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Abstract. The objective of this paper is extension of vortex cloud simulation to the study of
deep rotating stall cell propagation in radial turbomachines. Previous studies [1][2] provided
the basic analysis, summarized in part here, for radial and mixed-flow blade rows but with
identical blade-to-blade flow. Lifting of this restriction here permits the natural development
of circumferential flow variations, revealing the growth of major upstream rotating stall cells
for a radial diffuser with ten log-spiral blades but with high angle of attack (deep stall).
For the same blade row run as a radial fan, however, stall cell formation and propagation
is found to be inhibited. Additional studies are included for a cambered blade geometry
typical of axial compressors. Used as an eight bladed radial diffuser, classical rotating stall
is predicted. When operated as a rotor, rotating is again inhibited and modified.
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1. Introduction

A full statement and development of the underlying equations for vortex cloud simula-
tion of mixed-flow and radial turbomachines have been given in previous presentations
[1][2] and a brief summary only of these techniques will be given here. A detailed ex-
position of the underlying methodology of vortex cloud analysis has been given in ref.
[3] and a more recent review of numerical developments and applications in ref. [4].
First, the basic equations for surface vorticity flow modelling will be given in Sections
2 & 3 including extension to vortex cloud modelling of turbomachine linear cascades.
Second, the transformation techniques for applying these equations to radial cascades
will be summarized in Section 4. Investigations of the stalling flow of a ten bladed ra-
dial diffuser will also be studied in Section 4, followed by studies of an identical blade
row run as a fan rotor, Section 5. A second radial blade row will be considered in
Section 6 based on typical axial compressor geometry with a cambered blade profile.
A summary of conclusions will follow in Section 7.
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2. Vorticity modelling of cascades

The fundamental basis of vortex element representation of the Navier-Stokes equations
has been given by the author [3], beginning with the boundary integral equation for
potential flow past an arbitrary body, equation (1), with reference

1
2γ(sm) +

∮
k(sm, sn)γ(sn)dsn +

+ W∞(cos α∞ cosβm + sin α∞ sin βm) = 0 (1)

where, for the boundary condition of zero internal velocity inside the body, the surface
velocity vsn is equal to the surface vorticity γ(sn).

vsn = γ(sn) (2)

Figure 1. Surface vorticity model for flow past a body in a uniform
stream W∞

The coupling coefficient k(sm, sn) linking points m & n on the body surface is given
by

k(sm, sn) =
1
2π

{
(ym − yn) cos βm − (xm − xn) sin βm

(xm − xn)2 + (ym − yn)2

}
. (3)

For a turbomachine cascade blade periodic in the y direction with pitch t, this becomes

k(sm, sn) =
1
2t

{
sin 2π

t (ym − yn) cos βm − sinh 2π
t (xm − xn) sin βm

cosh 2π
t (xm − xn)− cos 2π

t (ym − yn)

}
. (4)

The standard numerical strategy is to represent the body surface by M discrete
elements as shown in Figure 2, whereupon equation (1) transforms to the set of M
linear equations

M∑
1

K(sm, sn)γ(sn) = −U∞ cos βm − V∞ sin βm . (5)
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Figure 2. Numerical discretisation of the body surface

The revised coupling coefficients are then given by

K(sm, sn) = k(sm, sn)∆sn . (6)

These equations are of course only applicable to inviscid/potential flows, but may be
extended to handle viscous fluids by vortex dynamics modelling, for which additional
terms appear on the right hand side to account for the influence of the distributed
vorticity of the external flow field. Thus we have

M∑
1

K(sm, sn)γ(sn) = −U∞ cosβm − V∞ sin βm

−
Z∑

j=1

∆Γj(Umj cos βm + Vmj sin βm)
, (7)

where the spatially distributed vorticity has been discretised into a large number Z
of small discrete vorticies ∆Γj . The unit velocities induced by ∆Γj are given by

cUmn =
1
2t

sin 2π
t (ym − yn)

cosh 2π
t (xm − xn)− cos 2π

t (ym − yn)

Vmn = − 1
2t

sinh 2π
t (xm − xn)

cosh 2π
t (xm − xn)− cos 2π

t (ym − yn)





. (8)

The numerical analysis is conducted over a series of small discrete time steps ∆t for
each of which a discrete vortex element ∆Γj is shed from each body surface element
which, for a typical element j , will be of strength

∆Γj = γ(sj)dsj . (9)

The right-hand side of the basic governing equation, i.e., equation (7) thus includes
the influence of the superimposed uniform stream W∞ plus the vorticity already shed
into the mainstream flow. In the author’s previous publications [1] to [3], for cascades
the assumption was made that each blade flow was indentical, a not unreasonable
assumption for unstalled turbine or fan blade rows. However, for off-design angles of
attack leading to stall it is well known that there can be significant blade-to-blade



326 R. I. Lewis

variations particularly in fan and compressor cascades and the aim here is to extend
the analysis to deal with such situations. We will deal with this in the next section.

3. Revised cascade modelling

Adaption of the previous vortex cloud model to allow simulation of at least some
blade-to-blade variations is in fact relatively simple and is as illustrated in Figure 3.

����

�

��

�

Figure 3. Revised model for the cascade with N independent blade
profiles and group pitch T .

The approximation here is that there are N independent blades, (in this example
5) and that the flow pattern will thus repeat at the revised cascade pitch T = Nt.
The group of N = 5 blades selected here may then be regarded as a single body shape
when making up the K(sm, sn) matrix of equations (7). The blade pitch t in equations
(4) and (8) is then replaced by the group pitch T . In effect we are now analysing the
flow through a group of N separate bodies, but cascaded as a group at pitch T in the
y direction. Choice of the group size N is then a matter of computational limitations
including available memory, time of execution and numerical accuracy available for
inversion of the large K(sm, sn) matrix. The outcome is best illustrated at this point
by a typical solution as shown below in Figure 4.
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Figure 4. Simulation of deep propagating stall through a fan cascade
at high angle of attack.

The fan cascade shown here consists of five C4 profiled blades with zero camber
θ, a stagger angle of λ = 60o and a pitch/chord ratio t/l = 1.0. We note that the
predicted pattern is repeated after every five normal blade pitches t as indicated by
the repeated blade numbering from 1 to 5.

The inflow angle β1 of 85o for this example corresponds to 25o angle of attack and is
naturally excessive, ensuring a state of deep stall. The outcome of this is well known
but none the less remarkable. After a period of time as the motion proceeds, we
observe the development of a large stall cell actually upstream of the blade row which
propagates in the vertical direction. The reason for this behaviour can be deduced
from the vortex dynamics simulation demonstrating the power of this CFD technique
for prediction and diagnosis. Thus we may observe that the major blockage of the
blade passage at position 2 due to the stall cell is causing increased flow through the
passages adjacent to blade 5 due to the consequent decrease in angle of attack of the
blades behind the moving stall cell. Shortly blade No.1 will also begin to unstall as
the cell proceeds upward. Thus blades 4,5 and 1 are delivering a pressure rise locally
across the blade row whereas the adjacent blades 2 and 3 are totally stalled. The
outcome of this is that the stagnant fluid in the blade passages adjacent to blade 2
is blown upstream to augment the developing upstream stall cell causing a periodic
fluctuation and thus likely strong aerodynamic excitation of the blades.
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In this example there were only five independent blade profiles resulting in one
large stall cell. In practice there could be several cells developing and propagating
and one simulation with ten independent blades of a compressor cascade undertaken
by the author revealed two cell regimes, i.e. one every 5 blade pitches. This situation
is illustrated in the next example to be investigated in Section 4, namely the case of
a radial diffuser.

4. Extension to radial diffusers

 
Figure 5. Simulation of deep stall in a radial outflow diffuser with ten blades.

Because the distributed vorticity of the mainstream flow has been replaced in the
numerical model by a cloud of discrete vorticies, it is valid to apply conformal transfor-
mations to the linear cascade and its flowfield provided the vortex element strengths
∆Γ remain unchanged. Thus the previous analysis may be applied directly to radial
stators by means of the following transformation [3][4] between a radial diffuser in the
Z plane and a rectilinear cascade parallel to the η axis in the ζ plane,

ζ = ln Z , (10)

where Z = reiθ and ζ = ξ + iη. The coordinate and velocity transformations are then
given by

ξ = ln r, η = θ , (11a)

qζ = qZr , (11b)

where r, θ are polar coordinates of the actual radial blade row.
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Figure 5 shows the outcome of applying this transformation to analysis of a ten
bladed radial outflow diffuser. The blade geometry in the cascade ζ plane is identical
to that used in Section 3, namely a C4 base profile with θ = 0o, λ = 60o, t/l = 1.0
and with a pre-whirl inlet angle β1 = 85o (anti-clockwise outflowing swirl). For this
computation the number of blades was set at N = 10 to achieve full simulation of
flow through the radial diffuser.

The main observation to note here is the development of two major rotating stall
cells on the upstream (inner) side of the diffuser. These are not identical but very
similar in size and extent and are found to precess around the inner region in the
well known manner of rotating stall in axial compressors and fans. At circumferen-
tial locations between the two stall cells the blades are less stalled (and sometimes
temporarily unstalled) due to their increased local distribution of the mass flow and
hence reduced local angles of attack. In these regions pressure recovery through the
diffuser is achieved resulting in higher pressure surrounding the exit regions. This
higher pressure forces the stagnant fluid in the stall cell regions to be pushed back
inwards with a consequent build up of the stall cells and a perpetuation of the large
scale disturbances. In the case of a centrifugal fan it can be expected that these
stall cells would cause serious fluctuating interference with the rotor and be a serious
source of unwanted vibrations.

It is of considerable interest to extend these studies from radial stators to radial
rotors since in the latter we would expect the additional influence of work input
including those due to relative eddy and Coriolis forces. The question raised then
is whether these additional effects would enhance stall cell development or inhibit
it. Fortunately all the relevant equations to handle this have already been derived
[3] and applied to potential flow through radial and mixed-flow turbomachines. To
summarise, the governing equation (7) develops into the extended form

M∑
n=1

K(sm, sn)γ(sn) = −U∞ cos βm

− [
V∞+Ω

{
r2− 1

2

(
r2
1+r2

2

)}]
sin βm

−
Z∑

j=1

∆Γj(Umj cosβm + Vmj sin βm)





, (12)

where the new middle line includes the influence of blade row rotation with angular
speed Ω. From the appearance of this term Ω

{
r2 − 1

2

(
r2
1 + r2

2

)}
one can immediately

detect that it represents the additional influence upon the flow due to Coriolis accel-
erations of fluid particles as they pass through the rotor and one might anticipate
some considerable influence upon the consequent flow. This is indeed the case as we
shall see from the following example.
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Figure 6. Flow through a backward sloping radial fan with relative
inlet angle β1 = 85o.

In this example the previous blade row as shown in Figure 5 was rotated clockwise
as a radial fan rotor with zero prewhirl but with sufficient angular velocity Ω to deliver
the same relative inflow angle of β1=85˚ and thus 25˚ angle of attack. A summary
of the data is as follows:

Table 1. Design data for radial fan

Inlet radius r1 1.0 m
Outlet radius r2 1.3691 m
Meridional velocity at r1 1.0 m/s
Angular velocity 109.15 revs/min
Prewhirl angle α1 0˚
Relative inlet angle β1 at r1 85˚
Camber θ 0˚
Stagger λ 60˚
Pitch/chord ratio t/l 1.0
Time step ∆t 0.005 sec

As can be seen from the predicted flow pattern after 300 time steps, Figure 6,
although there is clear evidence of stall with some circumferential variation from blade
to blade, there has been no establishment of the upstream eddy regimes characteristic
of the stationary blade row, Figure 5. It is quite clear that the presence of Coriolis
accelerations and relative eddy effects have had a major stabilising effect in the case
of this radial fan rotor as compared with its stator equivalent Figure 5.
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5. Axial compressor type blade rows

In the foregoing fan uncambered blade row studies it was difficult to detect classical
cascade stall propagation or regular rotating stall in the radial diffuser at smaller
angles of attack. Although some stall propagation was present below 15o angle of
attack it was largely intermittent. It was decided therefore to consider also a typical
axial compressor blade row with the following specification.

Table 2. Axial compressor cascade design data

Chord length
Velocity normal to cascade
Camber θ
Stagger λ
Pitch/chord ratio t/l
Design inlet angle β1

Predicted design outlet angle β2

1.0 m
1.0 m/s
44.49˚
41.11˚
1.162
54.59˚
30.69˚

Figure 7. Stall propagation in a compressor cascade (Table 2 data
with β1=74.59˚ & δt=0.015)

Adopting here the cascade geometry studied in refs. [5]&[6], we note the introduc-
tion of typical camber θ=44.49o and stagger λ=41.11o. The design inlet angle given
above is that for shock-free inflow for which the inlet stagnation point is precisely on
the leading edge. Vortex cloud analysis was undertaken with a time step δt=0.015s
for angles of attack of 0, 5, 10, 15 and 20o angle of attack above this for a cascade-
with eight independent blades. Only for the last of these studies, with an inlet angle
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β1=74.59˚, was regular stall propagation actually found to develop in this cascade
and a sample of the results is shown in Figure 7.

Figure 8. Development of rotating stall cells in an eight bladed ‘axial
compressor type’ radial diffuser

As may be observed, after 160 time steps a stall cell has built up in blade passage
No. 5. After successive intervals of 40 time steps this stall cell has propagated upwards
to blade passages 6, 7 and 8. It should be noted that this pattern behaviour was found
to occur only with 20o angle of attack. At lower inlet angles there was evidence of
developing stall progagation but with less firm regularity.

To conclude, let us consider adaption of the above cascade geometry for design of an
equivalent radial diffuser. Application of the conformal transformation equations (10)



Blade to blade flows by vortex cloud analysis 333

and (11) results in the circular radial outflow cascade shown in Figure 8. Adopting
an inlet prewhirl angle of β1=74.59o, with time steps of magnitude δt = 0.015 and a
meridional velocity at the inlet radius r1 of value 1.0, the predicted flow pattern after
300 and 335 time steps is shown in Figures 8(a) and 8(b), respectively.

We observe from Figure 8 the presence of a single passage stall cell at the bottom
region which has moved anticlockwise into the next blade passage after 35 time steps.
We also note, however, the presence of a second but less concentrated cell located at
the top of the diffuser also rotating anticlockwise at the same speed. Reference back
to Figure 7 in fact reveals the presence of a similar second stall cell region around
passage 1 to begin with, moving upwards to passage 4 finally. The main difference fluid
dynamically between the two axial and radial cascades lies in the influence of viscous
diffusion. For infinite Reynold’s number viscous effects would have little influence.
For the cascade Reynold’s number of 1×105 selected here on the other hand, viscous
diffusion will differ considerably due to the additional mainstream radial diffusion
in the case of the radial diffuser. Despite this, stall cell propagation is remarkably
similar for both cases considered comparing Figures 7 and 8.

To conclude finally, the flow through the previous cambered radial blade row was
investigated when used as a radial fan rotor with two speeds of rotation, Figure 9.

Figure 9(b) shows the typical long term flow pattern for Ω=34.644revs/s, at which
angular velocity zero prewhirl α1 provides the same relative inlet angle as the stator
just considered in Figure 8, β1=74.59o. Figure 9(a), on the other hand, shows the
predicted flow pattern for half this speed of rotation, Ω=17.322 revs/s, but with
sufficient prewhirl α1=61.15o to give the same relative inlet angle β1=74.59o. Three
important observations may be made:

(a) Although some rotating stall still occurs, there is decreasing evidence of major
stall cells as the rotor angular velocity increases.

(b) Major separation seems to be limited largely to the leading edge region with
evidence of what seems to be an approach towards reattachment at mid-chord
on the trailing surface t.

(c) From mid-chord towards the trailing edge region there is evidence of migration
of diffused vorticity from the trailing surface t to the leading surface l, indicated
by M in Figure 9(b).

Undoubtedly the explanation for the above is the influence of Coriolis accelerations
upon the relative flow through these radial rotors. Specific work input due to associ-
ated Coriolis forces is dependent only upon the radial shift of the fluid from inlet r1

to outlet r2 and the rotor angular velocity Ω as shown by the Euler Pump Equation,
namely

1
ρ (p02 − p01) = U2cθ2 − U1cθ1 = Ω(r2cθ2 − r1cθ1)

= Ω(r2wθ2 − r1wθ1)︸ ︷︷ ︸
Aerodynamic

specific work input

+ Ω2(r2
2 − r2

1)︸ ︷︷ ︸
Coriolis specific

work input





, (13)
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Ω = 17.322revs/s, Prewhirl angle α1=61.15o 280 iterations with δt=0.015.

Ω = 34.644revs/s, Prewhirl angle α1=0.0o, 360 iterations with δt=0.01.
l - leading surface. t - trailing surface.

M - Circumferential vorticity migration.

Figure 9. Flow through the radial diffusing blade row operating as a
radial fan rotor

where wθ is the swirl velocity measured relative to the rotor, and is related to the
absolute swirl velocity cθ through

cθ = wθ + rΩ . (14)

It is clear that although there is leading edge flow separation due to the sharp angle
of attack, the specific work input imposed by Coriolis effects has a stabilising effect
as the fluid proceeds further through the blade passages. However, partly due to
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the anticlockwise ‘relative eddy rotation’ or ‘slip flow’ in the passage exit region, free
vorticity tends to migrate from where it has been created on the unstable trailing
surface t towards the leading surface l.

6. Conclusions

The following summary of conclusions may be drawn from these fluid dynamic devel-
opments and studies:

1. The basic linear cascade vortex dynamics code developed here has success-
fully predicted the presence of rotating stall in fan and compressor cascades in
agreement with earlier work.

2. At high incidence angles in deep stall, substantial stall cells intrude back up-
stream of the blade row.

3. A conformal transformation technique has succeeded in extending these flow
simulations to deal with radial blade rows used as either stators or rotors.

4. At large relative inlet angles a couple of large rotating deep-stall cells were
found to develop on the inlet side of a radial outflow diffuser stator comprising
a backward swept zero camber fan cascade at high stagger.

5. For the cambered compressor type radial diffuser stator no deep-stall cells of
this kind developed for the same leading edge angle of attack of 20o, although
rotating stall was present.

6. For the same blade row employed as a radial fan rotor, work input due to Cori-
olis forces leads to general stabilization of the initial leading edge stall regime.
The same ‘relative eddy’ effects result in vorticity migration at the outlet radii
from the trailing (highly loaded) blade surface towards the (generally low ve-
locity) leading edge surface.
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