem (2.1) reads as follows:

nelX
e=1

Z
Ωe

whujφ
h
,jdΩ+

nelX
e=1

Z
Ωe

wh
,jkφ

h
,jdΩ+

nelX
e=1

Z
Ωe

whcφhdΩ =
nelX
e=1

Z
Ωe

whfdΩ+

Z
Γh

whk
∂φh

∂n
dΓ . (2.5)

2.2. Galerkin formulation in one dimension. Let us consider the ordinary differ-
ential equation obtained from (2.1) for nsd = 1 and source term f = 0. The problem
statement reads as:

u
dφ

dx
− k

d2φ

dx2
+ cφ = 0 , (2.6)

The discretization of (2.6) by using the Galerkin method on a quadratic space of
interpolation with uniform elements of length h, in case of constant coefficients leads
to the following difference equations:

φi−1[−4− 2Pe+ r/10] + φi[8 + r4/5] + φi+1[−4 + 2Pe+ r/10] = 0 (2.7)

if (i) is chosen as element central node and

φi−2[1 + Pe− r/10] + φi−1[−8− 4Pe+ r/5]+

φi[14 + r4/5] + φi+1[−8 + 4Pe+ r/5] + φi+2[1− Pe− r/10] = 0 (2.8)

if (i− 2, i, i+ 2) are chosen as element extreme nodes.
In the above equations, the magnitudes of advection or reaction versus diffusion are,

respectively, given by element Peclet number Pe = ||u|| h/2k, and element reaction
number r = ch2/k.

Let us now focus on the element central node (i). Now the null advection limit
equation (2.7) reads as:
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φi−1[−4 + r/10] + φi[8 + r4/5] + φi+1[−4 + r/10] = 0 . (2.9)

The solutions of the characteristic equation associated with (2.9), which are the
so-called Galerkin nodal amplification factors [8], purely depend on the magnitude of
reaction:

ρ =
−(8 + 4

5r)±
q
(8 + 4

5r)
2 − 4(−4 + r

10)
2

2(−4 + r
10 )

(2.10)

where it could be easily seen that the exact solution exponential behavior is preserved
only with r < 40. This circumstance confirms the need for a stabilized scheme with
built-in component to preclude oscillatory behavior in reaction dominated cases.

2.3. SPG formulation. The stabilized SPG formulation is obtained by imposing
nodal exactness on the numerical solution of problem (2.6). Provided that different
equations have been obtained for the extreme and central nodes [4], it is possible to
find two optimal perturbations, on the basis of the discrete equations (2.7) and (2.8)
separately.

The PG weight functions now result from the addition to the Galerkin ones wi of
two perturbations P 1i and P 2i as:

w̃i = wi + αP1i + γP2i (2.11)

with α and γ being the tuning coefficients for element central nodes, and

w̃i = wi + βP1i + ηP2i (2.12)

with β and η being the tuning coefficients for element extreme nodes.

The first perturbation is formally similar to a SUPG one and reads as:

P1i =
h

2 kukukw,k . (2.13)

On the other hand, the design of P2i is based on the following constraints. First, in
null advection case the invariance of the equation under coordinate inversion suggests
preserving the weight symmetry [7]. Moreover, in the pure reaction limit (r → ∞),
the optimal weight would be a Dirac’s delta. On this basis, the expression of P2i
suggested by the authors is a polynomial of the sixth order, negative definite inside
each element:

P2i = −CSPG

h6
[ξ6 − h2

2
ξ4 +

h4

16
ξ2] , (2.14)

where ξ represents the coordinate in the master or logic space, and the coefficient
CSPG sets the asymptotic values of reactive tuning functions γ and η, without affect-
ing α and β.

Figure 1 shows the perturbation P2i and the resulting weight functions for nodes
of two neighboring elements, for one-dimensional quadratic elements in case of null
advection with varying γ and η coefficients. The weights are plotted for CSPG =
(212/32) × 0.35. This value stems from the fulfillment of seven constraints forP 2i
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Figure 1. 1D null advection. Resulting nodal weights for neighboring
elements (solid lines: γ = −2η = 0; dashdot lines: γ = −2η = 0.5;
dashed lines: γ = −2η = 1; longdash lines: P2i function)

perturbation on quadratic elements, including null nodal values and derivatives, and
P2i magnitude at ξ = ± h/4.

The expression for the tuning functions α and γ, and β and η are consequent to
the super-convergence condition. Figures 2.a and 2.b show the behaviors of α and γ
for different combinations of Pe and r. Furthermore, Figures 3a and 3b show those
of β and η tuning functions.

Figure 2. Tuning functions: a) α and b) γ

2.4. Extension of SPG formulation to multi-dimensional case. The 2D ex-
tension of the P2i function has been designed to preserve its 1D requirement, that is
the isotropic concentration of the perturbed weight around the nodal positions. To
this end, we designed a Cartesian product between the 1D counterparts of the second
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Figure 3. Tuning functions: a) β and b) η

perturbation function, where the P2i spots are moved in the element portion closer
to the corresponding nodes.

This concept is depicted in Figure 4, which shows the resulting geometries for the
two-dimensional second perturbation functions on logic space.

Figure 4. 2D P2i functions in the logic space: a) central-central node
(0,0), b) corner node (-1,-1), c) mid-side node (-1,0)
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3. Problem statement for EVM

Let us now examine the determining-scale equations in a first moment turbulence
closure. The general steady-state advective-diffusive-reactive equation used to model
the budget of a turbulent variable φ (i.e. φ could represent the turbulent viscosity νt,
the turbulent kinetic energy k, or the dissipation ε) reads as:

Fφa + Fφd = Pφ + εφ + Sφ (3.1)

here: Fφa are the convective fluxes, Fφd are the diffusive fluxes, Pφ is the production,
εφ is the dissipation (or destruction) term, and Sφ is the term containing the near
wall extra sources. When the standard k−ε model proposed by Launder and Sharma
(1974) [10] is used, the budget structure (3.1) gives rise to the terms sketched in Table
1.

Table 1. k − ε turbulence model equations; budget

k ε
Fφa ρuj k,j ρ uj ε,j
Fφd −[(v + vt

σk
)k,j ],j −[(v + vt

σk
)ε,j ],j

Pφ vt[ui,j + uj,i]ui,j c1f1
ε
kvt[ui,j + uj,i]ui,j

εφ − ε
kk −c2f2 εkk

Sφ 0 E = 2 v vt(
∂2ui

∂xj ∂xk
)2

In Table 1: νt = cµfµk
2/ε is the scalar eddy viscosity; f1, f2, fµ are damping

functions; c1, c2, cµ,σk, σε are empirical constants. The extra term E is the buffer-
layer source to correct the near wall dissipation behaviour.

It is worth mentioning that in the numerical approach developed, the dissipation
integrals εφ explicitly contain the reaction terms and, for the EVM under study, they
are made proportional to the inverse of turbulence time scale τ = k/ε. These integrals
are included as left-hand side (LHSV) contributions to the coefficient matrix. By that
way a strong coupling is built between the k− ε determining-scale equations in order
to improve the solver convergence.

4. Numerical examples

4.1. The examples presented. In this section we assess the numerical performance
of the proposed SPG formulation for model problems and for configurations pertinent
to turbomachinery fluid dynamics. In these validation studies the improvement of
the SPG are discussed with respect to the classical stabilization schemes, such as the
SUPG or Streamline Upwind. It is remarkable that, since all the stabilization schemes
usually share the optimum property in 1D, all the investigated test cases violate one of
the super-convergence conditions (i.e. non-uniform mesh, multidimensional domain,
non-linear equations and problems with source terms).
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4.2. Scalar advective-diffusive-reactive equation on a square domain. The
first test cases (labeled TC1 and TC2) concern the numerical solution of the linear
scalar advective-diffusive-reactive model problem (2.1), in a unit square domain. The
mesh is uniform with 10 × 10 quadratic elements, thus consisting of 441 nodes. For
both TC1 and TC2 the known velocity field u is assumed to have a parabolic profile
(e.g. u(x, y) = 2y−y2, v(x, y) = 0), with maximum value equal to 1. The coefficients
are: k = 10−5, c = 5 × 102. The maxima for dimensionless element numbers are:
Pe = o(103) and r = o(105). As concerns the source term, TC1 has null f value,
whereas in TC2 a non—uniform f has been adopted with a peak value equal to 50 φBC .
For both the test cases the SPG solutions are compared to quadratic Galerkin (G
Q2), and SUPG Q2 ones. Concerning TC1, the complete problem statement and the
solution fields for Galerkin and SPG are shown in Figure 5.

Figure 5. Scalar advective-diffusive-reactive problem statement TC1
( f = 0) and solution fields: a) G Q2 and b) SPG

As it clearly appears, the proposed SPG formulation is able of controlling com-
pletely the instability origins in the near- and far-wall regions. Figure 6 shows the
φ streamwise profiles predicted by G Q2, SUPG Q2 and SPG schemes at y = 0.05
where reaction dominates. The PG-like solutions are both able to predict smooth φ
profiles, thus improving the G Q2 oscillatory behaviour. Nonetheless, the SUPG Q2
returns an over-diffused layer close to the Dirichlet bound. This confirms its inability
to control the reactive effects, with respect to SPG solution that predicts a sharp but
continuous solution layer.

As far as the TC2 case is concerned, in Figure 7 the problem statement and the
SUPG Q2 and SPG solutions are shown. It is worth noting that the source integral
has been approximated linearly, according to Q2 element optimal conditions [4].
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Figure 6. TC1 comparison of streamwise φ profiles at y = 0.05

Moreover, Figure 8 shows the φ streamwise profiles predicted by G Q2, SUPG Q2
and SPG schemes at y = 0.05, where the reactive effect is combined with a positive
gradient of the source.

Figure 7. Scalar advective-diffusive-reactive problem statement TC2
(fmax(y=0.1) = 50) and solution fields: a) SUPG Q2 and b) SPG

The comparison between stabilized PG schemes confirms that the SPG is able to
totally recover a non-oscillatory solution, also where the sharp streamwise solution
layer develops under the effect of a non—uniform source.

4.3. Semi-circular leading edge. The last test case concerns the prediction of the
turbulent boundary layer development on a flat plate, with a semi-circular leading
edge. The leading edge configuration is that proposed by ERCOFTAC Special In-
terest Group on Transition in 1991 (labelled T3L). The experimental data have been
provided by Palikaras et al. [11], for the zero pressure gradient configuration.
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Figure 8. TC2 comparison of streamwise φ profiles at y = 0.05

The Reynolds number, based on inlet velocity and leading edge radius (er = 5mm)
is equal to 1660. The free stream turbulence intensity (TI) at the inlet is set to 7%,
and the chosen dissipation length lε is 18mm.

The flow is assumed two-dimensional with constant temperature and incompress-
ible. A 12681 node block-structured (H-O) grid has been used. In the vicinity of
the wall (O-connected region) the nearest node to the solid wall has a dimensionless
distance δ+ = 1.0. At the inlet section of the computation domain, the experimental
free-stream uniform profile is used for the mean velocity (u = 5m/s). Uniform dis-
tributions are also imposed on the turbulent variables, computed on the basis of TI
and lε. No-slip conditions are then applied on the solid surface, and homogeneous
Neumann conditions are imposed at the outlet section.

The SUPG and SPG formulations have been used on Q2Q1 elements, with PSPG-
like relaxation of incompressibility constraint. The turbulence closure is the standard
k − ε model [10], in its near wall extension. A GMRes(50) solver has been used
with convergence thresholds for error Rres and solution Rsol residuals set to 10−6.
The convergence histories are first compared in Figure 9, clearly showing the faster
convergence of SPG compared to the SUPG scheme. Figures 10 and 11 show the
streamwise turbulence intensity and velocity profiles computed in two locations close
to the leading edge stagnation point at x/er = 2.4 and x/er = 3.2, respectively. The
predicted velocity and turbulence intensity profiles agree with published numerical
studies using isotropic EVMs (e.g. [10]). To this end, the stabilized formulations are
able to give a good prediction of the free-stream values. Notwithstanding, the near
wall region is affected by an over-prediction of TI level and layer thickness related
to the stagnation point anomaly [12]. With respect to the comparative performance
between PG schemes, the solutions do not show appreciable differences, as shown in
Figures 10 and 11.

This evidence confirms that in a flow region dominated by the effect of advection,
such as the flat plate region downwind the leading edge, where the maximum reaction



Petrov-Galerkin formulation for advection-diffusion-reaction problems 247

Figure 9. T3L convergence histories for PG formulations: a) Rsol
and b) Rres

Figure 10. Comparison of streamwise: velocity u(m/s) a) and tur-
bulence intensity u0(m/s) b) at x/er = 2.4

Figure 11. Comparison of streamwise: velocity u(m/s) a) and tur-
bulence intensity u0(m/s) b) at x/er = 3.2

number is of o(102), the SPG correctly annihilates its sensitivity to the equation
reactivity recovering a SUPG-like behaviour. Moving upwind in the stagnating flow
region, some distinguishing feature of the proposed SPG could be found. To this end
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in Figures 12 and 13 are compared, respectively, the computed TI and turbulence
time scale profiles along the stagnation streamline.

Figure 12. Comparison of TI profiles along the stagnation streamline

Figure 13. Comparison of τ profiles along the stagnation streamline

The comparison of turbulence intensity profiles, in Figure 12, demonstrates that
the SPG is able to reduce the TI peak (TISPG = 28% instead TISUPG = 36%). This
suggests that approaching a null-advection region, the SPG partially corrects one of
the well recognized drawbacks of linear two-equation EVMs, the so-called stagnation
point anomaly. Figure 13 shows that this remarkable feature of SPG formulation is
related to the capacity of controlling the over-prediction of turbulence time scale in the
pure reactive-diffusive flow limit. In this condition, the SPG perturbation activates a
dependence of weights from the predicted turbulence scale intensity able to affect the
corresponding residual projection basis.

5. Conclusions

The paper investigated the prediction capabilities of a FEM stabilized formulation de-
veloped for the purpose of solving advective-diffusive-reactive problems. This scheme,
called SPG, addresses the use of a perturbation to the weight function composed by
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two contributions. The first is a SUPG—like operator and is used to overcome in-
stabilities due to advective or skew-symmetric terms, whereas the second operator is
a symmetric one aiming at precluding oscillations due to reactive terms. The FEM
formulation has been obtained by means of one-dimensional nodal exactitude, but
has been tested in several more complex examples that violate the super convergence
conditions. In this respect, the SPG method demonstrates its suitability for solving
the typical equations of turbulence EVMs used in turbomachinery CFD.
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