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Abstract. Redundant manipulators are nowadays favoured in several future space mis-
sion scenarios in order to enhance the skill and flexibility of the entire system. DLR, since
many years, has been engaged in the development of light-weight robotic systems in modular
design. Typical tasks for space applied robotics are to define robot kinematics and to calcu-
late joint kinetics very rapidly in order to support the whole space mission design from the
very beginning. Redundant manipulators then require the solution of the inverse kinemat-
ics problem for more than 6 degrees of freedom. Equivalently, the respective joint torques
and forces are to be calculated by forward and backward recursions. Rather than apply-
ing conventional schemes based on pseudo-inverse matrix methods, we favour optimization
with equality constraints, based upon the well-known Lagrange formalism. The optimization
criteria are chosen to represent the underlying physical meaning, such as minimization of
joint velocities, accelerations, torques or power, or even an optimization criterion that main-
tains the entire robot configuration during motion very close to a reference configuration.
Simultaneously, this procedure also takes care that the joint loads and stresses in structural
arm links do not exceed upper bounds. Two examples of light-weight robot design for space
applications are presented that very clearly show the efficiency of the underlying algorithms.

Mathematical Subject Classification: 70B15
Keywords: inverse kinematics and kinetics, redundant manipulators, space robotics, opti-
mization with constraints

1. Introduction

Future robotic-based satellite missions will be unimaginable without the demand for
strong reduction of weight and for enhanced autonomy and intelligence. For many
years DLR has paved the way for these challenging novel technologies. Currently,
DLR is developing very light-weight robotic systems of its 3rd generation in modular
design, which are used as the design baseline for future space robot system scenarios
of various kind [1]. Several studies are presently in progress (Figure 1) in order to
prepare future robotized missions and to benefit from the use of robotic manipulators
in space [2],[3]. It stands to reason that the desire to use light-weight and slender
robotic systems is very strong since it promises very new application scenarios. Espe-
cially, this is more than ever true in all cases where the number of degrees of freedom
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is increased beyond the traditional maximum number of six. Such redundant manip-
ulators are able to enhance the skill and flexibility of the entire robotic system, and
hence are able to increase the operational use and to obtain the maximum use of the
robotic workspace. Moreover, avoiding collision with obstacles, and the avoidance of
and passing through singularities are two more major aspects that make the use of
redundancy in manipulators for space applications very preferable.

One of the prevailing design tasks for a given space mission scenario including
robotics is the definition of the robot kinematics, as well as the number of joints and
the sequence of joint axes orientations. Moreover, the knowledge of the joint kinetics
states, i.e., forces and torques for given motions, is very important in order to rapidly
support the whole space mission design from the very beginning. Modifications in
manipulator design are then feasible at an early stage of the whole mission design in
cases where upper bounds for manipulator loads and stresses are exceeded.

  

 

Figure 1. Two examples of near-future robotic-based space missions: MISSISS,
Mobile Inspection and Service System for the International Space Station ISS
(upper two figures), manipulator walk-over system operating on ISS Columbus
external shell. Rescue satellite (lower two figures), manipulator used to capture
a malfunctioning satellite (Rosat, the German Roentgen satellite, in orbit since
1990) followed by a de-orbiting scenario
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However, the problem of solving the inverse kinematics increases according to the
number of joints. Conventional solutions to this problem area are mostly based upon
the use of pseudo-inverse matrix methods, where the physical meaning of the under-
lying method is not apparent at all. We have followed quite a different way for the
inverse kinematics and kinetics problem solving. Currently, in our approach two differ-
ent solutions are provided within our simulation environment, which both have their
specific physical meanings. The first one is an optimization algorithm that minimizes,
for example, the joint speed and acceleration subject to the end effector misalignment.
The second one makes use of the differential equations describing the system of the
robot motion whereby the robot is a passive chain of joints and limbs. For the latter
one, the solution in joint coordinates is solved elegantly by the governing differential
equations, rather than by solving algebraic equations and using minimization proce-
dures, as in the first approach [2]. In this second case the motion is initiated by force
and torque at the end effector and the joint motion can be calculated by solving the
differential equations. Then, the dynamics parameters of the chain (e.g. joint friction,
limb mass) affect the overall robot motion analogously to the optimization goal of the
first method. This method is very appealing because it can be easily implemented in
available multi-body dynamics simulation software. However, in this paper we will
focus on the optimization method with equality constraints using Lagrange formalism
for obtaining an optimal solution.

2. Inverse kinematics and kinetics

2.1. Description of kinematics. Figures 2 and 3 give a representation of the various
coordinate systems and notations used to describe multi-body kinematics. The desired
(index d within the formulas) end effector position in Cartesian coordinates is given
by

rd =
¡
rd,x, rd,y, rd,z

¢T
(1)

and the desired orientation of the end effector by

Ad =

 Ad,xx Ad,xy Ad,xz

Ad,yx Ad,yy Ad,yz

Ad,zx Ad,zy Ad,zz

 . (2)

Then the inverse kinematics problem has to find a set of angular positions for rotary
joints and a set of translational positions for prismatic joints (e.g. telescopic arms),
which can be combined by a vector q,

q =
¡
q1, q2, . . . , qn

¢T
(3)

with n degrees of freedom, and n > 6 for redundant manipulators. Both end effector
position and orientation (hereafter called ’pose’) can be combined by the homogeneous
transformation matrix Bd,

Bd =


Ad,xx Ad,xy Ad,xz rd,x
Ad,yx Ad,yy Ad,yz rd,y
Ad,zx Ad,zy Ad,zz rd,z
0 0 0 1

 , (4)
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leading finally to the problem

q = f (Bd) (5)

to be solved. In the following, we will restrict our problem to rotary joints only.
Unique solutions for the joint angles q exist only for n = 6, disregarding some special
robot configurations like elbow up or down, etc.. For the general case of n > 6 we
have to consider additional constraint equations that
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Figure 2. Kinematic structure and coordinate systems for the entire robot. The
numbers at coordinates axes are in meters

guarantee a unique solution. We will not build upon common approaches used
throughout the many examples for terrestrial applications, such as the well-known
’pseudo inverse method’. Rather, we make use of an optimization procedure with
constraints based upon Lagrange formalism, which accounts for a real physical inter-
pretation of the underlying method used here.

2.2. Optimization based inverse kinematics. The constraint given is that the
solution of the inverse kinematics problem has to guarantee coincidence between the
actual pose B and the desired pose Bd. For mathematical reasons this deviation
can be better represented by a homogenous transformation matrix ∆ (see e.g. [4])
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Figure 3. Coordinate systems for a single link and two adjacent joints with input
and output marker. The numbers at coordinates axes are in meters

according to

∆ = B−1d ·B =


∆11 ∆12 ∆13 ∆14
∆21 ∆22 ∆23 ∆24
∆31 ∆32 ∆33 ∆34
0 0 0 1

 , (6)
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Should the desired pose be reached, then we will end up with ∆ = E, where E is
the unity matrix. Then the problem to be solved can be transformed from matrix to
vector form,

h =
¡
∆14, ∆24, ∆34, ∆12 −∆21, ∆23 −∆32, ∆31 −∆13

¢T
= 0 . (7)

The first three elements are translational components whereas the last three represent
rotational ones. This formulation of the inverse kinematics problem is free of singu-
larities and therefore numerically stable. It can be shown [5] that for an incremental
robot motion simulation the upper left 3x3 sub-matrix of ∆ will turn into a skew
symmetric one. In the limit for small angles and positions going to zero, ∆ then goes
to the identity matrix.

Considering the optimization criteria, a physical interpretation of the underlying
method is favoured. Several different approaches can be followed, which may be
distinguished by two kinds of goal functions f to be minimized: the first one is
related to an optimization that focuses on joint drive kinematics and kinetics (joint
drive oriented optimization), the second one takes care of the entire robot system
configuration (configuration oriented optimization).

Joint drive oriented optimization criteria. The following criteria concern minimum
loads and stresses applied to the robotic joints, and hence to the arm structures.
For mathematical reasons, they are usually formulated as quadratic expressions of
kinematic or kinetic states:

(a) Minimization of all the joint angular velocities q̇,

f1 = q̇T · q̇. (8)

Mechanically, this may be interpreted as minimizing some linear damping force
proportional to the joint velocities.

(b) Minimization of all the joint angular accelerations q̈,

f2 = q̈T · q̈. (9)

This optimization criterion may be favoured especially in cases where the robot
is operates in a neighbourhood close to singularities, and where otherwise very
high joint accelerations are required. This criterion will keep critical joints
below their maximum load limits.

(c) Minimization of joint torques t,

f3 = tT · t. (10)

(c) Minimization of power Pi = tiωi consumed in each joint drive with number i,

f4 = PT ·P , (11)

where ωi = q̇i and P = (P1, P2, ..., Pi, ..., Pn)
T has been set. The latter two

criteria require inverse kinetics calculation in order to obtain knowledge of the
torques to be applied according to a given trajectory. Equations (8) to (11)
also allow to weight each joint individually by a special weighting factor, in
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order to be more flexible in assigning each single joint more or less importance
during the optimization run.

Configuration oriented optimization criterion. The motivation for this criterion
is to allow the robot a high degree of manoeuvrability. This means that during
motion, each joint should keep its respective configuration far apart from its joint
angle limits qi,max and qi,min. This can also be defined by a reference angle according
to qref,i = (qi,max + qi,min) /2, whereas the robot will try to stay in a neighbourhood
close to the desired configuration. Moreover, this reference position may also be
defined by restrictions given by the environment where the robot is operating. A
typical example is to prescribe a reference configuration for a collision-free motion
within the robot’s working space, which the robot has to follow very closely. As a
minimization criterion, again a quadratic expression is given

f5 = ∆q
T ·∆q , (12)

where ∆q = q−qref and q contains the actual angular positions of the joints. From
a mechanical point of view, this procedure can be interpreted as minimizing stiffness
forces acting in the joints, which originate in virtual springs somehow depending upon
spring displacements ∆q.

Minimization of satellite base forces and torques. For space applications, the reac-
tion forces and torques exerted on the satellite base by the manipulator motion, are
in many cases undesirable or even jeopardize mission requirements. This is the case
where micro-gravity conditions have to be maintained over a longer period. Minimiz-
ing the base torques and forces is therefore a primary goal for manipulator path and
trajectory design.

In order to be be more general, all these criteria can be combined and appropriately
weighted by special factors αj

f =
X

αj fj . (13)

However, the best suited goal function has to be adapted to the respective application
case, and cannot be generally determined.

Constraint optimization: Lagrange formalism. To solve the inverse kinematics
problem, the well-known Lagrange formalism for constrained optimization is applied

L = f (q) + λT · h (q) = f (q) + g (q, λ) , (14)

where L is the Lagrange function, f is the optimization criterion, h accounts for the
equality constraints, and λ is a vector consisting of six Lagrange multipliers. This
equation contains n+ 6 unknowns, which can be combined by a vector z,

z = (q1, q2, · · · , qn, λ1, · · · , λ6)T (15)
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giving finally L = L (z). Minimization of L necessitates that the gradient ∇L goes to
zero

∇L = ∇ (f (z) + g (z)) =

=

µ
∂f

∂q1
+

∂g

∂q1
,
∂f

∂q2
+

∂g

∂q2
, ...,

∂f

∂qn
+

∂g

∂qn
, h1, h2, ..., h6

¶T
(16)

Equation (16) is a strongly non-linear system with n + 6 equations and unknowns.
To solve it, the method based on an iteration according to Newton-Kantorowitsch
(linearization by Taylor series expansion) may be favourably used. Given the Jacobi
matrix

J =
∂L0

∂z
(17)

where L0 = ∇L, a linearized system of n+ 6 equations,

J
³
z(k)

´
·∆z(k+1) + L0

³
z(k)

´
= 0, and z(k+1) = z(k) +∆z(k+1) , (18)

is to be solved. The iteration will stop as soon as the deviation ∆z(k+1) remains
below a given error limit. As initial value of z, i.e. z(0) = z(t = 0), the current joint
positions of the last, successfully terminated iteration step is taken, together with
λ(0) = 0.

2.3. Inverse kinetics. To solve the inverse kinetics problem, i.e., to obtain the forces
and torques (kinetic states) acting in the joints, the dynamics description of the entire
robot system, i.e., the differential equations of motion, has to be established. Based
upon a multi-body system formulation, e.g. by Newton-Euler formulation, the joint
motion q(t) and its time derivatives can be assigned to the applied forces and torques.
Given the end effector trajectory, the joint kinematic states are found by the inverse
kinematics problem, and the kinetic states are obtained by applying forward and
backward calculations. The forward kinematics calculation gives the respective values
required, i.e., the absolute velocities and accelerations of joints and the center of mass
of each link), beginning from the inertially fixed frame up to the end effector position
and orientation. Then, by backward calculation the actual forces and torques can be
determined, beginning at the end effector level.

3. Basic example of a 7 DOF robot: Simulation results and discussion

The 7 dof (degrees of freedom) robot with fixed base of Figure 2 has been taken as
a basic example to demonstrate the efficiency of the inverse kinematics and kinetics
problem for redundant manipulators. The initial robot configuration is given in Figure
4 achieving a total length of about 1.25 m. The starting configuration is the one
already shown in Figure 2, i.e., all joints have been moved by the same angle of
45o. The end effector trajectory is prescribed: in our example we chose an elliptic
planar path for the position within the three-dimensional working space, where the
angle of the ellipse varies in time with a fifth order polynomial (see Figure 5 for the
kinematic states). The orientation of the end effector is kept constant throughout



On inverse kinematics and kinetics of redundant space manipulator simulation 61

Figure 4. Initial robot configuration: 7 dof, kinematic configuration is (beginning
from the fixed base) roll, pitch, roll, pitch, roll, pitch, roll; the numbers at both
axes are in meters giving an overall length of about 1.25 m measured from the
first roll axis

the elliptical motion. For comparison reasons, we have investigated three different
optimization criteria: joint velocity, joint acceleration and configuration oriented min-
imization according to equations (8), (9) and (12). The two criteria based on kinetics
states minimization, see equations (10) and (11), are still in the implementation phase.
As the reference configuration for equation (12) we chose the starting configuration.
It should be noted that in case of a non-redundant robot with 6 dof, the starting
configuration of all the joints should be achieved again after terminating the elliptical
motion (closed loop trajectory) of the end effector.

Figure 5. Kinematic states of the prescribed elliptical motion of the end effector
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Figure 6. Final robot configuration achieved after one full elliptical loop: joint
velocities optimized (left), reference configuration optimized (right), joint accel-
erations optimized (middle)

Figure 6 gives the comparison of the different final configurations achieved after
one full elliptical loop. In the case of joint velocity and acceleration optimization
we observe a great difference in the final configuration, whereas optimization of the
reference, i.e. starting configuration does not exhibit a great deviation when compared
to joint velocity minimization. Moreover, in the reference configuration case the
final configuration is indeed identical to the initial, i.e., the reference configuration.
The joint velocity optimization shows here some minor deviations from the initial
configuration, whereas in joint acceleration minimization the significant joint angle
deviations are surprising.

These differences in the kinematic states are presented graphically in Figure 7.
Another striking behaviour in joint acceleration is to be noted: The joint velocities
achieved after termination of the full elliptical trajectory are never zero. This is not
surprising since the algorithm minimizes accelerations rather than velocities, although
the joint accelerations achieved after trajectory termination are zero. For reasons of
comparison, for each optimization criterion the respective corresponding kinematic
state is presented graphically as well (Figure 8), together with the quadratic sum of
the respective kinematic states.
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Figure 7. Kinematic states of each joint achieved by optimization

Finally, Figure 9 then shows an example of the calculated joint torque (w.r.t the
joint axis) that is necessary in order to drive the respective joint. For the sake of
compactness within this paper, the inertia parameters of each joint and link, which
are required for the inverse kinetics calculation, are not presented within this paper.

Furthermore, instead of taking from a table the stored trajectory increments, a
more common application in space robotics is to guide the robot by means of an
input device, for example, a so-called 6-dof space ball. We call this mode of op-
erations a tele-operated manipulation. This input device allows the human tele-
operator to guide the robot end effector in 3 translational and in 3 rotational de-
grees of freedom. Again, the commanded trajectory given in some arbitrary manner
by the human operator, is discretized by the space ball inherent software at a time
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Figure 8. Quadratic sum of the respective kinematic joint states. Note, that
in each optimization criterion only the respective quadratic sum at each time
increment is optimal

interval equivalent or close to that of the table stored trajectory. Finally, for both
kinds of robot guidance, i.e., either by a given trajectory stored in a table or by
an input device based commanding via tele-operation, the underlying procedure for
inverse kinematics and kinetics problem solving is highly efficient.

Final remarks have to be given to the optimization algorithm numerically imple-
mented, and to the usefulness of the comparison of the different optimization criteria.
The given trajectory is discretized by a fixed time interval of Ts = 10 ms. This inter-
val is small enough to find a solution of the given inverse problem. Equivalently this
means that the new prescribed end effector position and orientation does not change
substantially from one time increment to the next. Otherwise, the procedure used
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Figure 9. Calculated torques in each joint for the respective drive axis, for the
different optimization criteria

here has to be modified appropriately (see specific example in Section 4), either by
reducing the time interval or by changing the initial guesses for equation (18).

Concerning the comparison of results for different optimization criteria, it is found
useless for two reasons. First, each optimization criterion naturally results in a config-
uration that is optimal in the given sense. The definition of any kind of measure with
physical interpretation would be very helpful here. Second, the optimization based
algorithm only gives an optimal result in terms of a new configuration that refers
only to the configuration achieved in the time interval before. The reason is that
the criterion is optimized only within the given time interval Ts. Therefore, the joint
states are not optimized within the global time T , which covers the entire trajectory.
This means, in general, that for the different optimization criteria used, the achieved
new joint angles, velocities, accelerations (and torques, power, etc.) are different in
nature for each time interval. Therefore, it makes no sense here to compare all criteria
to each other in a sensible way.

However, a comparison may be considered sensible in the case where we let the
optimization process cover the entire trajectory as a total. In that case, the opti-
mization criteria defined in equations (8) to (12) have to be modified. For example,
equations (8) then would read

f =

Z T

0

q̇T q̇dt (19)

and the optimization has to be accomplished off-line for the whole path.

Finally, all these individual optimization criteria can be combined while providing
different weighting factors to each of them. Obviously, a best suited goal function
cannot be given for optimization; rather it has to be adjusted to the specific applica-
tion scenario. The results we obtained underline the efficiency of the algorithms being
computationally very fast (1-2 ms for a complete inverse calculation within Ts, using
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a personal computer with 1 GHz performance). More than ever, this last aspect is
most important in all cases where need to perform an entire robotic motion simulation
in real-time.

4. Application: Robotics-based mission scenario

To demonstrate the procedure for the inverse kinematics and kinetics calculation of
redundant manipulators for a real scenario, a rescue satellite space mission is envis-
aged, according to Figure 1. Here, a large malfunctioning satellite (Rosat, the German
Roentgen satellite in low earth orbit) is approached by a smaller rescue satellite that
is equipped with a 2 m long manipulator of 7 dof. The very complex and delicate
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Figure 10. Structural diagram for computation of inverse kinematics and kinetics
for fixed satellite base

scenario comprises final approach, manipulator deployment, and finally grasping of
the defective satellite by the manipulator. Our interest here is directed towards finding
a suitable path for the manipulator’s end effector, while avoiding any collision with
obstacles in between. The approach and grasping strategy distinguishes between
two kinds of operations: the first one assumes a fixed base of the manipulator, i.e.,
the rescue satellite is expected not to move during manipulator motion. This can
be guaranteed by means of the satellite’s AOCS (attitude and orbit control system)
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being active. A second mode of operation supposes the rescue satellite’s AOCS notto
be active, leaving additional 6 degrees of freedom to the entire system, consisting of
satellite and manipulator. Then our problem can be described as follows: the end
effector starting point A is given assigned with an initial robot configuration with
all joint angles given, and represented by the matrix BA equivalent to equation (4).
Also, the end point E to be reached is given, represented by the corresponding matrix
BE, except for the respective joint angles that are not given. The overall task for the
inverse kinematics problem then is to find the appropriate joint angles.

Applying first the procedure for the fixed satellite base, Figure 10 gives an idea
how to solve this problem. Within the ’user interface’ block the user defines whether
to directly proceed from point A to E (direct path) or to define some so-called way-
points, which are appropriately chosen in between both points. The operator, by
his experience or best knowledge about the entire system behaviour, may choose such
points in cases where safety distances have to be maintained between manipulator and
satellite parts, where obstacles have to be avoided or straight ahead of the final point
to be grasped (in order to keep the manipulator in a halting mode before the final
complex grasping operation is carried out). In kinematic description, these waypoints
are equivalent to the final point E, i.e., the end effector position and orientation is
represented by a given matrix Bi, but the respective joint angles are not known.

Figure 11. Left: Path and configuration for direct path (red line) or for allowing
for intermediate points (green line). Right: Path and configuration for setting
waypoints in between starting and end points. The 3 dimensional spatial paths
are calculated using Robcad animation software package with built-in joint con-
trol algorithms. Note that although the starting configuration is the same in the
left and right figures, this is not the case of the achieved final configurations,
which are quite different

In general, the spatial distance betweenBA andBE, or also between two neighbour-
ing waypoints Bi and Bi+1, is by all means long compared to the very closely spaced
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and discretized trajectory points of the basic example of Section 3. Furthermore,
the underlying algorithm is based on linearization that is expected to give solutions
more for local, closely distant points. Therefore, it is supposed that a solution is not
achieved for all cases of two neighbouring waypoints a solution is achieved. This sug-
gestion proved true during simulation runs, and a modified search strategy therefore
has been set up. We decided, between two waypoints, to set so-called intermediate
pointsBi,j that guarantee an appropriate solution (Figure 10). The way to find such a
point is to determine a search algorithm, arbitrarily chosen, that takes care of finding
a suitable interpolation ratio fast and avoiding intermediate points near singularities.
Therefore, between the given matrices Bi and Bi+1 a linear interpolation is applied
to find the cartesian coordinates and the Euler angles for the end effector.

Figure 11 presents the final results for the two choices, either to go directly from
BA to BE (red path; or with intermediate points in between, green paths) or to go
via waypoints B1, B2, B3 in order to avoid an obstacle for example (blue path).
The path between two waypoints is not a straight line at all. In fact, it depends
upon the joint control chosen, i.e., upon the specification of the time behaviour of
the kinematic states q(t), q̇(t) and q̈(t). Visualization and animation of the robot
motions were performed by means of the software package Robcad (manufactured by
Tecnomatix), which also provides the joint kinematics time specification (constant
joint acceleration with upper bound as well as an upper bound for joint velocity).

Concerning the inverse kinematics and kinetics problem for a moving satellite base,
the overall dynamics behaviour of the entire system has to be regarded. Figure 12
outlines the approach that will be followed for our further investigations. Since the
manipulator motion causes a corresponding movement of the base, the algorithm for
the fixed base has to be expanded by a part reflecting the influence of these additional
6 dof of the base, while taking the well-known laws for momentum and impulse also
into consideration.

5. Concluding remarks and further activities

The inverse kinematics problem for redundant space manipulators has been solved by
making use of the physical meaning of the underlying optimization criteria. Moreover,
this method also accounts for the joint loads and stresses in structural arm links not
to exceed upper bounds. Two different examples were presented, a more convential
one for basic investigations of the quality of the approach, and a realistic one that
simulates a typical space mission scenario where a robot attached to a rescue satellite
is intended to grasp a second, malfunctioning satellite. The algorithms applied to
both examples proved very efficient and they are computationally extremely fast.
More than ever, the last aspect is most important in all cases where we have the need
to perform an entire robotic motion simulation in real-time.

Should the inverse kinetics computation show that the joint torques and forces
obtained are not below certain limits, then the robot design has to start again. This
means that especially the mechanical sub-components as motors, gears, and link struc-
tures, have to be changed according to a CAD based data panel, for example. This



On inverse kinematics and kinetics of redundant space manipulator simulation 69

BA BE

yes

no

Bi Bi+1
Joint angles Bi

Interpolation

Bi= Bi,j

Inverse Kinematics
Relative path

Trajectory
B(t) ,v(t) and a(t)

Joint forces
and torques

Bi+1 Bi+2

Waypoints
BA B1 ... Bn BE

User Interface

BA BE
Joint angles BA

Path planning

BA

B1 B2

BE

obstacle
Base: forces
and torques

Inverse Kinetics

Inverse Kinetics

no

yes

Trajectory
B*(t) ,v*(t) and a*(t)

Bi B*
i,j Bi+1

Intermediate 
point

Algorithm

Joint control:
Specification of
time behaviour

Forward
Kinematics

Base:
time behaviour yes

no

Solution

Joint angles
B*

i,j

Joint angles Bi+1
base orientation

Absolute path

Save
configuration

Entire system:
laws of momentum

and impulse

Bi Bi+1B*
i,1

Bi,j= Bi+1

Bi Bi+1

Bi,1

B*
i,1

B*
i,2

*

)(tq , )(tq , )(tq  

BA BE

yes

no

Bi Bi+1
Joint angles Bi

Interpolation

Bi= Bi,j

Inverse Kinematics
Relative path

Trajectory
B(t) ,v(t) and a(t)

Joint forces
and torques

Bi+1 Bi+2

Waypoints
BA B1 ... Bn BE

Waypoints
BA B1 ... Bn BE

User Interface

BA BE
Joint angles BA

Path planning

BA

B1 B2

BE

obstacle
Base: forces
and torques

Inverse Kinetics

Inverse Kinetics

no

yes

Trajectory
B*(t) ,v*(t) and a*(t)

Bi B*
i,j Bi+1

Intermediate 
point

Bi B*
i,j Bi+1

Intermediate 
point

Algorithm

Joint control:
Specification of
time behaviour

Forward
Kinematics

Base:
time behaviour yes

no

Solution

Joint angles
B*

i,j

Joint angles Bi+1
base orientation

Absolute path

Save
configuration

Entire system:
laws of momentum

and impulse

Bi Bi+1B*
i,1

Bi,j= Bi+1

Bi Bi+1

Bi,1

B*
i,1

B*
i,2

*

)(tq , )(tq , )(tq  

Figure 12. Structural diagram for computation of inverse kinematics and kinetics
for moving satellite base

starts the inverse kinematics and kinetics problem solving again. However, there are
still more problems to be solved in further investigations. One refers to the moving
satellite base, where we suggested an approach for the inverse problems. Another
important item concerns an optimal trajectory planning, which we have not addressed
here, but mentioned one possible approach as given by equation (19). Moreover,
the addressed optimization criteria based on kinetics states minimization (e.g. joint
torque and power) will be followed further.
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