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Abstract. The autofrettage of thick-walled cylinders with variable thickness is considered on
the basis of a variational formulation of the corresponding elastic-plastic contact problem.
The numerical solution is determined by the use of the finite element method. We have
chosen a material model which takes kinematic hardening and the ideal Baushinger effect
into account. The optimum geometric parameters for the bandage and the initial gap are
both determined in a way that a favorable distribution of residual stresses will develop and
the bandage is removed after unloading.
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1. Introduction

Thick-walled cylinders subjected to high impulsive pressure are wide-spread as ele-
ments of many important constructions. When the magnitude of pressure is com-
mensurable with the yield point of the material, a raise of strength can be reached
by the special methods of the autofrettage. In an outcome of the intended plastic
deformations caused by the interior pressure acting in the cylinders a favourable field
of residual stresses is developed.

In works [1-3] the process of forming residual stresses is investigated for a broad
class of materials with various types of deformation diagrams.

The magnitude of residual stresses depends on what sizes the areas of plastic de-
formations have and on the differences in character between the stress distributions
in plastic and elastic conditions.

The possibilities for the autofrettage are frequently limited by the strength of the
cylinders during plastic loading. Such a restriction is especially essential for cylinders
with various wall thicknesses because the creation of irregular technological pressure
for the autofrettage entails significant engineering difficulties.

It is expedient to apply technological bandages for restriction of strains of cylinders
in areas with a smaller thickness of walls for raising the effectiveness of autofrettage
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Figure 1. Finite element model of a composite construction

in cylinders of a variable thickness. The scheme of such an autofrettage with uniform
pressure and one restraining bandage is shown in Figure 1.

2. Description of investigation of autofrettage

The theoretical analysis of a process of autofrettage is reduced to the solution of an
elastic-plastic problem which includes loading and unloading by taking the contact
interaction of the cylinder and technological bandage into consideration.

Let’s consider such a problem for two bodies of revolution assuming axisymmetric
deformations. During loading and unloading the stress increments doi1,...,do1s of
the deformed solid bodies should satisfy the equilibrium equations
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The surface S of each body can be presented as a union of two surfaces: S = SpUSk,
where Sg is the surface on which the increments of the exterior forces are given, and
Sk is the contact region between the cylinder and the bandage.

The exterior surface of the cylinder is given by the parametrical equations x; =
z1(a), 3 = z3(a), where a is the length of the meridian curve in initial condition.

The interior surface of the bandage, where contact is possible, is given by the
equation f(x1,x3) = 0. The kinematic condition on the displacement increments
dUc and dUp in the cylinder and bandage due to the interaction assumes the form
of an inequality:

f(z1,23) +grad f - (Uo 4+ dUc) —grad f - (Ug +dUg) < 0. (2.2)

Condition (2.2) is equality in the contact zone.
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The strain increments deqq,...,de13 are related to the displacements uq,uz via
linear equations:
dey = 0 (duy), degg = ! (duq) (2.3a)
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The deformation trajectories in the autofrettage processes have a complicated charac-
ter. During unloading secondary plastic deformations may emerge with an opposite
sign. Under the conditions of contact interaction the loading process will not be
simple even for a monotone increase of the exterior load.

For an adequate description of the plastic deformations it is necessary to use phys-
ical relations reflecting the Baushinger effect and the directed character of hardening.
As the physical relations satisfying the conditions mentioned for one cycle of loading
and unloading we have selected the theory of plasticity with anisotropic hardening
[4,5]. The increment of plastic deformations de}; is determined by the law

Jp
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in which dX is a parameter to be determined,
3
=5 (S5 = pij) - (Sij = pi) =0y =0 (2.5)

is the surface of plasticity, S;; = 0;; — d;j00 denotes the stress deviator (oq is the first
scalar invariant of the stress tensor), o, is the yield stress in the initial state. The
character of directed hardening is determined by the deviator p;; obtained from the
accumulated plastic deformations:

by = [ O, (2.6)

The integral is calculated on the loading path. If C' is constant the hardening is linear.
The multilinear law of hardening corresponds to a discrete combination of the values
Cy (eP), where Cy has a constant value for every separate section of approximation
for the deformation diagram.

The position of a surface of plasticity is determined by the history of plastic defor-
mations, but the hardening is transmitted which corresponds to the ideal Baushinger
effect.

The increment of plastic deformations can be given in terms of the stress increments

(Smn - pmn) ° do_mn
ij = (Sij - Pij) .
3-C - (Skr— prt) - (Skt — pri1)
If the conditions for active loading are not satisfied, the increment of plastic deforma-
tions is equal to zero.

(2.7)

For each stage of the autofrettage process determination of the displacement, stress
and strain increments requires the integration of a boundary value problem defined by
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the field equations (2.1), (2.3) and (2.7), which should be associated with appropriate
boundary conditions and the kinematic restriction for the contact interaction (2.2).

The problem is a nonlinear one since during the solution it is necessary to determine
the boundaries of the contact area and the character of loading for both cylinders.

For a numerical solution by the finite element method the problem is reduced
to an extremum problem for a functional defined on the kinematically admissible
displacement increments which should also satisfy inequality (2.2):

1
min J (dU¢, dUp) = 3 /// doijde;; AV — // dUc dpdS. (2.8)
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In this functional de;; is determined by the kinematic relations (2.3) and do;; is
obtained from the inverse of relation (2.7). Equivalence of the extremum problem
(2.8) to the contact problem follows from the theory of variational inequalities [6, 7].

3. Results

The numerical solution is determined by the finite element method for an axisym-
metric autofrettage of the cylinder. The bandage has a cylindrical form. The initial
geometric parameters of the construction have the following values (see Figure 1):

— the interior radius of cylinder R1= 0.06 m;

— the exterior small radius of cylinder Ry = 0.092 m;

— the exterior large radius of cylinder R3 = 0.138 m;

— the interior radius of bandage Rp; = 0.093 m;

— the exterior radius of bandage Ry = 0.16 m;

— the length of cylinder L = 0.525 m; the length of bandage L; = 0.247m,;

— the initial gap between the surfaces of the cylinder and bandage = 0.001 m.

— the residual gap between the surfaces of the cylinder and bandage 5=0.052
mm.

The finite element model of the composite construction is made of axisymmetric
solid elements with four nodal points which have two degrees of freedom (U1, Uys).
The coordinate x3 corresponds to the rotational axis, and the coordinate x; is mea-
sured in the radial direction. The second order shape functions are used. For mod-
elling the contact interaction between the surfaces of the cylinder and bandage, which
in the initial non-loaded condition are separated by a gap J, the axisymmetric three-
nodal contact elements of the type ”"a knot to a surface” were used. The contact
surface is modelled with the help of the pseudo-element technology. This surface can
interact during the elasto-plastic loading and unloading. In Figure 1 the finite element
model is shown. This includes 2058 axisymmetric elements (1538 for the cylinder and
480 for bandage), and also 38 contact elements between surfaces of the cylinder and
the bandage.

The technological autofrettage process is produced by the interior hydraulic pres-
sure exerted on the inner surface of the cylinder.
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For carrying out the computations we have chosen the following data for the mate-
rials of the cylinder and bandage: modulus of elasticity E = 0.21- 105 MPa; Poisson’s
constant v = 0, 29; yield stress o, = 1200 MPa; the strength o = 1500 MPa. The de-
formation diagram o (¢) is assumed to be multilinear. The four sections of the diagram
are given by point: o} = 1200, 1400, 1500, 1900 MPa; £, = 0,0057,0, 02,0, 05, 0, 43.

The step by step loading of the cylindrical pipe by pressure autofrettage was applied
in an interactive procedure with adjusting the loading steps automatically to solve the
physically and structurally non-linear problem. In addition, we have assumed that
the load follows a linear law in each step. Such a solution procedure for non-linear
problems ensures fast convergence of the Newton-Raphson method (from 3 up to 10
iterations) and makes it possible to reflect the history of loading.
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Figure 2. Distribution of radial stresses.

When one considers the contact autofrettage of the cylinders with the use of aux-
iliary bandages, one of the principal problems is to find the most appropriate values
for the initial gap and the geometric parameters of the bandage. If the value of the
initial gap meets the condition é > 0.002 m and the cylinder has a smaller thickness
(h = 0.032 m) dangerous residual plastic deformations — up to 10% — can develop.
In this case the bandage does not keep the strains under a reasonable limit. If the
initial gap is too small (6 < 0.0007 m), the residual plastic deformations in the cylin-
der prevent the full unloading in the bandage, therefore a residual pressure develops
between the bandage and cylinder. Then the bandage cannot be removed from the
cylinder. Moreover, the magnitude of the initial gap should ensure the release of the
surfaces of the cylinder and bandage after unloading taking the residual gap 8 into
consideration. Increasing the exterior radius of the bandage up to Ry = 0.192 m,
it is possible to significantly redistribute the stresses acting on the contact surfaces
and to achieve a more uniform distribution of the residual radial displacements on
the same surfaces after unloading. However, numerical experiments have shown that
a big increase in the bandage thickness h > 0.1 m is ineffective. A repeated variation



56 G. Lvov and S. Lysenko

of the geometric parameters resulted in the values: § = 0.001 m, Ry; = 0.093 m,
Rpz = 0.16 m, which seem to be the best for an appropriate autofrettage.

The computational results we are going to present have all been obtained by the
use of the above mentioned best parameters.

In the interactive regime of the computations of an autofrettage, seven loading con-
ditions of the construction from the initial pressure D = 500 MPa up to a maximum
value D = 950 Mpa are fixed.
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Figure 3. Distribution of equivalent stresses under of $P=950% MPa

F NilTa
1212

10EE J

BE3
637 xZ
dli

17

I.min

1] T 34 Q6 108 L0 1=2

Figure 4. Distribution of stresses in the 1st cross-section
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Figure 5. Distribution of stresses in the 2nd cross-section
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Figure 6. Distribution of residual stresses in the 1st cross-section for P =0
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Under the initial load the zones of plastic deformation in the second part of the
cylinder are small and the surfaces of the cylinder and bandage do not contact yet.
Contact zones appear if the load reaches the value P = 650 MPa.

For P= 700 MPa, Figure 2 shows the zone of contact interaction. The final dis-
tribution of the Mises equivalent stresses when the construction is subjected to the
maximum load P= 950 MPa is represented in Figure 3. It is seen from those level
lines of stresses which reached the yield stress of the material o, = 1200 MPa that
the second part of the cylinder is in a plastic condition, while in the first one it is less
than 600 MPa. As the character of the stress distributions in the two parts they are
significantly different and for this reason it is expedient to investigate the regularities
of the stress distributions along the thickness in the cross-sections: 1) z3 = 0.15 m;
2) 3 =0.4 m.

Figure 4 shows the distributions of the equivalent o.4,, circular ox2 and radial
ox1 stresses due to the maximum load P = 950 MPa for the first cross-section. The
same stresses are given in the second cross-section, which passes through the cylinder
and the bandage (Figure 5). If the circular stresses are discontinuous on the common
boundary of the bodies, the radial stresses are continuous.
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Figure 7. Distribution of the residual stresses in the 2nd cross-section for P = 0

In the last step the load was completely removed. Figure 6 shows the distribution of
the residual stresses in the first cross-section. The circular stress reaches its maximum
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|ox2| = 824.5 MPa on the interior surface of the cylinder. As regards the second cross-
section (Figure 7), the stress distributions essentially differ and the circular stress on
the interior surface has a sizeable magnitude o xo = - 642 MPa. The distribution of the
equivalent residual stresses is shown for the whole structure in Figure 8. The bandage
is completely unloaded and the residual radial displacements on the exterior contact
surface of the pipe in the second cross-section are less than the initial gap: Ux; =
0.938 mm. Then the actual gap after unloading is 6 = 0.062 mm, which exceeds the
supposed value 3, therefore the bandage can be removed from the cylinder.
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Figure 8. Distribution of equivalent residual stresses

4. Conclusions

The results of the study allow us to project of autofrettage processes for real ele-
ments of constructions which have a complex shape. On the basis of these results the
parameters can be calculated for loading and technology tools which do not admit
of failure of construction. The procedure we have presented allows us to determine
rational parameters for the contact autofrettage under which highly uniform fields of
residual stresses on the interior surface of the cylinder are achieved.
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