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Abstract. In this paper, some relations are developed for the spherical motion of a rigid
body. Results are formulated in four theorems which describe a few geometrical properties
of spherical motion using the geometrical data of the fixed and moving axode cones. An
example illustrates the application of the formulae derived.
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1. Introduction

The term spherical motion is used when the rigid body moves around a fixed point.
The spherical motion is equivalent to the moving axode cone C), rolling without
slipping over the fixed axode cone C'y. The instanteneous axis of rotation is the line
of contact between these cones. The common apexes of the axode cones C, and Cf
is the fix point O [2, 3, 6].

The intersection of the axode cones C,, and C; with the sphere whose center is
point O and the radius is R are the moving polode ¢, and the fixed polode cy,
respectively (2, 3, 6]. The common point of the curves ¢; and ¢, is denoted by P,
and the common tangent unit vector of curves c,,, and ¢y at point P is indicated by t.
The angular velocity vector w = we describes the instantaneous motion of the rigid
body considered. Here, e = (ﬁ)/R — see Figure 1.

The contact point P of the curves ¢, and cy moves along the curve ¢y in the frame
of the fixed polod cone Cy. This motion has the velocity

uf:up(sf)t(sf) sf =8¢ (7‘)7 (1.1)
and acceleration

W :ﬁthrFfuinf. (12)
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The contact point P of the curves c,, and c; moves along the curve c,, in the frame
of the rigid body considered. The moving polode cone C,, is attached to the moving
rigid body. The motion of point P on the curve ¢, is characterized by its velocity
and acceleration, which are as follows

Uy, = Up (Sm) t (Sm) Sm = 8m (T), (1.3)
Wi = Upt + quinm . (1.4)
Here,

— 7 denotes the time;

— Sm, and sy are arc coordinates defined on the moving and fixed polode c,, and
cy, respectively;

— I'y, and I'y are the curvatures at point P of curves ¢, and cy, respectively;

—~ n,, and ny are the principal normal vectors at point P to the curves c,, and
¢y, respectively;

— over dot denotes derivation with respect to time.

The consequence of pure rolling is that
éf:.ém:up, éfzngitp. (1.5)
Starting from the equation
“op
w=we=—
R

and using the definition of angular acceleration [1, 5]

= (%)
dr f7

where the symbol (%) f denotes the time derivative computed in the fixed frame we
get for the body angular acceleration the formula
: wu
€ =we+ —Lt. 1.6
. (16)
The fixed frame is attached to the base (fixed polode cone) and the moving frame is
attached to the moving rigid body (moving polode cone). Point A of the moving rigid
body instantaneously coincides with point P. Using the fundamental relationships of
relative motion in connection with point P we can write

Uy =va+ Uy, (1.7)

Wi =as + 2w X Uy, + Wpy,. (1.8)

Here, v 4 is the velocity of point A and a4 is the acceleration of point A. uy, w¢,a4,w
are taken in the fixed frame and u,,, w,, are regarded in the moving frame in equation
1.8), the vectorial product of two vectors is denoted by cross.
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Figure 1. Moving and fixed axode cones

From pure rolling it follows that v4 = 0, u,, = uy. The latter statement was
mentioned in equation (1.5). The combination of equations (1.2), (1.4), (1.5) with
equation (1.8) gives the result

ay =2u, ><w+u§(I‘fnf—anm), (1.9)
where u, = u,, = uy is the velocity of the instantaneous contact point P.

The common tangential unit vector t of curves c,, and cy is attached to point P.
We know that its time derivative in a fixed frame can be expressed as [1, 3]

(dt) :<‘“> fwxt, (1.10)
dr f ar ).

where the symbol (d%)m denotes the time derivative computed in the moving frame.
A simple calculation shows that

dt dt .
—) = —"s;=u,l 1.11
<d7>f ds; o = wlhimy, (1.11)
dt dt .

Inserting these results into equation (1.10) we obtain

t xw=u,('mn, —Tny). (1.13)
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Using the trivial identity
upt X w =1, X w = u>(Dpny, — Tyny)
and equations (1.9) and (1.13) we get
A =up Xw. (1.14)

Equation (1.14) is in harmony with the result of example 4.8 of the the book [5] by
Ginsberg,.

2. Some useful relations

Theorem 1. The angular velocity of the moving rigid body is determined by the
geometry of the polode curves and the speed of the contact point according to the
equation

w=up (I'yby = Tmbp), (2.1)
where b; and b, are the binormal unit vectors at point P to the curves ¢y and c,,.

Proof. The proof of equation (2.1) follows from the equations
w dR  w d [R?
o= R =S, (7)o
tx (wxt)=wt? —t(w-t) =w,
and the definition of the binormal vector
by =t x ny, b, =t x n,,

and the validity of equation (1.13). Here, the dot between two vectors denotes their
scalar product.

Theorem 2. The angular acceleration of the moving rigid body is determined by
the geometry of the polode curves, the speed of the contact point and the rate of
change of the speed of the contact point according to the equation

dl'y,

. dr

by — T Ty + Fmenm> + w—;pt.

(2.2)
Here, Ty and T;, are the torsions of curves cy and c,, at point P, respectively.

Proof. Starting from the expression of w given by equation (2.1) we obtain
dw : dar db dar db
= () =4, (Tsbr —T, b))+ [ SLb, + T, — ™y ), T, [ o)
© <d7>f tp (Lsby H“P(dsf F sy T o e\ Car ),
(2.3)

Making use of the fundamental equation of relative motion [1, 5]

db,, db,,
m) = 22 2.4
(dT )f (dT )m+WXbm’ ( )

db,, db,,\ . db,,
( dr >m B (d8m> T sy P (25)

and the equations
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db by,
— = _Tyny, = Ty, 2.6
dss oy s n (2.6)
w
Upl'mw X by, = — R (2.7)
we get the proof of formula (2.3). The validity of equation (2.7) can be proved as
d dR dt
0=——MR-t)=— t+R- — = 2.8
dsm, ( ) dsm, + dsm, (2:8)
1
— 14 RT,e-n,  thati =
+ RI')e - ny, at is e-n AL,
and, on the other hand, we have
Uplw X by, = upl'we X (t X ny,) = uplpwit(e-n,) —n,(e-t)) = (2.9)

=u,lw(e -ny,).
The combination of equation (2.8) with equation (2.9) yields equation (2.7).
Consider point H of the moving rigid body. Let the position vector of point H be

OH = Rcos e + Rsin® cosi + Rsin®sinept, i=t xe. (2.10)

The path of point H in the fixed reference frame lies on a sphere whose radius is R
and whose center is point O — Figure 1. In (2.10), ® is the angle between the lines OP
and OH. Let [t; OP] be the plane whose normal vector is t and which contains the
line OP. The plane [OPH] is determined by points O, P and H. The angle formed
by the planes [t; OP] and [OPH] was denoted by ¢ in equation (2.10).

The following theorems describe the relations of the geometrical properties of the
path of point H with the moving and fixed polodes c,, and c;.

Theorem 3. Let cy be the path curve of point H. Assuming that the instantaneous
axis is the line OP, then the following equations hold

tyg = —isinty + tcos, (2.11)
. R , R
Ny =-e+i|cotPcost) — — | +t | cotPsiny — —tanv |, (2.12)
dp dp
By =-e cotfbfﬁ L —icosty —tsiny (2.13)
A= d, cos e '
cos ) dp, 2 9
— —cot® 1= (Rl 2.14
(S -eote) +1=(rra). (219

where ty, Ny and By are the tangential, principal and binormal vectors to the
curve cy at point H, respectively. tgy is a unit vector, Ny and By are not unit
vectors. Furthermore, d, is defined as

1

- Tycosay — Ty cosany,’

dy (2.15)

cosay =by-e, COS Ay, = by - € (2.16)

and 'y denotes the curvature of ¢y at point H.



124 1. Ecsedi

Proof. The proof of equations (2.11), (2.12), (2.13), (2.14) is based on the definition
of By, which is

BH = tH X NH7

and the following kinematical equations of a particle and a rigid body [1, 5]
N VH B w X O‘FI
V| ‘w X ﬁ[

ty

)

—
ag =wXxVg+exOH,

ag = wVH + Iy Vingy,
Vi
ng = |NiH|’
and the equation
d, = % (2.17)

The validity of equation (2.17) follows from equation (2.1).

Theorem 4. Let Ty be the torsion of curve cy at point H, and let s be an arc
coordinate defined on curve cg. We have

Ty = s=sn (£ 0,7). (2.18)

Here, T' = T'(s) is the curvature at an arbitrary point of ¢z and the position of point
H on cy is given by sy.

Proof. Using the concept of the osculating sphere in connection with the spherical
curve cy we can write [4, 7, 8]:

2
1\* [(d[1 1
_ Z (= — | =R~ 2.19
) (&0 7) a9
The combination of formula (2.14) with equation (2.19) leads to formula (2.18).

3. Remark on the computation of d,

This section concentrates on the computation of cosay and cos o, which appear in
formula (2.15).

Let us consider an arbitrary curve ¢ on the sphere whose radius and center are R
and O, respectively. Let O—Q) = o0 = o(s) be the equation of curve ¢, where @ is an
arbitrary point of ¢ and s is an arc coordinate defined on c¢. A repeated differentiation
of the equation

0? = R? = constant (3.1)
with respect to s gives
Fo-n+1=0, (3.2)
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where I is the curvature of ¢ at point ) and n is the principal normal vector of ¢ at
point P. Equation (3.2) can be obtained from Meusnier’s theorem as well [4, 7, 8].

The application of equation (3.2) to curve c; at point P yields
ny-e=——-—. (3.3)

The angle formed by the vectors e and ny is denoted by B¢. It is obvious that the
angle between the vectors e and by is

af:ﬂfig. (3.4)
From equations (3.3) and (3.4) we get
cosay =sgn (by - i) 1—%. (3.5)
(RTy)
A similar formula can be derived to obtain the value of cos ayy,:
coS ayy, = sgn (b, -1) , /1 — ;2 (3.6)
(RTm)

Here, we remark that the analogue pair of equation (3.6) for the curve ¢,, was
derived in Section 2 (equation (2.8)).

4. Example

Figure 2 illustrates a rigid body’s circular cone OPH. The point O is fixed and the
cone rolls without slipping on the horizontal plane [i; OP] whose normal vector is i.
The fixed axode cone is the ”plane [i; OP]” (degenerate cone) and the moving axode
cone is the circular cone OPH. (@ is the center point of the base circle of the cone
OPH. This base circle can be considered as a moving polode curve ¢,,. The fixed
polode curve c; is a circle in the plane [i; OP] whose radius is R = OP and its center
is point O. Our aim is to determine the local geometrical property of the path of
point H at the instant shown in Figure 2.

Using the data given in Figure 2 we can write

1
nf:—e, bfz—i, Pf:ﬁ’
n,, =icost — esind,

b,, = —isinvd — ecos 1,
1
Fm:—7¢:2'[9, :0.
Rsind v

by-e=0, by, -e= —cos?,
d, = Rtan?.
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OP=OH=R
¢ 0=2v

y=0

Figure 2. Rolling circular cone

The application of Theorem & to this problem gives

1 i
tg=t, ng=— <e+‘. )»
(cot219)2+1 sin 29
1 e
by = (S 1)
" sin 29 !

(cot 20)* + 1

1 <>\4+4)\21)2
— ) +1

FH:E

By , A=tand.

The path of point H is a spherical cycloid and the motion analyzed can be considered
a spherical cycloidal motion [2].
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5. Conclusion

Some relations are derived for the spherical motion of a rigid body. The geometrical
properties of spherical motion are expressed in the geometrical data of the fixed and
moving axode cones. The approach applied does not use the tools of instantaneous
spherical kinematics [2, 3]. The method presented is based on a vectorial approach
that one can meet in [1, 5].

Curvature type relations such as (2.1), (2.14) can be considered as a form of Euler-
Savary equation for spherical motion. Different forms of the Euler-Savary equation
using the terminology and the concept of instantaneous invariants introduced by Bot-
tema are given in [2, 3] for spherical and plane motions.

One example shows how we can use the derived formulas to determine the tangent,
principal normal and binormal vectors together with the curvature at a point of path
curve in the case of spherical motion.
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