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Abstract. The new IIW (International Institute of Welding) fatigue design recommen-
dations are used for the determination of the optimum strut dimensions and truss height
minimizing the structural mass or cost. In an illustrative numerical example a simply sup-
ported uniplanar CHS truss with parallel chords is designed, which is loaded by a pulsating
force. An advanced cost function is minimized which contains the costs of material, cutting
and grinding of strut ends, assembly, welding and painting. Fatigue design constraints are
formulated for governing X- and K-gap joints. Six strut dimensions are optimized for a
series of discrete truss height ratios and the optimum height ratio is selected considering the
minimum cost. A parametric investigation is made to find the relation between the optimum
truss height ratios and the span length.
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1. Introduction

Tubular trusses are recently more popular, due to their high strength and low weight.
They are in many cases subject to fluctuating loads, e.g. cranes, vehicles, bridges,
offshore structures, bodies of agricultural machines, etc. Since high stress concen-
trations arise in their welded joints, it is important to have a reliable fatigue design
method. The IIW Subcommission XV-E for welded tubular joints has made great
efforts to give designers such methods.

In 1985 design rules were given for fatigue design [1], which made it possible to
work out some optimum design applications in this field [2], [3]. Based on a wide
international experimental work, the subcommission has developed a modern version
of design rules [4], [5]. Our aim is to show how to apply these rules for the optimum
fatigue design of a simply supported uniplanar truss constructed from circular hollow
section (CHS) rods subject to a fluctuating force (Figure 1).
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For the optimization continuous functions are necessary, therefore we use approxi-
mate polynomials for stress concentration factors instead of diagrams given in [1]. For
correction factors we use the formulae given by Zhao et al. [4] instead of diagrams.

The optimum height (distance between the parallel chords) is determined, which
minimizes the mass or cost of the structure. From the point of view of economy it
is important to formulate a realistic cost function. For welded plated structures we
have developed and applied a relatively simple cost function containing material and
welding costs, based on welding times given by the Netherlands Welding Institute [6],
[7], [8], [9]. On the basis of cost data given by Tizani et al. [10], we have developed a
modified cost function, which considers the specialties of tubular trusses.

2. Problem formulation

A simply supported uniplanar truss with parallel chords is designed (Figure 1). The
truss is welded from CHS rods with K-type gap joints and loaded by a pulsating force
at midspan.

Data: a = 2 m, L = 12× 2 = 24 m, the range of the pulsating force is ∆F = 160
kN, the number of cycles is NF = 105. Three groups of rods are considered having
the same cross-sectional area, one for lower chords (d0, t0), one for upper chords (d2,
t2) and one for braces (d3, t3). Thus, the number of unknown strut dimensions is 6.
The truss height ratio of ω = h/a is discretely varied with steps of 0.1.

The truss mass as well as cost is minimized for each h/a ratio to obtain the optimum
h/a ratio. Design constraints relate to the fatigue strength of governing joints E, F
and A. Ranges of validity defined by [5] are related to zero joint eccentricity and limit
the main ratios of strut dimensions.

3. Design constraints

3.1. Fatigue strength. The fatigue strength constraints have the following form

(MF )
∆Fi
Ai

SCF0(β, θ)CF (γ, τ) ≤ Srhs
γMf

, (3.1)

where (MF ) is the magnification factor expressing the effect of additional bending
moments. Note that other bending effects are not considered, since a geometrical
constraint on zero eccentricity is taken into account. SCF 0 is the stress concentration
factor depending on β = dbrace/dchord and on θ = arctanω; CF is the correction
factor depending on γ = di/2ti and on τ = tbrace/tchord, Ai = π(di− ti)ti is the cross-
sectional area of rods. Note that, in some cases, instead of SCF 0xCF other formulae
are used. Srhs is the hot spot stress range depending on the number of cycles and
the member thickness. For NF = 10

5 equation (3.2) is used:

logSrhs =
1

3
(12.476− logNF ) + 0.06 logNF log

16

ti
, (3.2)
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Figure 1. Simply supported uniplanar CHS truss with parallel chords
subject to a fluctuating force

where γMf = 1.25 is the fatigue safety factor. It should be mentioned that, for K-gap
joints, in the case of axial balanced brace, the values of SCF 0 are given in diagrams.
Since for the optimization continuous functions are needed, we have replaced these di-
agrams by approximate second order polynomials. For CF we have used the formulae
given in Zhao et al. [4] instead of the diagrams in [5].

3.2. Fatigue strength of the chord of joint E. The joint E is selected instead of
G, since in the chord wall at joint E stress concentration arises also from the balanced
axial loading.

1.5
NE0

A0
SCFCH,CH + 1.3

NE3

A3
SCF0,CH,AXCFCH,AX ≤ Srhs

γMf
. (3.3)

The axial member forces are as follows:

NE0 =
2∆F

ω
;NE3 =

∆F (1 + ω2)0.5

ω
. (3.4)
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In the calculation of SCF for chord loading the formula given by Zhao et al. [4] in
Table D.3 is used instead of Figure D.8 in [5]:

SCFCH,CH = 1.2

µ
t3
t0

¶0.3
(sin θ)−0.9 . (3.5)

In the calculation of SCF 0 for balanced axial loading in the two braces the following
approximate continuous formula is used instead of the diagram of Figure D.6 given
by [5]

SCF0,.CH,AX = 0.217+0.1171θ−0.0009311θ2+(2.99−0.173θ+0.0017111θ2)d3
d0

. (3.6)

In the calculation of CF for balanced axial loading the formula given by Zhao et al.
[4] in Table D.3 is used instead of the diagram in Figure D.6 in [5]

CFCH,AX =

µ
d0
24t0

¶0.4µ
t3
0.5t0

¶1.1
. (3.7)

In Srhs (equation 3.2) ti = t0.

3.3. Fatigue strength of the brace of joint E.

1.3
NE3

A3
SCF0,B,AXCFB,AX ≤ Srhs

1.25
, (3.8)

where

SCF0.B,AX = 2.49− 0.078θ + 0.001664θ2 − (3.6− 0.186θ + 0.0029333θ2)d3
d0

, (3.9)

CFB,AX =

µ
d0
24t0

¶0.5µ
t3
0.5t0

¶0.5
. (3.10)

In Srhs (equation 3.2) ti = t3.

3.4. Fatigue strength of the chord of joint F.

1.5
NF2

A2
SCFCH,CH + 1.3

NF3

A3
SCF0,CH,AXCFCH,AX ≤ Srhs

1.25
, (3.11)

where

NF2 =
3∆F

ω
,NF3 = NE3. (3.12)

For SCFCH,CH equation (3.4) is used, but with t2 instead of t0.
For SCF 0,CH,AX equation (3.5) is used, but with d2 instead of d0.
For CFCH,AX equation (3.6) is used, but with d2 and t2 instead of d0 and t0.
In Srhs (equation 3.2) ti = t2.
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3.5. Fatigue strength of the brace of joint F.

1.3
NF3

A3
SCF0.B,AXCFB,AX ≤ Srhs

1.25
. (3.13)

For SCF 0,B,AX equation (3.8) is used, but with d2 instead of d0.
For CFB,AX equation (3.9) is used, but with d2 and t2 instead of d0 and t0.
In Srhs (equation 3.2) ti = t3.

3.6. Fatigue strength of the chord of joint A. Joint A is calculated as an X-joint.

γ =
d0
2t0
; τ =

t3
t0
;β =

d3
d0
, (3.14)

1.5
NA0

A0
X1,2max ≤ Srhs

1.25
, (3.15)

NA0 =
∆F

2ω
, (3.16)

X1 = 3.87γτβ
¡
1.1− β1.8

¢
sin1.7 θ, (3.17)

X2 = γ0.2τ
h
2.65 + 5 (β − 0.65)2

i
− 3τβ sin θ. (3.18)

Note that the approximate value of α is calculated as

α =
2a

d0
=
2x4000

400
= 80 > 12, (3.19)

thus, F2 = 1. In Srhs (equation 3.2) ti = t0.

3.7. Fatigue strength of the brace of joint A.

1.3
NA3

A3
X3,4max ≤ Srhs

1.25
, (3.20)

where NA3 = NE3;

X3 = 1 + 1.9γτ
0.5β0.9

¡
1.09− β1.7

¢
sin2.5 θ, (3.21)

X4 = 3 + γ1.20.12 exp(−4β) + 0.011β2 − 0.045, (3.22)

In Srhs (equation 3.2) ti = t3. γ, τ, β are defined in Section 3.5.

3.8. Size constraints. The ranges of validity are as follows:

0.3 ≤ d3
d0

,
d3
d2
≤ 0.6, (3.23)

24 ≤ d0
t0
,
d2
t2
≤ 60, (3.24)

0.25 ≤ t3
t0
,
t3
t2
≤ 1.0, (3.25)

300 ≤ θ ≤ 600, (3.26)

4 ≤ t0,2,3 ≤ 50 mm. (3.27)
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3.9. Constraint on zero joint eccentricity. From the limitation for the gap g that

g =
d0,2
tan θ

− d3
sin θ

≥ 2t3, (3.28)

one obtains
d0,2 ≥ 2t3ω + d3

¡
1 + ω2

¢0.5
. (3.29)

4. The cost function

4.1. Cost function components. The cost function contains the costs of material,
cutting and grinding of strut ends, assembly, welding and painting

K = KM +KC +KA +KW +KP (4.1)

In the material cost
KM = ρ

X
i

kMiAiLi (4.2)

the material cost factors of Price List [11] are used as given in Table 1. The material
density is ρ = 7.85x10−6kg/mm3. The hot formed CHS profiles are selected according
to prEN 10210-2 [12]. Some new profiles are given in [13].

The strut lengths are as follows L0 = 24000, L2 = 20000, L3 = 24000
¡
1 + ω2

¢0.5
mm.

For the calculation of cutting and grinding times of strut ends an empirical formula
is developed on the basis of measurements in a Hungarian steel construction factory
as follows:

Ti = 3.0442x1.007
di (min), (4.3)

di in mm.

This formula is valid for diagonals. In our example

KC = kFΘCx3.0442(2x1.007
d0 + 2x1.007d2 + 24x1.007d3), (4.4)

where the difficulty factor is taken as ΘC = 2 and the fabrication cost factor is selected
using the data of Tizani et al [10] as kF = 0.6667 $/min. Note that the cutting time
data of Tizani et al. [10] cannot be used here, since they are related to too small a
diameter of 60 mm [14]. It should be mentioned that in our other paper [15] another
formula is used which contains also the effect of strut thickness.

KA = CAkFΘA (κρV )
0.5 , (4.5)

where CA = 1.0 min/kg0.5; ΘA = 3.5; the number of structural elements to be
assembled is κ = 14.

The cost calculation of welding is based on welding times developed from the COST-
COMP [6] software for different welding technologies and weld types.

KW = kFΘW
X
i

CWia
n
WiLWi, (4.6)
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where the difficulty factor is taken as ΘW = 2. The fillet weld size is aW = t3. For
fillet welds performed by SMAW (shielded metal arc welding)

CWanW = 0.7889x10−3a2W . (4.7)

d (mm) kM ($/kg)
88.9, 101.6, 114.3 1.0553
139.7, 168.3, 177.8, 193.7 1.1294
219.1, 244.5, 273.0, 323.9 1.2922
355.6, 406.4 1.3642
457.0, 508.0 1.4081

Table 1. Material cost factors for available hot formed CHS profiles

The weld length in our example is

LW = πd3
¡
1 + ω2

¢0.5
/ω. (4.8)

The painting cost is calculated as

KP = kPSP , (4.9)

where, according to Tizani et al. [10] the cost factor is kP = 14.4 $/m2. The painted
surface in our example is

SP = 10
−6π(24.000d0 + 20.000d2 + 24.000d3

¡
1 + ω2

¢0.5
). (4.10)

5. Mathematical optimization and results

5.1. Constrained function minimization. The constrained function minimization
is performed using the Rosenbrock’s hillclimb method with additional discretization
to find the corresponding available cross-sectional dimensions [8]. The results are
summarized in Tables 2, 3 and Figure 2.

The optimum solution of h/a = 1.5 is marked by bold letters.

The optimum strut dimensions in the case of h/a = 1.5 are given in Table 3.

ω = h/a K($)
1.0 27599.3
1.1 27344.5
1.2 27061.8
1.3 26592.2
1.4 26061.3
1.5 25942.8
1.6 26491.1
1.7 26912.8
1.8 27112.5

Table 2. The cost of continuous (nondiscrete) solutions against the
truss height ratio h/a
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Figure 2. Cost against h/a ratio

d0, t0 323.9x12.5
d2, t2 323.9x12.5
d3, t3 168.3x5

Table 3. Optimum strut dimensions in mm for h/a = 1.5

L (m) optimum value of ω = h/a
15 1.3
20 1.4
24 1.5
30 1.5
35 1.6
40 1.6
45 1.7
50 1.7

Table 4. Optimum value of ω = h/a for different span lengths

We have made a parametric survey changing the span length keeping all other
parameters at the same values and calculating the optimum values of ω = h/a. Due
to the limits on θ, i.e. 300 ≤ θ ≤ 600, ω can be varied between 0.6 and 1.8 .
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It is visible from Table 4 that the optimum value of ω is proportional to the span
length. All optima in the calculation were nondiscrete, so the discrete solution dis-
tances can be different from the nondiscrete ones. The optimum value of ω is changing,
depending on the shape of structure, loadings, supports, etc. so it is difficult to arrive
at a general conclusion. At least we can say that ω has an optimum value and it is
worth finding.

6. Conclusions

In the welded joints of tubular trusses high stress concentrations occur. The new IIW
fatigue design rules enable designers to calculate the stress concentration factors more
precisely than previously. This calculation method is used for the optimum design of
a uniplanar CHS truss subject to a fluctuating force.

In the optimization process the cross-sectional dimensions and the distance between
the parallel chords (truss heights) are optimized, which minimizes the structural cost.
The height is discretely varied. Three rod groups are defined having the same cross-
sectional area, thus six unknown variables are optimized for each truss height ratio.

The existence of an optimum height can be explained by the fact that, increasing the
height, the chord forces decrease, but the branch length increases and this tendency
turns back when the height decreases.

The difference between the cost corresponding to the best and worst solution,
indicated in Table 2, is 6.4%.

After a parametric survey, changing the span length, we have found that ω has an
optimum value and it is proportional to the span length.

The advanced cost function, which contains the costs of material, cutting and
grinding of strut ends, assembly, welding and painting, enables designers to calculate
the costs more realistically than previously.
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