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Abstract. In this paper, some relations are developed for the spherical motion of a rigid
body. Results are formulated in four theorems which describe a few geometrical properties
of spherical motion using the geometrical data of the fixed and moving axode cones. An
example illustrates the application of the formulae derived.
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1. Introduction

The term spherical motion is used when the rigid body moves around a fixed point.
The spherical motion is equivalent to the moving axode cone Cm rolling without
slipping over the fixed axode cone Cf . The instanteneous axis of rotation is the line
of contact between these cones. The common apexes of the axode cones Cm and Cf

is the fix point O [2, 3, 6].

The intersection of the axode cones Cm and Cf with the sphere whose center is
point O and the radius is R are the moving polode cm and the fixed polode cf ,
respectively [2, 3, 6]. The common point of the curves cf and cm is denoted by P ,
and the common tangent unit vector of curves cm and cf at point P is indicated by t.
The angular velocity vector ω = ωe describes the instantaneous motion of the rigid

body considered. Here, e =
−−→
OP/R – see Figure 1.

The contact point P of the curves cm and cf moves along the curve cf in the frame
of the fixed polod cone Cf . This motion has the velocity

uf = up (sf ) t (sf ) sf = sf (τ) , (1.1)

and acceleration

wf =
·

upt+ Γfu
2

pnf . (1.2)
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The contact point P of the curves cm and cf moves along the curve cm in the frame
of the rigid body considered. The moving polode cone Cm is attached to the moving
rigid body. The motion of point P on the curve cm is characterized by its velocity
and acceleration, which are as follows

um = up (sm) t (sm) sm = sm (τ) , (1.3)

wm =
·

upt+ Γmu
2

pnm . (1.4)

Here,

– τ denotes the time;
– sm and sf are arc coordinates defined on the moving and fixed polode cm and

cf , respectively;
– Γm and Γf are the curvatures at point P of curves cm and cf , respectively;
– nm and nf are the principal normal vectors at point P to the curves cm and

cf , respectively;
– over dot denotes derivation with respect to time.

The consequence of pure rolling is that

·

sf =
·

sm = up,
··

sf =
··

sm =
·

up . (1.5)

Starting from the equation

ω = ωe =
ω

R

−−→
OP

and using the definition of angular acceleration [1, 5]

ε =

(

dω

dτ

)

f

,

where the symbol
(

d
dτ

)

f
denotes the time derivative computed in the fixed frame we

get for the body angular acceleration the formula

ε =
·

ωe+
ωup
R

t . (1.6)

The fixed frame is attached to the base (fixed polode cone) and the moving frame is
attached to the moving rigid body (moving polode cone). Point A of the moving rigid
body instantaneously coincides with point P . Using the fundamental relationships of
relative motion in connection with point P we can write

uf = vA + um, (1.7)

wf = aA + 2ω × um +wm. (1.8)

Here, vA is the velocity of point A and aA is the acceleration of point A. uf ,wf ,aA,ω
are taken in the fixed frame and um,wm are regarded in the moving frame in equation
1.8), the vectorial product of two vectors is denoted by cross.
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Figure 1. Moving and fixed axode cones

From pure rolling it follows that vA = 0, um = uf . The latter statement was
mentioned in equation (1.5). The combination of equations (1.2), (1.4), (1.5) with
equation (1.8) gives the result

aA = 2up × ω + u2p(Γfnf − Γmnm), (1.9)

where up = um = uf is the velocity of the instantaneous contact point P .

The common tangential unit vector t of curves cm and cf is attached to point P .
We know that its time derivative in a fixed frame can be expressed as [1, 3]

(

dt

dτ

)

f

=

(

dt

dτ

)

m

+ ω × t, (1.10)

where the symbol
(

d
dτ

)

m
denotes the time derivative computed in the moving frame.

A simple calculation shows that
(

dt

dτ

)

f

=
dt

dsf

·

sf = upΓfnf , (1.11)

(

dt

dτ

)

m

=
dt

dsm

·

sm = upΓmnm. (1.12)

Inserting these results into equation (1.10) we obtain

t× ω = up(Γmnm − Γfnf ). (1.13)
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Using the trivial identity

upt× ω = up × ω = u2p(Γmnm − Γfnf )

and equations (1.9) and (1.13) we get

aA = up × ω . (1.14)

Equation (1.14) is in harmony with the result of example 4.8 of the the book [5] by
Ginsberg.

2. Some useful relations

Theorem 1. The angular velocity of the moving rigid body is determined by the
geometry of the polode curves and the speed of the contact point according to the
equation

ω = up (Γfbf − Γmbm) , (2.1)

where bf and bm are the binormal unit vectors at point P to the curves cf and cm.

Proof. The proof of equation (2.1) follows from the equations

ω · t =
ω

R
R ·

dR

dsf
=
ω

R

d

dsf

(

R2

2

)

= 0,

t× (ω × t) = ωt2 − t(ω · t) = ω,

and the definition of the binormal vector

bf = t× nf , bm = t× nm

and the validity of equation (1.13). Here, the dot between two vectors denotes their
scalar product.

Theorem 2. The angular acceleration of the moving rigid body is determined by
the geometry of the polode curves, the speed of the contact point and the rate of
change of the speed of the contact point according to the equation

ε =
·

up (Γfbf − Γmbm) + u2p

(

dΓf

dsf
bf −

dΓm

dsm
bm − ΓfTfnf + ΓmTmnm

)

+
ωup
R

t.

(2.2)
Here, Tf and Tm are the torsions of curves cf and cm at point P , respectively.

Proof. Starting from the expression of ω given by equation (2.1) we obtain

ε =

(

dω

dτ

)

f

=
·

up (Γfbf − Γmbm)+u
2

p

(

dΓf

dsf
bf + Γf

dbf

dsf
−
dΓm

dsm
bm

)

−upΓm

(

dbm

dτ

)

f

.

(2.3)
Making use of the fundamental equation of relative motion [1, 5]

(

dbm

dτ

)

f

=

(

dbm

dτ

)

m

+ ω × bm, (2.4)

and the equations
(

dbm

dτ

)

m

=

(

dbm

dsm

)

·

sm =
dbm

dsm
up, (2.5)
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dbf

dsf
= −Tfnf ,

dbm

ds
= −Tmnm, (2.6)

upΓmω × bm = −
ω

R
up (2.7)

we get the proof of formula (2.3). The validity of equation (2.7) can be proved as

0 =
d

dsm
(R · t) =

dR

dsm
· t+R ·

dt

dsm
= (2.8)

= 1 +RΓme · nm that is e · nm = −
1

RΓm

and, on the other hand, we have

upΓmω × bm = upΓmωe× (t× nm) = upΓmω [t (e · nm)− nm (e · t)] = (2.9)

= upΓmω (e · nm) .

The combination of equation (2.8) with equation (2.9) yields equation (2.7).

Consider point H of the moving rigid body. Let the position vector of point H be
−−→
OH = R cosΦe+R sinΦ cosψi+R sinΦ sinψt, i = t× e. (2.10)

The path of point H in the fixed reference frame lies on a sphere whose radius is R
and whose center is point O – Figure 1. In (2.10), Φ is the angle between the lines OP
and OH. Let [t;OP ] be the plane whose normal vector is t and which contains the
line OP . The plane [OPH] is determined by points O, P and H. The angle formed
by the planes [t;OP ] and [OPH] was denoted by ψ in equation (2.10).

The following theorems describe the relations of the geometrical properties of the
path of point H with the moving and fixed polodes cm and cf .

Theorem 3. Let cH be the path curve of point H. Assuming that the instantaneous
axis is the line OP , then the following equations hold

tH = −i sinψ + t cosψ, (2.11)

NH = −e+ i

(

cotΦ cosψ −
R

dp

)

+ t

(

cotΦ sinψ −
R

dp
tanψ

)

, (2.12)

BH = −e

(

cotΦ−
R

dp

1

cosψ

)

− i cosψ − t sinψ, (2.13)

(

cosψ

sin2 Φ

dp
R
− cotΦ

)2

+ 1 = (RΓH)
2
, (2.14)

where tH , NH and BH are the tangential, principal and binormal vectors to the
curve cH at point H, respectively. tH is a unit vector, NH and BH are not unit
vectors. Furthermore, dp is defined as

dp =
1

Γf cosαf − Γm cosαm

, (2.15)

cosαf = bf · e, cosαm = bm · e (2.16)

and ΓH denotes the curvature of cH at point H.



124 I. Ecsedi

Proof. The proof of equations (2.11), (2.12), (2.13), (2.14) is based on the definition
of BH , which is

BH = tH ×NH ,

and the following kinematical equations of a particle and a rigid body [1, 5]

tH =
VH

|VH |
=

ω ×
−−→
OH

∣

∣

∣
ω ×

−−→
OH

∣

∣

∣

,

aH = ω ×VH + ε×
−−→
OH,

aH =
aH ·VH

V2

H

VH + ΓHV2

HnH ,

nH =
NH

|NH |
,

and the equation

dp =
up
ω
. (2.17)

The validity of equation (2.17) follows from equation (2.1).

Theorem 4. Let TH be the torsion of curve cH at point H, and let s be an arc
coordinate defined on curve cH . We have

|TH | =

∣

∣

∣

{

d
ds
`n Γ

ΓH

}∣

∣

∣

s=sH
∣

∣

∣

cosΨ

sin2 Φ

dp

R
− cotΦ

∣

∣

∣

(Φ 6= 0, π) . (2.18)

Here, Γ = Γ(s) is the curvature at an arbitrary point of cH and the position of point
H on cH is given by sH .

Proof. Using the concept of the osculating sphere in connection with the spherical
curve cH we can write [4, 7, 8]:

(

1

ΓH

)2

+

(

d

ds

(

1

Γ

)

s=sH

1

TH

)2

= R2. (2.19)

The combination of formula (2.14) with equation (2.19) leads to formula (2.18).

3. Remark on the computation of dp

This section concentrates on the computation of cosαf and cosαm, which appear in
formula (2.15).

Let us consider an arbitrary curve c on the sphere whose radius and center are R

and O, respectively. Let
−−→
OQ = % = %(s) be the equation of curve c, where Q is an

arbitrary point of c and s is an arc coordinate defined on c. A repeated differentiation
of the equation

%2 = R2 = constant (3.1)

with respect to s gives
Γ% · n+ 1 = 0, (3.2)
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where Γ is the curvature of c at point Q and n is the principal normal vector of c at
point P . Equation (3.2) can be obtained from Meusnier’s theorem as well [4, 7, 8].

The application of equation (3.2) to curve cf at point P yields

nf · e = −
1

RΓf

. (3.3)

The angle formed by the vectors e and nf is denoted by βf . It is obvious that the
angle between the vectors e and bf is

αf = βf ±
π

2
. (3.4)

From equations (3.3) and (3.4) we get

cosαf = sgn (bf · i)

√

1−
1

(RΓf )
2
. (3.5)

A similar formula can be derived to obtain the value of cosαm:

cosαm = sgn (bm · i)

√

1−
1

(RΓm)
2
. (3.6)

Here, we remark that the analogue pair of equation (3.6) for the curve cm was
derived in Section 2 (equation (2.8)).

4. Example

Figure 2 illustrates a rigid body’s circular cone OPH. The point O is fixed and the
cone rolls without slipping on the horizontal plane [i;OP ] whose normal vector is i.
The fixed axode cone is the ”plane [i;OP ]” (degenerate cone) and the moving axode
cone is the circular cone OPH. Q is the center point of the base circle of the cone
OPH. This base circle can be considered as a moving polode curve cm. The fixed
polode curve cf is a circle in the plane [i;OP ] whose radius is R = OP and its center
is point O. Our aim is to determine the local geometrical property of the path of
point H at the instant shown in Figure 2.

Using the data given in Figure 2 we can write

nf = −e, bf = −i, Γf =
1

R
,

nm = i cosϑ− e sinϑ,

bm = −i sinϑ− e cosϑ,

Γm =
1

R sinϑ
, Φ = 2ϑ, ψ = 0.

bf · e = 0, bm · e = − cosϑ,

dp = R tanϑ.
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Figure 2. Rolling circular cone

The application of Theorem 3 to this problem gives

tH = t, nH = −
1

√

(cot 2ϑ)
2
+ 1

(

e+
i

sin 2ϑ

)

,

bH =
1

√

(cot 2ϑ)
2
+ 1

( e

sin 2ϑ
− i
)

,

ΓH =
1

R

[

(

λ4 + 4λ2 − 1

4λ

)2

+ 1

]

, λ = tanϑ.

The path of point H is a spherical cycloid and the motion analyzed can be considered
a spherical cycloidal motion [2].
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5. Conclusion

Some relations are derived for the spherical motion of a rigid body. The geometrical
properties of spherical motion are expressed in the geometrical data of the fixed and
moving axode cones. The approach applied does not use the tools of instantaneous
spherical kinematics [2, 3]. The method presented is based on a vectorial approach
that one can meet in [1, 5].

Curvature type relations such as (2.1), (2.14) can be considered as a form of Euler-
Savary equation for spherical motion. Different forms of the Euler-Savary equation
using the terminology and the concept of instantaneous invariants introduced by Bot-
tema are given in [2, 3] for spherical and plane motions.

One example shows how we can use the derived formulas to determine the tangent,
principal normal and binormal vectors together with the curvature at a point of path
curve in the case of spherical motion.
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