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Abstract. Stability analysis of an orthotropic plate is studied using the algebra system
Mathematica. The critical force is computed for given material parameters, geometry and
load type (direct problem). Then the critical force is assumed to be known and the material
and geometric parameters are computed (inverse problem). The inverse problem can be
treated similarly to the direct problem because the numerical solution of both problems can
be reduced to the symbolic-numerical solution of a matrix eigenvalue problem.
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1. Introduction

Bridge construction is one of the most important application fields of orthotropic
plates used as roadway plates. Orthotrophy is achieved by transversal ribs resulting
in different stiffnesses in the directions x and y, respectively. Employing the Huber
equation [1] , Szabó [2] developed a numerical technique based on matrix algebra to
study such plates a load in their plane. Later, it was realized that stability analysis is
also necessary because of the heat dilatation phenomena (Popper [3]). In this paper
we shall consider a slightly modified, more general version of the Huber equation,
namely:

∂x,x (A∂x,xw [x, y] + 2H∂y,yw [x, y]) + ∂y,y (B∂y,yw [x, y] + g (x, P )w [x, y]) = 0 (1)
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Herer w is the displacement function. A and B denote bending stiffnesses in the
directions x, y, respectively, and H is the torsional stiffness. The function g (x, P )
represents the distribution of load on the edges of plate (see Figure 1). The (1) is
associated with linear boundary conditions on the boundary S:

lw (x, y)|S = 0 . (2)

Concerning the stability problem in this model one may consider P , the parameter
of the edge force distribution, to be a critical parameter. This is the classical direct
problem, namely to compute the critical load. The other possibility is to consider
one of the parameters A,B i.e. the stiffnesses of the plate, which is subjected to a
constant load, to be a critical parameter. This is the inverse stability problem.

In this paper we suggest a general method to handle the direct and inverse stability
problems which are of the same form from a mathematical point of view. The method
fully utilizes the symbolic and numerical computation capabilities of the integrated
computer algebra system Mathematica.

2. Mathematical background

In the following some introductory concepts from Functional Analysis and the
Galerkin method, which we shall apply, are presented shortly.

Let Ω be a constrained domain in the plane xy, and let L2(Ω) denote the set of
all square-integrable (real) functions defined over the domain Ω. If u ∈ L2(Ω), thenR
Ω

u2dΩ <∞.

The set L2(Ω) is a vector space in which the scalar product is defined by the formula

(u|v) =
Z
Ω

uv dΩ ,

which induces a norm given by the formula

kuk =
p
(u|u) =

vuutZ
Ω

u2 dΩ .

The vectors u, v ∈ L2 are said to be orthogonal, if (u | v) = 0. Their distance is de-
fined by the norm ||u−v ||. Any sequence of linearly independent vectors {ϕ1, ϕ2, . . .}
in the function space L2(Ω) form a basis for L2 if every vector u ∈ L2 can be approx-
imated with arbitrary precision by a linear combination of functions {ϕ1, ϕ2, . . .}. In
other terms, if for every function u ∈ L2(Ω) and arbitrary number ε > 0 there exists
a positive integer N and scalar coefficients c1, c2, . . . , cn such, that for every index
n > N it holds that °°°°°u−

nX
k=1

c
(n)
k ϕk

°°°°° < ε.



Stability analysis of an orthotropic plate via MATHEMATICA 39

The following theorem is a well-known result from the functional analysis:

If v ∈ L2 is orthogonal to each element of a basis {ϕ1, ϕ2, . . . } in L2, then v is
the null-element of the space L2. In other terms if

(v|ϕk) = 0, k = 1, 2, ...⇒ v = Θ .

Suppose that in the function space L2(Ω) is given the equation

Lu = f ,

where L is a differential operator, which transforms the unknown function u into
the given function f . The solution u is supposed to satisfy the prescribed boundary
conditions on the boundary S of the domain Ω. If we find a function u∗ ∈ L2 which
satisfies the (infinite) set of equations

(Lu∗ − f |ϕk) = 0, k = 1, 2, ...,

then it is a consequence of the previous theorem that Lu∗ − f = Θ. In other terms
u∗ is the solution of the equation Lu = f in the space L2. This simple idea forms the
basis for the Galerkin method : The approximate solution of the equation Lu = f is
searched for in the form:

un =
nX

k=1

ckϕk,

where n is an arbitrarily chosen, but fixed positive integer. In other terms, the approx-
imate solution un of the exact solution u∗ ∈ L2 is expressed in the n-dimensional
subspace of L2 spanned by the base vectors ϕ1, ϕ2, . . . , ϕn. The unknown coefficients
c1, c2, . . . , cn are computed from the orthogonality condition

(Lun − f |ϕk) = 0, k = 1, 2, ..., n,
which is a system of n equations. If the operator L is linear, then

Lun =
nX
i=1

ciLϕi,

and hence this equation can be written in the usual form of a set of linear equations
nX
i=1

ci (Lϕi|ϕk) = (f |ϕk) , k = 1, 2, ..., n,

or in matrix form
Mc = z,

where

M =

 (Lϕ1|ϕ1) · · · (Lϕn|ϕ1)
...

. . .
...

(Lϕ1|ϕn) · · · (Lϕn|ϕn)

 , c =

 c1
...
cn

 , z =

 (f |ϕ1)
...

(f |ϕn)

 .
In our problem the operator L is given by (1). With respect to the relation

H = κ
√
AB,
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and taking into account that there is no load perpendicular to the surface of the plate,
we have

f = 0 .

Hence our problem is reduced to solving the set of homogeneous linear equations

Mc = 0. (3)

It is well known that a non-trivial solution exists if and only if the matrix M is
singular. Consequently, the condition for the lose of stability is given by the equation

det[M(A,B,P )] = 0.

If two variables from among A,B,P are known, then the unknown one can be deter-
mined from the previous equation, which is a polynomial equation of degree n in the
unknown variable. Its smallest root is the critical value sought. The solution c of the
corresponding set of equations Mc = 0 can be normalized to be unique.

3. Application to an orthotropic plate

3.1. A simple problem. To demonstrate the suggested method, a simple problem
was considered using notations of Mathematica. Figure 1 shows the geometry and
boundary conditions as well as the type of load.

 

hinge 

hinge 

clamped
edge 

 y 

x 

b 

a 

clamped
edge 

P 

Figure 1. The geometry, boundary conditions and the type of load of the plate
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The modified Huber equation is an elliptical PDF of order four associated with a
linear force distribution on the edge

∂x,x (A∂x,xw [x, y] + 2H∂y,yw [x, y]) + ∂y,y

µ
B∂y,yw [x, y] +

P

2
(x+ a)w [x, y]

¶
= 0.

The homogeneous boundary conditions are the following:

— there is no displacement at the edges

w [a, y] = w [−a, y] = w [x, b] = w [x,−b] = 0,
— edges parallel with the y axes are clamped

∂xw [a, y] = ∂xw [−a, y] = 0,
— there are hinges at the edges parallel with the x axes

∂y,yw [x, b] = ∂y,yw [x,−b] = 0.
The Galerkin method has been used to solve this homogeneous boundary value

problem.

3.2. Trial functions (basis). Let us consider a polynomial of degree n in direction x
and a polynomial of degreem in direction y, respectively, with dimensionless variables
η = x/a and ξ = y/b (mind that the following formulas represent only one term).

X[η_,n_]:=
3P
i=0

αiη
i+ηn

Y[ξ_,m_]:=
3P
i=0

βiξ
i + ξm

The trial function of two variables is:
W[ξ_, η_,n_,m_]:=X[ξ,n]*Y[η,m]
W[ξ,η,4,5]¡
η4 + α0 + ηα1 + η2α2 + η3α3

¢ ¡
ξ5 + β0 + ξβ1 + ξ2β2 + ξ3β3

¢
The coefficients α[i] and β[i] are defined by the eight boundary conditions.

eq1[n_]:=X[-1,n]=0
eq2[n_]:=X[1,n] =0
eq3[m_]:=Y[-1,m]=0
eq4[m_]:=Y[1,m] =0
eq5[n_]:=(D[X[η,n],η]/.η →-1)=0
eq6[n_]:=(D[X[η,n],η]/.η → 1)=0
eq7[m_]:=(D[Y[ξ,m],ξ, ξ]/.ξ →-1)=0
eq8[m_]:=(D[Y[ξ,m],ξ, ξ]/.ξ → 1)=0

Note, that the chain rule should be used because the dimensionless variables were
introduced, but now, in case of homogeneous boundary conditions, it has no effect.
Solving this set of equations, one obtains the unknown coefficients α[i] and β[i] de-
pending on degrees n and m:
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Let us consider max(n) = 5 and max(m) = 5:

maxn:=5;maxm=5;k=1;
Do[{α0, α1, α2, α3, β0, β1, β2, β3} =
{α0, α1, α2, α3, β0, β1, β2, β3}/.solαβ[i,j]//Flatten;
ϕ[k]=W[η, ξ,i,j];
{α0, α1, α2, α3, β0, β1, β2, β3} = .;
k=k+1,{i,4,maxn},{j,4,maxm}];

The number of the trial functions is:
K=(maxn-3)(maxm-3)
4

For example, the trial function ϕ[4]=W[η,ξ,5,5]:

ϕ[4]¡
η − 2η3 + η5

¢ ³
7ξ
3 − 10ξ3

3 + ξ5
´

Plot3D[ϕ[4],{η,-1,1},{ξ,-1,1}],PlotPoints→{30,30},
AxesLabel→{"η","ξ",None},
ColorFunction→(RGBColor[#,1-#,1-0.5#] & )];

Figure 2. Trial function, n = 5, m = 5

4. Computing system matrix

A general element of the system matrixM is:

M[i_,j_]: =
Simplify[R 1
−1
R 1
−1(b

4AD[ϕ[i],{η,4}]+2a2b2HD [ϕ[i],{η,2},{ξ,2}]+

Ba4D[ϕ[i],{ξ,4}] +
Pa

2
(η+1)a4b2 D[ϕ[i],{ξ,2}])

ϕ[j]dηdξ

Keep in mind that the chain rule should be used for dη and dξ, because the dimen-
sionless variables were introduced, but now, in case of homogeneous equation (see
(3)), it has no effect.
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The matrix can be developed easily

sys=Table[M[i,j],{i,K},{j,K}];

The plate loses stability if the equation system has a nontrivial solution, namely its
determinant is zero:

sysdet=Det[sys]
1

5294745225

¡
268435456

¡
70Ab4 + 220a4B+ 132a22b22H− 11a5b2P¢¡

50Ab4 + 20a4B+ 44a2b2H− a5b2P¢µ
1031865892864A2b8

3472875
+
4127463571456a4Ab4B

63669375
+

4294967296a8B2

3031875
+
24897925414912a2Ab6H

121550625
146028888064a6b2BH

9095625
+
1241245548544a4b4H2

40516875
17541720178688a5Ab6P

1337056875
− 36507222016a

9b2BP

63669375
620622774272a7b4HP

191008125
+
155155693568a10b4P2

2941525125

¶
−

1

72765

µ
16384a5b2P

µ
16906090788683776a5A2b10P

252703749375
+

67624363154735104a9Ab6BP

4632902071875
70368744177664a13b2B2P

220614384375
+
37084328181628928a7Ab8HP

804057384375
+

2392537302040576a11b4BHP

661843153125
+
20336567067344896a9b6H2P

2948210409375
287403543407624192a10Ab8P2

97290943509375
− 598134325510144a

14b4BP2

4632902071875
−

101682835336724484a12b6HP2

138987706215625
+
2542070883418112a15b6P3

214040075720625

¶¶

5. Direct stability problem

For a direct stability problem, the geometrical parameters a, b, A, B, H are all known,
and the load parameter P should be computed. Let us consider the following data
taken from [3]:

κ=1.02848; a=5.7; b=11.4;

Then the system matrixM is

sysP=sys/.{A->190,B->230,H->κ
√
190230};
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which can be decomposed as sysP = Z0 +PZ1, where

Z0 = Map[Coefficient[#,P,0] & ,sysP];Z0//MatrixForm
2.3752× 109 0 0 0

0 8.95871× 107 0 0
0 0 1.57284× 109 0
0 0 0 4.62149× 107


Z1=Map[Coefficient[#,P] & ,sysP];Z1//MatrixForm

−1.97549× 107 0 −1.7959× 106 0
0 −1.93675× 106 0 −176068

−1.7959× 106 0 −1.7959× 106 0
0 −176068 0 −176068


Indeed

Simplify[sysP==Z0+PZ1]
True

Considering that Z1 is not a diagonal matrix, the problem Mc = 0 is a generalized
(linear) eigenvalue problem for P as eigenvalue.

Then the critical load parameter is:

solP=Solve[Det[sysP]==0,P]
{{P→ 45.3935} , {P→ 118.547} , {P→ 294.219} , {P→ 977.085}}
Pcrit=Min[P/.solP]
45.3935

6. Inverse stability problem

In this case the critical load parameter is prespecified, and one of the geometrical
parameters can be computed. For example, let us consider Acrit to be determined
when

Pcrit = 55.;

Now, the system matrix,M is

sysA=sys/.{P->Pcrit,B->230,H->κ
√
A230};

which can be decomposed as sysA = S0+
√
AS1+AS2, where

S0=Map[Coefficient[#,A,0] & ,sysA];S0//MatrixForm
−1.05621× 109 0 −9.87744× 107 0

0 −9.44947× 107 0 −9.68376× 106
−9.87744× 107 0 −9.60192× 107 0

0 −9.68376× 106 0 −8.59042× 106


S1=Map[Coefficient[#,

√
A ] & ,sysA];S1//MatrixForm
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1.9966× 107 0 0 0

0 1.95745× 106 0 0
0 0 6.65533× 106 0
0 0 0 652483.


S2=Map[Coefficient[#,A] & ,sysA];S2//MatrixForm
1.08931× 107 0 0 0

0 266204. 0 0
0 0 7.78077× 106 0
0 0 0 190146.


Indeed

Simplify[sysA==S0+
√
AS1+AS2]

True

Now, however S1 and S2 are diagonal matrices, the problemMc = 0 is a nonlinear
(quadratic) eigenvalue problem for

√
A as eigenvalue.

We can solve the equation, but now for A.

solA=Solve[Det[sysA]==0,A]
{{A→ 8.4674} , {A→ 22.6257} , {A→ 81.8672} , {A→ 246.723}}

There arise a problem to determine which solution is acceptable from engineering
point of view. To solve this problem, let us consider the following figure:

P

A

Pcrit

A1 A2

P1(A)

P2(A)

Figure 3. Selecting the proper critical geometrical parameter

It is easy to see that the index of the proper Ai can be computed as:

min
j
(Pj (Ai)) = Pcrit.
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Therefore, we can solve our stability equation symbolically for P with parameter A,
namely Pj(A):

solPA=Solve[sysdet==0,P]/.{B→230,H->κ√A230};
solPA=P/.solPA;

Then the matrix mi,j = Pj(Ai) can be computed as:

MPAcrit=Transpose[Map[Chop[N[#/.solA]] & ,solPA]]

{{8.96183, 9.78261, 30.3149, 55.0},
{13.6388, 18.5023, 55.0, 131.104},
{26.0052, 55.0, 144.231, 435.136},
{55.0, 151.326, 370.553, 1259.20}}

. . . .

Select the proper row:

rPAcrit=Select[MPAcrit,Chop[Min[#]-Pcrit=0 & ]
{{55., 151.326, 370.553, 1259.02}}

Select the index of the row:
pAcrit=First[Position[MPAcrit,First[rPAcrit]]]
{4}

Select the proper critical geometrical parameter:

Acrit=A/.solA[[First[pAcrit]]]
246.723

We remark that Z0 is a positive definite diagonal and Z1 is a real symmetric matrix.
Hence the eigenvalue problem can be reduced to a special eigenvalue problem for a
symmetric, i.e., selfadjoint matrix.

7. Computing eigenshapes

Let us return to the direct stability problem. After the critical load is determined, one
may compute the solution of (3), i.e., the values of ci’s. Unfortunately, in both cases
(direct and inverse stability problem) we have a non-standard eigenvalue problem,
therefore the usual techniques cannot be directly applied [5]. One may solve the
problem by definition. One of the rows of M can be left out, and instead of it the
normalization can be considered to be a new equation:

KX
i=1

ci = 1 .

However, one should carefully select the row to be left out, because of the special
chess table structure ofM (see matrix Z). One should leave out a proper row, which
really cancels the singularity ofM. Fortunately, Mathematica has a built-in function
to compute the nullspace [6] ofM, so one can easily solve this unpleasant problem:

c=NullSpace[sysP/.P→Pcrit][[1]]]//N
{0., 4.78239, 0., 1.}
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Norming:
< < LinearAlgebra’MatrixManipulation’
c / VectorNorm[c,2]
{0., 0.97883, 0., 0.204674}

Here we have to mention that in case of computation with non rational numbers,
NullSpace may result in an empty set because of the ill-conditioned feature of M.
In that case the Jordan decomposition has been proved to be more robust and can
provide acceptable approximation:

c = Transpose[
JordanDecomposition[(sysP//N)/.P→Pcrit][[1]]][[K]]
{0.,−0.97883, 0.,−0.204674}

Now we have the same result because we used rational numbers in the computation. In
the following sections we employ Jordan decomposition in order to reduce computation
time.
Then the first eigenshape:

wcrit =
KP
i=1

c[[i]]ϕ[i]

0. (1− 2η2 + η4)(5− 6ξ2 + ξ4) + 0. (η − 2η3 + η5)(5− 6ξ2 + ξ4)−
0.978783(1− 2η2 + η4)

µ
7ξ

3
− 10ξ

3

3
+ ξ5

¶
−

0.204674(η − 2η3 + η5)

µ
7ξ

3
− 10ξ

3

3
+ ξ5

¶
Plot3D[wcrit,{η,-1,1},{ξ-1,1},PlotPoints->{30,30},

AxesLabel-> {"
x

a
","

y

b
",None},

ColorFunction->(RGBColor[#,1-#,0] & )];
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Figure 4. The first eigenshape

The contour plot shows clearly the effect antisymmetrical load distribution

ContourPlot[wcrit,{η,-1,1},{ξ-1,1},PlotPoints->50,
AxesLabel->{"a","b",None},
ColorFunction->(RGBColor[#,1-#,0] & ),Contours->15];
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Figure 5. Contour plot of the first eigenshape

The further eigenshapes belonging to the next three roots are:
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Figure 6a. Eigenshape for P = 118.547
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Figure 6b. Eigenshape for P = 294.219
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Figure 6c. Eigenshape for P = 977.085.
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8. Effect of higher order polynomials

The value of the critical load parameter decreases and converges with an increase in
the polynomial order of the trial functions:

n = m Critical load parameter
4 120.234
5 45.3935
6 38.5191
7 38.5062
Table 1. The critical loads

Figure 7. The critical load parameter as a function of the polynomial order of the
trial functions

The first, critical eigenshapes are different but also converging to the true shape:

 

-1 
-0.5 

0 
0.5 

1 
x 
a -1 

-0.5 

0 
0.5 
1 

y 
b 

0 
2 
4 

-1 
-0.5 

0 
0.5 

1 
x 
a 

 

-1 
-0.5 

0 
0.5 

1 
x 
a -1 

-0.5 

0 
0.5

1

y 
b 

-0.5 
0 

0.5 

-1 
-0.5 

0 
0.5 

1 
x 
a 

Figure 8a. Critical shape for n =m = 4 Figure 8b. Critical shape for n =m = 5
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Figure 8c. Critical shape for n = m = 6 Figure 8d. Critical shape for n =m = 7
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Employing higher order polynomials, new roots will emerge. For example, in case
of n =m = 6, we obtain nine roots.

38.5191 45.3934 118.208 164.784 276.89
625.832 922.617 1203.99 4375.02

Table 2. Roots for n = m = 6

The new roots result new eigenshapes. For example, for root 625.832, we obtain
the following eigenshape
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Figure 9. Eigenshape for root 625.832 in case of n = m = 6

A further increase of the order of the trial functions (n,m > 7) results in the appear-
ance of complex and parasitic [7] (extremely big or small) roots.

9. Concluding remarks

A symbolic-numeric method has been developed to handle direct and inverse stabil-
ity problems as a matrix eigenvalue problem. It was demonstrated that the direct
stability problem can be considered to be a general, linear eigenvalue problem for the
critical load parameter, and the inverse stability problem to be a nonlinear (quadratic)
eigenvalue problem for a mechanical (stiffness) parameter. It has been shown that this
method provides a simple, effective and elegant procedure for different boundary-value
problems.
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