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Abstract. A parallel algorithm for solving the gravity inverse problem is considered. The
corresponding programme has been implemented on the Massively Parallel Computing Sys-
tem MVS–1000.
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1. Introduction

The three-dimensional gravity inverse problem of finding the interface between medi-
ums from the gravitational data is investigated. A model of the lower half-space
consists of the three mediums with constant densities which are divided by the sur-
faces S1 and S2. The gravitational anomaly is formed by the deviation of the desired
surface S from the horizontal plane z = H (H1 = 2, H2 = 10 in our case) [1].

2. Main equations and numerical algorithms

The gravity equation with respect to the unknown surface z = z(x, y) is reduced to
the two-dimensional nonlinear equation with integral operator

B[z] ≡ f∆σ

b∫

a

d∫

c

{
1

[(x− x′)2 + (y − y′)2 + z2(x′, y′)]1/2
−

− 1
[(x− x′)2 + (y − y′)2 + H2]1/2

}
dx′dy′ = F (x, y), (2.1)

where f is the gravitation constant, ∆σ is the density jump on the interface, F (x, y)
is the anomalous gravitational field.

For solving the nonlinear integral equation the iterative regularizing Newton method
is used

zk+1 = zk − [B′(zk) + αkI]−1(B(zk) + αkzk − F ), (2.2)
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where B′(zk) is the Frechet derivative of the operator B in the point zk for (2.1), I
is the identity operator, αk is a sequence of the positive parameters which are chosen
taking into account the right side of equation (2.1).

After discretizing equation (2.1) on the grid n = M × N and approximating the
integral operator B by the quadrature formulas, the problem of the form (2.2) can be
written in the form of the system of linear equations with asymmetric and full n× n
matrix and can be solved by the Gauss or Gauss-Jordan elimination algorithms for
each iteration of the method (2.2).

We consider the system of n linear equations with n unknowns in the form:




a11x1 + a12x2 + ... + a1nxn = a1n+1

a21x1 + a22x2 + ... + a2nxn = a2n+1

.......................................................
an1x1 + an2x2 + ... + annxn = ann+1

. (2.3)

The main idea of the Gaussian elimination method is to reduce the full matrix A of the
system (2.3) to the upper triangular form, that is to obtain the system of equations
in the following form:





x1 + c12x2 + c13x3 + ... + c1nxn = c1n+1

x2 + c23x3 + ... + c2nxn = c2n+1

.......................................................
xn = cnn+1

. (2.4)

From the system (2.4) we find the unknowns by the formulas:

xk = ckn+1 − ckk+1xk+1 − ...− cknxn, k = n, n− 1, ..., 1 . (2.5)

In the first step of the Gauss elimination method we choose the pivot element (the
maximum of modulus) in the first equation of the system (2.3). Let a11 6= 0. After
dividing all the coefficients and the constant term of the first equation of the system
by a11 we obtain the following equation:

x1 + c12x2 + c13x3 + ... + c1nxn = c1n+1, (2.6)

where c1j = a1j/a11, j = 2, 3, ..., n + 1.

With the help of equation (2.6) we eliminate the unknown x1 from the other equa-
tions of the system, beginning with the second one. We get the following system:





a
(1)
22 x2 + a

(1)
23 x3 + ... + a

(1)
2n xn = a

(1)
2n+1

a
(1)
32 x2 + a

(1)
33 x3 + ... + a

(1)
3n xn = a

(1)
3n+1

.......................................................

a
(1)
n2 x2 + a

(1)
n3 x3 + ... + a

(1)
nnxn = a

(1)
nn+1

(2.7)

where a
(1)
ij = aij − c1jai1, i = 2, 3, ..., n, j = 2, 3, ..., n + 1.

Continuing the process, in the k-th step we obtain the equation

xk + ckk+1xk+1 + ... + cknxn = ckn+1, (2.8)
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where ckj = a
(k−1)
kj /a

(k−1)
kk , j = k + 1, ..., n + 1, and the system of equations





a
(k)
k+1k+1xk+1 + ... + a

(k)
k+1nxn = a

(k)
k+1k+1

.......................................................

a
(k)
nk+1xk+1 + ... + a

(k)
nnxn = a

(k)
nn+1

, (2.9)

where a
(k)
ij = a

(k−1)
ij − ckja

(k−1)
ik , i = k + 1, ..., n, j = k + 1, ..., n + 1.

In the last step of the elimination we have the equation xn = cnn+1.

The Gauss-Jordan algorithm is one of the variants of the Gaussian elimination
algorithm. In this case the matrix A of system (2.3) is reduced to diagonal form, but
not an upper triangular form. In the (k + 1)-th step the current matrix Ak has the
following form:

Ak =




1 0 . . . 0 a
(k)
1,k+1 . . . a

(k)
1n

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . 1 a
(k)
k,k+1 . . . a

(k)
kn

0 0 . . . 0 a
(k)
k+1,k+1 . . . a

(k)
k+1,n

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 a
(k)
n,k+1 . . . a

(k)
nn




. (2.10)

We divide the (k +1)-th row by the coefficient a
(k)
k+1,k+1 and eliminate all off-diagonal

elements of the (k + 1)-th column. We will make this elimination by multiplying the
(k+1)-th row by a

(k)
j,k+1 and subtracting the result from the j-th row (j=1, ..., n; j 6=k+1).

To guarantee the numerical stability of the Gauss and Gauss-Jordan algorithms in
the general case, a partial choice of the pivot element is necessary. If we take the
maximum (with respect to the modulus) element in the k-th row as the pivot element
in the k-th step of the elimination, then before the realization of the modification it
is necessary to rearrange the k-th column and the column with the pivot element.

3. Parallel realization

The parallel realization of the Gauss method for m processors is the following. Condi-
tionally, we divide the vectors z and F into m parts so that n = m ·L. The matrix A
is divided by the horizontal lines into the m blocks, respectively (Figure 1). Assume
that the rows of the matrix A with numbers 1, 2, ..., L are stored in the memory of the
first processor (the Host), the rows with numbers (L + 1), (L + 2), ..., 2L are stored in
the memory of the second processor, the rows with numbers (2L + 1), (2L + 2), ..., 3L
are stored in the memory of the third processor, and so on. The rows with numbers
(m−1)L+1, ..., Lm are stored in the memory of the m-th processor. In the first step
the Host processor chooses the pivot element among the elements a11, a12, ..., a1n of
the first row, modifies the first row and sends it to each of the other processors. After
that each processor eliminates the first unknown x1 of every row from its own part of
the L equations. After the first step of the elimination we obtain the matrix with the
first column (1, 0, 0, ..., 0)T . In the second step the Host processor sends the modified
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Figure 1. The diagram of the data distribution over the processors

second row to each of the other processors. After that each processor eliminates the
second unknown x2 of every row from its own part of the (L − 1) equations, and so
on, up to the L-th step. At the end of the L-th step the second processor sends the
L-th row to the Host processor. The Host chooses the pivot element, modifies the
L-th row and sends it to each of the other processors. After that each processor of the
others eliminates the unknown xL+1 of every row from its own part of the equations.
At the end of the 2L-th step the third processor sends the (2L + 1)-th row to the
Host processor. The Host chooses the pivot element, modifies the (2L+1)-th row and
sends it to each of the other processors, and so on. In the last step the Host processor
sends the modified last row to each of the other processors.

During the elimination process more and more processors become idle in every step,
since the number of the equations is diminished by one. This affects the efficiency
of the algorithm. The Host processor works until the end because it responds to the
transfer of the modified rows and the choice of the pivot element in every step. To
reduce the waiting time the Host processor sends the modified row to other proces-
sors immediately after receiving it and makes the calculations with its own part of
the equations independently. In the Gauss-Jordan method all the processors make
calculations with their own parts until the end. The waiting time decreases and the
efficiency of the algorithm increases.

4. Efficiency

Parallelization of the basic algorithms and their realization on the Massively Parallel
Computing System MVS–1000 [2] are implemented. The analysis of the efficiency of
parallelization of the iterative algorithm with different numbers of processors is carried
out. MVS–1000/16 of the Research Institute is a KVANT computer consisting of 16
Intel Pentium III-800, 256 MByte, 10 GByte disk, two 100 Mbit network controllers
(Digital DS21143 Tulip and Intel PRO/100). The educational computing cluster
consists of 8 Intel Pentium III-700, 128 MByte, 14 GByte disk, 100 Mbit network
controller 3Com 3c905B Cyclone (Figure 2). The first 15 nodes work fast, the other
8 nodes work more slowly.
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Figure 2. MVS–1000/16

For comparison of the execution times of the sequential and parallel algorithms,
we will consider the coefficients of the speed-up and efficiency

Sm = T1/Tm, Em = Sm/m,

where Tm is the execution time of the parallel algorithm on MVS–1000 with m (m > 1)
processors, T1 is the execution time of the sequential algorithm on one processor.

Tm = Tc + To, where Tc is the computing time, To is the exchange time. The
number m of processors corresponds to the division of the vectors z and F into m
parts mentioned so that n = m · L.

Table 1 shows execution times and the coefficients of the speed-up and the efficiency
of the iterative regularizing Newton method with 5 iterations with using the parallel
and sequential (m = 1) Gauss algorithms for problem (2.1)— (2.2) for 111×35 points
of the grid domain.

m Tm, min. Sm Em

1 57.48 — —
2 46.85 1.23 0.61
3 36.18 1.59 0.53
4 29.38 1.96 0.49
5 25.78 2.23 0.45
6 21.83 2.63 0.44
8 17.25 3.33 0.42
10 16.17 3.55 0.36
12 15.32 3.75 0.31

Table 1. Gauss Method

m Tm, min. Sm Em

1 114.1 — —
2 60.50 1.89 0.94
3 42.38 2.69 0.90
4 33.53 3.40 0.85
5 28.48 4.01 0.80
6 23.88 4.78 0.79
8 19.88 5.74 0.72
10 18.45 6.18 0.62
12 17.35 6.58 0.55

Table 2. Gauss-Jordan Method
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Table 2 shows execution times and the coefficients of the speed-up and the efficiency
of the iterative regularizing Newton method with 5 iterations with using the parallel
and sequential (m = 1) Gauss-Jordan algorithms for problem (2.1)–(2.2) for 111× 35
points of the grid domain.

The results of the calculations show that the parallel Gauss and Gauss-Jordan
algorithms have quite a high efficiency of parallelization, and the Gauss-Jordan algo-
rithm efficiency is higher than the efficiency of the Gauss algorithm. In the case of
the parallel Gauss algorithm with the number of processors m ≤ 5, the efficiency is
Em > 0.45. In the case of the parallel Gauss-Jordan algorithm with the number of
processors m ≤ 10, the efficiency is Em > 0.6. When the number of processors m is
small, then the speed-up Sm increases almost linearly as the number m increases. On
the other hand, when m is large, then the exchange time increases, so the efficiency
Em decreases.

5. Concluding remarks

The preliminary gravitational data processing is connected with the selection of the
anomalous field for each interface Si (i = 1, 2) from the common data measured on
a rectangular area in some region in the Urals. This processing was implemented
by the methods from [1]. In Figures 3 and 4 the graph 1 of the boundary profiles
of the interfaces S1 and S2 is obtained by using the methods from [1] (continuous
lines). Graph 2 of the boundary profiles is obtained by solving the problem (2.1) by
the iterative regularizing Newton method (2.2) with the aid of the parallel Gauss or
Gauss-Jordan algorithms (dotted lines).

For approximation of the integral operator (2.2) we used the two-dimensional ana-
log of the rectangle quadrature formulas for 111× 35 points of the grid domain with
grid widths hx = 0.5 and hy = 2 (km). The positive parameters αk were chosen from
numerical experiments taking into account the right side of equation (2.1), namely
αk ¿ F (x, y). In Figure 3 for problem (2.1) H = 2 (km) is the depth of the surface

0.0
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1

2

20.0 30.0 40.0

3.00

2.00

1.00

50.0 60.0

Figure 3. Boundary profiles for H = 2 (km)
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S, f = 6.67 · 10−5 is the gravitation constant, ∆σ = 0.48 (g/cm3) is the density jump
on the interface, z0(x, y) = 0.3 (km) is the initial approximation and αk = 2.5 is a
sequence of the positive parameters. In Figure 4 for problem (2.1) H = 10 (km) is the

10.00

20.00

0.0

0.0 10.0 20.0 30.0 40.0 50.0 60.0

1

2

Figure 4. Boundary profiles for H = 10 (km)

depth of the surface S, f = 6.67 ·10−5 is the gravitation constant, ∆σ = 0.23 (g/cm3)
is the density jump on the interface, z0(x, y) = 0.3 (km) is the initial approximation
and αk = 0.8 is a sequence of the positive parameters.
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Figure 5. The reconstructed interface S1



12 E. N. Akimova

0.29

11.92

67.00

11.17

0.0 0.0

11.00

22.00

33.00

44.00

55.00

22.33

33.50

44.67

55.83

Figure 6. The reconstructed interface S2

In Figures 5 and 6 the three-dimensional interfaces S1 and S2 for the real gravity
field of some area in the Urals for H = 2 (km) and H = 10 (km) are represented.
They are reconstructed by the iterative regularizing Newton method (2.2) with the
help of the parallel Gauss or Gauss-Jordan algorithms.

The main conclusion is the following. The interfaces S1 and S2 obtained as solutions
of the gravity inverse problem (2.1) by the iterative regularizing Newton method (2.2)
correspond to the real conceptions about the investigated region in the Urals. Paral-
lelization of the algorithms decreases the time of solving the problems.
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