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Abstract. The recent efforts in development of efficient solution methods for non-
conforming finite element systems are inspired by their importance for various applications
in scientific computations and engineering. This study is focused on the implementation of
rotated bilinear elements. A locally modified approximation of the global stiffness matrix
is proposed allowing for: a) a stable MIC(0) factorization; and b) a scalable parallel im-
plementation. An optimal condition number estimate is derived for the constructed sparse
matrix approximation with respect to the original global stiffness matrix. The estimates of
the parallel speed-up and the parallel efficiency as well as the presented parallel numerical
tests demonstrate the potential of the PCG algorithm and the MPI code developed.
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1. Introduction

Consider the elliptic equation

−∇ · (a(x)∇u(x)) = f(x) in Ω,
u = 0 on ΓD,

(a(x)∇u(x)) · n = 0 on ΓN .
(1.1)

Here ∇u(x) denotes the gradient of u and ∇ · q denotes the divergence of the vector
q. Further, we assume that Ω is a convex polygonal domain in IR2, f(x) is a given
function in L2(Ω), a(x) = [aij(x)]

2
i,j=1 is a symmetric matrix, n is the outward unit

vector normal to the boundary Γ = ∂Ω, and Γ = Γ̄D∪ Γ̄N . We assume that aij(x) are
piece-wise smooth functions on Ω̄ satisfying the uniform positive definiteness condition
of the matrix a(x).

Problem (1.1) can be discretized in various ways. Among the most popular and
frequently used methods of approximation are the Galerkin finite element method, the
finite volume method and the mixed finite element method. Each of these methods has
its advantages and disadvantages when applied to particular engineering problems.
For example, for petroleum reservoir problems in geometrically simple domains and
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heterogeneous media, the finite volume method is known to be reliable, accurate,
and locally mass conservative. Many engineering problems, e.g. petroleum recovery,
ground-water contamination, seismic exploration, etc. need very accurate velocity
(flux) determination in the presence of heterogeneities, anisotropy and large jumps
in the coefficient matrix a(x). More accurate approximation of the velocity can be
achieved through the use of the mixed finite element method (see, e.g. [5]). However,
the technique of the mixed finite element method leads generally to an algebraic saddle
point problem that is more difficult and more expensive to solve.

An alternative approach can be taken by developing hybrid methods where the
continuity of the velocity vector normal to the boundary of each element is enforced
by Lagrange multipliers. The important discovery of Arnold and Brezzi [2] is that
the Schur system for the Lagrange multipliers can be obtained also as a discretization
of (1.1) by Galerkin method using linear nonconforming elements. Namely in [2] it
is shown that the lowest-order Raviart-Thomas mixed element approximations are
equivalent to the usual Crouzeix-Raviart P1-nonconforming finite element approxi-
mations when the classical P1-nonconforming space is augmented with P3-bubbles.
Further, such a relationship has been studied for a large variety of mixed finite element
spaces [1, 6].

Our study is focused on the implementation of rotated bilinear elements. These
elements are an attractive discretizing tool since they possess favorable stability prop-
erties for the Stokes and the Lamé equations. An additional important feature is the
regular sparsity of the stiffness matrices with no more than seven non-zero elements
per row even in the case of non-regular meshes.

Two algorithms are presented, where MP and MV stand for the variants of the
nodal basis functions corresponding to mid-point and integral mid-value interpolation
operators.

There are two general approaches to construct parallel preconditioners, based re-
spectively on: a) domain decomposition, or b) block incomplete/approximate fac-
torization. The second approach does not lead to an optimal preconditioner in
terms of problem size, but produces highly parallel and efficient algorithms (see,
[3, 4, 7, 8, 9, 10, 11]).

Here we first locally modify the stiffness matrix, and then apply a pointwise in-
complete factorization. We get as a result a well parallelizable block structure of the
preconditioner, preserving the robustness with respect to the local properties of the
matrix.

2. Finite element discretization

The domain Ω is partitioned using quadrilaterals e ∈ ωh. Our analysis here is con-
centrated on the isotropic case, and we will assume from now that a(x) is a scalar
function. The partitioning ωh is aligned with the discontinuities of the coefficient a(x)
so that over each element e ∈ ωh the function a(x) is smooth. Further, we assume
that the partitioning is quasi-uniform with a characteristic mesh-size h.
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The Galerkin variational formulation of the above problem reads: given f ∈ L2(Ω)
find a function u ∈ H1

D(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}, satisfying
A(u, v) = (f, v) ∀v ∈ H1

D(Ω), (2.1)

where

A(u, v) =
∫

Ω

a(x)∇u(x) · ∇v(x)dx·

The rotated bilinear non-conforming finite elements on quadrilaterals are implemented
for the numerical solution of (2.1). The finite element space Vh corresponds to ωh.
This study is concerned with a comparison analysis of two alternative constructions of
Vh, where algorithms MP and MV stand for the variants of the nodal basis functions
corresponding to mid-point and integral mid-value interpolation operators (see [12]).
In defining the isoparametric rotated bilinear element one uses the unit square (with
sides parallel to the coordinate axes) as a reference element ê. For each e ∈ ωh, let
ψe : ê → e be the corresponding bilinear transformation. The element nodal basis
functions are determined by the relations

{φi}4i=1 = {φ̂i ◦ ψ−1e }4i=1.
For algorithm MP , the reference element basis functions {φ̂i}4i=1 are determined by
the standard nodal interpolation conditions

φ̂i(b
j
Γ) = δij ,

where {bjΓ}4j=1 are the mid-points of the sides {Γj
ê}4j=1 of ê, and then

{φ̂i}4i=1 =
{(

1± 2ξi + ξ2i − ξ2j+1
)

/4, j = 1, 2
}

.

Alternatively, for algorithm MV , an integral mid-value interpolation operator is ap-
plied in the form

|Γj
ê|−1

∫

Γj

ê

φ̂i = δij ,

and then
{φ̂i}4i=1 =

{(

2± 4ξj + 3
(

ξ2j − ξ2j+1
))

/16, j = 1, 2
}

.

Then the finite element formulation is: find a function uh ∈ Vh, satisfying

Ah(uh, vh) = (f, vh) ∀vh ∈ Vh, (2.2)

where

Ah(uh, vh) =
∑

e∈ωh

∫

e

a(e)∇uh · ∇vhdx,

where a(e) is defined as the averaged value

a(e) =
1

|e|

∫

e

a(x)dx

over each e ∈ ωh. We note that we allow strong coefficient jumps through the interface
boundaries between the elements. Now, the standard computational procedure leads
to the linear system of equations

Au = f , (2.3)
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where A is the corresponding stiffness matrix. The matrix A is sparse, symmetric
and positive definite. For large scale problems, the preconditioned conjugate gradient
(PCG) method is known to be the best solution method of (2.3).

The goal of this study is to present a robust and parallelizable precondition-
ing algorithm for solving (2.3). The proposed method will be based on incomplete
factorization of sparse matrices. The construction of the preconditioner is based on
a MIC(0) factorization of a locally modified approximation of the original stiffness
matrix. We have shown in our model analysis that the condition number correspond-
ing to the applied local modification is independent of possible coefficient jumps (see
Section 5). The proposed construction is aimed to improve the parallel features of
the algorithm, which are discussed in Section 7. A set of numerical tests illustrating
the robustness of the method, and the efficiency of the parallel implementation are
shown in Sections 6, 8, respectively. Some concluding remarks are given in the last
section.

3. MIC(0) preconditioning

We present here some background remarks about the modified incomplete Cholesky
factorization MIC(0) preconditioner. Our presentation at this point follows those in
[3], see also [9]. Let us rewrite the real N ×N matrix A = (aij) in the form

A = D − L− Lt , (3.1)

where D is the diagonal and (−L) is the strictly lower triangular part of A. Then we
consider the approximate factorization of A, which has the following form:

CMIC(0)(A) = CMIC(0) = (X − L)X−1(X − L)t , (3.2)

where X = diag(x1, · · · , xN ) is a diagonal matrix determined by the condition of
equal row sums:

CMIC(0)e = Ae, e = (1, · · · , 1)t ∈ RN .

For the purpose of preconditioning, we are interested in the case when X > 0 and thus
CMIC(0) is positive definite. If this holds, we speak about stable MIC(0) factorization.
Concerning stability of MIC(0) factorization, the following theorem holds.

Theorem 1. Let A = (aij) be a symmetric real N×N matrix and let A = D−L−Lt

be the splitting (3.1) of A. Let us assume that

L ≥ 0
Ae ≥ 0

Ae+ Lte > 0 e = (1, · · · , 1)t ∈ RN ,

i.e. that A is a weakly diagonally dominant matrix with nonpositive off-diagonal
entries and that A+ Lt = D − L is strictly diagonally dominant.
Then the relation

xi = aii −
i−1
∑

k=1

aik

xk

N
∑

j=k+1

akj
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gives the positive values xi and the diagonal matrix X = diag(x1, · · · , xN ) defines
stable MIC(0) factorization of A.

Remark 1. The numerical tests presented in this paper are performed using the
perturbed version of MIC(0) algorithm, where the incomplete factorization is applied

to the matrix Ã = A+ D̃. The diagonal perturbation D̃ = D̃(ξ) = diag(d̃1, . . . d̃N ) is
defined as follows:

d̃i =

{

ξaii if aii ≥ 2wi

ξ1/2aii if aii < 2wi

where

wi = −
∑

j>i

aij .

Here 0 < ξ < 1 is a constant of the same order as the minimal eigenvalue of A. The
computations for the model problems considered are done with ξ = h2.

It is readily seen from (3.2) that the computational cost of one MIC(0) PCG it-
eration is proportional to the size of the matrix A. More precisely, the complexity
N (C−1MIC(0)v) is almost the same as N (Av). This will be discussed in some more

details later. Unfortunately, the method is based on recursive computations, and
therefore is inherently sequential. The idea of our algorithm is to apply MIC(0) fac-
torization to a modified sparse matrix the special block structure of which allows for
a scalable parallel implementation.

4. The preconditioning algorithm

The studied preconditioner C is constructed by a proper local modification of the
stiffness matrix A. Following the standard FEM assembling procedure we write A in
the form

A =
∑

e∈ωh

LT
e AeLe,

where Ae is the element stiffness matrix, Le stands for the restriction mapping of the
global vector of unknowns to the local one corresponding to the current quadrilateral
element e. We now introduce the approximation Be of Ae as follows

Ae =









a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44









, Be =









b11 a12 0 a14
a21 b22 a23 0
0 a32 b33 a34
a41 0 a43 b44









, (4.1)

where

b11 = a11 + a13, b22 = a22 + a24, b33 = a33 + a31, b44 = a44 + a42,

that is Ae and Be have equal row sums.

Assembling the locally defined matrices Be we get the global one

B =
∑

e∈ωh

LT
e BeLe, (4.2)
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Figure 1. (a) Node numbering of a rotated bilinear quadrilateral el-
ement e; (b) Connectivity pattern of Be.

Figure 2. Skewed five point stencil

The definition of Be corresponds to the node numbering as shown in Figure 1. Here
the dash lines represent the connectivity pattern of (a) the dense element stiffness
matrix Ae and (b) its locally modified sparse approximation Be. The structure of B
could be interpreted as a skewed five point stencil (see Figure 2) whereas in a very
general setting A and B are spectrally equivalent.

At this point we introduce the preconditioner C for A which is defined as a MIC(0)
factorization of B, that is,

C = CMIC(0)(B).

This needs naturally B to allow for a stable MIC(0) factorization, which in particular
will be discussed in the next section.



Parallel incomplete factorization preconditioning 111

5. Condition number model analysis

The model problem we analyze in this section is set on a uniform square mesh. Then
the element stiffness matrices corresponding to the square element e ∈ ωh in the cases
MP and MV have the form:

AMP
e =

a(e)

3









5 −1 −2 −2
−1 5 −2 −2
−2 −2 5 −1
−2 −2 −1 5









, (5.1)

AMV
e =

a(e)

8









5 1 −3 −3
1 5 −3 −3
−3 −3 5 1
−3 −3 1 5









. (5.2)

We consider now the local eigenvalue problem

AMP
e w = λBMP

e w. (5.3)

Obviously Ker(AMP
e ) = Ker(BMP

e ) = Span{e} where et = (1, 1, 1, 1), and it is
therefore enough to consider a reduced 3 × 3 eigenvalue problem instead of (5.3).
Then the simplification using the substitution

µ = 1− λ
leads to the following characteristic equation for µ

det





1 + 4µ −1 −2µ
−1 1 + 4µ −2µ
−2µ −2µ 1 + 4µ



 = 0. (5.4)

Further computation shows that µ1 = 0 and µ2,3 = −1/2, and therefore

λ1 = 1, λ2,3 = 3/2.

The global condition number estimate directly follows from the local analysis pre-
sented. Namely, we have

vTAMP v =
∑

e∈ωh

vT
e L

T
e A

MPLeve ≤ 3/2
∑

e∈ωh

vT
e L

T
e B

MP
e Leve = 3/2vTBMP v

and, similarly,

vTAMP v ≥ vTBMP v.

The same approach is directly applied to the matrices AMV and BMV where µ1 = 0,
µ2,3 = 1/3, and therefore λ1 = 1, λ2,3 = 2/3.

The result of our local analysis is summarized in the next theorem.

Theorem 2. Let us consider the non-conforming FEM problem (2.2) defined on a
square mesh. Then:
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(i) the sparse approximation B of the stiffness matrix A satisfies the conditions
of Theorem 1 for a stable MIC(0) factorization;

(ii) the matrices B and A are spectrally equivalent where the next relative con-
dition number estimate holds uniformly with respect to any possible jumps of
the diffusion coefficients.

κ
(

B−1A
)

≤ 2 (5.5)

The above result holds for both MP and MV cases.

6. Numerical tests I

The model problem −∆u = f in the unit square is considered, where homogeneous
Dirichlet boundary conditions are assumed at the bottom side. The presented nu-
merical tests illustrate the PCG convergence rate of the studied MIC(0) precondi-
tioners when the size of the discrete problem is varied. A relative stopping criterion
(C−1 rnit , rnit )/(C−1 r0 , r0 ) < ε is used in the PCG algorithm, where ri stands for
the residual at the i-th iteration step, (·, ·) is the standard Euclidean inner product,
and ε = 10−6. A uniform mesh is used, where h = 1/n, and the size of the discrete
problem is N = 2n(n+ 1).

Table 1. PCG iterations: MIC(0) preconditioning in the cases MP
and MV

Meshsize nAA
it nAB

it

n N MP MV MP MV
63 8064 51 48 34 39

127 32512 82 70 50 56
255 130560 133 101 71 81
511 523264 214 144 104 114

1023 2095104 292 208 149 167

The obtained numbers of iterations are reported in Table 1. Here again, MP and MV
stand, respectively for the cases of mid-point and integral mid-value interpolation
operators used to construct the nodal basis of the related non-conforming FEM basis.
We denote here by nAA

it and nAB
it the number of iterations obtained when MIC(0)

factorizations of A and B are used as preconditioners of A.

The following observations are derived from the presented numerical results:

• The number of iterations in all cases is O(
√
n) = O(N1/4).

• The PCG convergence rate is better for the case MV. This is one more advan-
tage of this variant of the rotated bilinear elements (see [12] for more details
about the approximation properties).

• nAB
it < nAA

it . Note, that this is considerably better than what we have as a
prediction from the uniform estimate from Theorem 2.
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• A stable MIC(0) factorization of the matrix AMV for the considered model
problem has been obtained. It is important to note that the related conditions
from Theorem 1 are not satisfied in this case.

7. Parallel preconditioning algorithm

We study in this section the parallel properties of the proposed algorithm. Our
analysis is focused on the PCG solution of the linear algebraic system obtained. The
preconditioner was introduced as C = CMIC(0)(B). Each PCG iteration consists of
one solution of a system with the matrix C, one matrix vector multiplication with
the original matrix A, two inner products, and three linked vector triads of the form
v := αv + u. Therefore the computational complexity of one PCG iteration is given
by

N it
PCG ≈ N (C−1v) +N (Av) + 10N ≈ 34N.

In the general case, the solution of triangular systems with matrices (X − L) and
(X−L)t is typically recursive, see (3.2). This is the reason for considering MIC(0) an
inherently sequential algorithm. We will show now how this disadvantage has been
overcome by the sparse matrix B introduced.

To illustrate the basic idea, we will analyze in a more detailed form the model
problem where Ω = (0, 1)2, the square mesh ωh corresponds to the mesh size h =
1/n. In this case the size of the discrete problem is N = 2n(n + 1). The structures
of the matrices A and B are illustrated in Figure 3, where each of the diagonal
blocks corresponds to one vertical line of the mesh if a column-wise numbering of the
unknowns has been used (see also [11]). The important advantage of the matrix B is
that all of its diagonal blocks are diagonal. In this case, the implementation of the
PCG solution step C−1v is fully parallel within each of these blocks. One can see
at this point how the construction of B has been inspired by the properties of the
conforming linear FEM stiffness matrix corresponding to a skewed triangulation (see
[10] for some more details). Following [13], we will assume that the computations and
communications are not overlapping, and therefore, the parallel execution time is the
sum of the computation and communication times. We will also assume that: a) the
execution of M arithmetic operations on one processor takes time Ta = Mta, where
ta is the average unit time to perform one arithmetic operation on one processor (no
vectorization); and b) the communication time to transfer M data elements from one
processor to another can be approximated by Tcom = `(ts +Mtc), where ts is the
start-up time and tc is the incremental time necessary for each of the M elements to
be sent, and ` is the graph distance between the processors.

Let us consider a distributed memory parallel algorithm where the number of pro-
cessors is p (p > 2), and let n = mp with some natural number m. The computational
domain is split in p equally sized strips. The processor Pk is responsible for the local
computations corresponding to the k-th strip. Then, we get the following expressions
for the communication times related to C−1v and Av

Tcom(C−1v) = 8n(ts + tc),
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BA

Figure 3. Sparsity pattern of the matrices A and B, Ω = (0, 1)2.
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Figure 4. Stripwise data distribution between the processors in par-
allel implementation

Tcom(Av) = 4ts + 2(3n+ 1)tc.

Note that the above communications are completely local. The inner product needs
one broadcasting and one gathering global communication but they do not contribute
to the leading terms of the total parallel time and will not be considered in our
analysis. This setting leads to the following expression for the parallel time per one
PCG iteration

Tp = T it
p ≈ 34

2n(n+ 1)

p
ta + 8nts + 14ntc. (7.1)
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What we conclude from (7.1) is that the parallel algorithm is asymptotically optimal.
At the same time we should emphasize that the real speed-up is strongly dependent
on the relations between ts and tc which means that in the general case good parallel
efficiency could be achieved, if and only if, the size of the problem is large enough.
This is readily seen from the results reported in the next section.

8. Numerical tests II

The parallel implementation of our C code is developed using the MPI (Message
Passing Interface) standard. A set of numerical tests have been performed on a
Beowulf type cluster. It consists of four dual processor Power Macintosh computers
connected with a Bay Stack 350 Switch. Each node has 512 MB RAM and two
processors Power PC G4/450MHz. The same model problem is used to illustrate the
properties of the proposed parallel PCG algorithm and the related code. The results
obtained are given in Table 2 in terms of the speed-up Sp and the efficiency Ep where

Sp =
T1
Tp
, Ep =

Sp

p
,

and where Tp stands for the parallel time to perform the code on p processors. A well

Table 2. Parallel performance of PCG/MIC(0): Sp = T1

Tp
, Ep =

Sp

p

MP MV
n

nit
p cpu Sp Ep

n
nit

p cpu Sp Ep

1 6.02 1 6.82
128 2 3.32 1.81 0.91 128 2 3.70 1.84 0.92
49 4 3.91 1.54 0.39 56 4 4.29 1.59 0.40

8 3.67 1.64 0.21 8 4.18 1.63 0.20
1 35.44 1 40.40

256 2 19.52 1.82 0.91 256 2 22.21 1.82 0.91
71 4 15.83 2.24 0.56 81 4 18.11 2.23 0.56

8 11.96 2.96 0.37 8 13.60 2.97 0.37
1 208.95 1 238.94

512 2 114.47 1.83 0.92 512 2 130.97 1.82 0.91
104 4 75.85 2.75 0.69 119 4 86.89 2.75 0.69

8 49.48 4.22 0.53 8 56.56 4.22 0.53
1 1198.45 1 1335.60

1024 2 654.51 1.83 0.92 1024 2 762.31 1.75 0.88
148 4 382.87 3.13 0.78 167 4 432.61 3.09 0.77

8 227.52 5.27 0.66 8 255.75 5.22 0.65

expressed asymptotic scalability of the algorithm is demonstrated by the test data
presented. The parallel efficiency E8 ≈ 0.65 for n = 1024 can be evaluated as a good
achievement for the problem considered.
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Remark 2. The cluster we have performed the reported numerical tests on has in
fact a heterogeneous architecture, which is not the case for the best performance of a
standard MPI code. For such a case, a combination of Open MP (within each of the
shared memory two-processor node) and MPI could be recommended to improve total
parallel efficiency.

9. Concluding remarks

In this paper we have proposed a new MIC(0) preconditioner for the rotated linear
non-conforming finite element systems for second order elliptic equations. We have
proved that the introduced locally modified approximation of the original stiffness
matrix has a relative condition number that is bounded uniformly with respect to
both the problem size and the possible jumps of the coefficients. The algorithm has
been analyzed in the cases of coefficient and mesh isotropy. Further, the derived
estimates for the parallel time show that a good parallel scalability can be achieved
for large scale problems. The presented numerical results show that the proposed
scalable parallel preconditioner preserves and even improves the robustness and the
computational efficiency of the standard MIC(0) factorization algorithm.

Our further plans include generalizations to 3-D case including modifications al-
lowing for efficient treatment of coefficient and mesh anisotropy.
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