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Abstract. The size effects in reliability problems of porous materials and structures are
considered in this study. The proposed analysis relies on a modified Weibull distribution with
mean strength-volume relations obtained from experiments. The procedure is then applied
to finite plates with circular holes of increasing diameters. Because of the nonlinearity of the
stressed volume in the vicinity of the holes, the volume dependence of the strength becomes
pronounced. The probability of survival of such plates is calculated and indicates a strong
dependence on the stressed volume of the plate.
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1. Introduction

It is common knowledge that engineering materials are prone to size effects. Care-
fully prepared laboratory size specimens are usually stronger than full size structural
components. This occurrence is especially true for brittle and porous materials such
as ceramics and concrete. In previous studies, this phenomenon was treated on the
basis of the Weakest Link Theory and the Weibull distribution [1-2]. According to
the analysis, a component is assumed to be composed of a large number of elements
(characteristic volume) of random strength that are connected in a series combina-
tion. The random variation of the element strength is mainly characterized by the
number and geometry of initial flaws contained in the element. The failure of the
component is assumed to occur when any one of the elements fails. The reliability
of the component decreases, therefore, as the number of the elements (material vol-
ume) increases. Consequently, the reliability approaches unity as the volume of the
material is reduced to zero and approaches zero as the volume increases. While this
type of analysis gives reasonable results for intermediate size elements, it predicts an
unlimited increase in strength as the volume approaches zero [3-8].
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Recent researches have been focused on the development of mathematical models
to predict size effects in materials [9-14]. Both micro- and macro-mechanical models
have been proposed to relate material and geometrical parameters to size effects.
However, no unified relation applicable to a large class of materials has yet been
established. Instead, many empirical models have been used to extrapolate size effects
in laboratory specimens to size effects in practical components.

A hyperbolic function has been used to define the size effect phenomenon [9-11] in
ceramics and cementitious materials. Such a relationship assumes that the smallest
volume is strongest while for large volumes the strength diminishes to zero. Ob-
servations on porous materials, however, indicate that strength does not increase
monotonically for small volumes. As the volume approaches the size of the pores, its
strength becomes weaker. A maximum strength, on the other hand, is observed for
intermediate sizes, diminishing again to a nonzero value for structural components.
As a result, a hyperbolic function for size effect, where strength is monotonically
increasing with decreasing volume, is no longer applicable. To account for such ob-
servations, a modified size effect function is introduced and is used in the reliability
analysis of porous structures.

2. Size Effect Function

The mean strength of a given volume v, 7(v), is expressed in terms of the characteristic
mean strength, 7., and the size effect function £(p) as

7(v) = 7&(p) (2.1)
where p = v/v, is the volume ratio with v, the characteristic volume of the material.
Size effect is modelled as a combination of a classical hyperbolic relationship [11] and
a Rayleigh type function

aj

£(p) = aoo + NiEe + azexp[—fs (Inp — 72)?] (2.2)

with s the minimum value asymptotically approached for larger volumes, o1 and (4
the parameters for the classical hyperbolic size effect function, and as, 52, and 5 the
parameters for the Rayleigh type size effect function. These parameters characterize
the size effects of materials such that

lirr%)g (p) = oo+ a1 = o (micro mean strength) (2.3)
p— Te
lim £ (p) = o = Lo (macro mean strength) (2.4)
p—00 Tc
a

2
lim = Qo + ——+ 0426762% =1 characteristic strength 2.5
i € () = e+ —Ees ( gh)  (25)
where 7, 7o, and 7. are the micro-, macro-, and characteristic mean strengths of
materials, respectively.

For the purposes of illustration, the following coefficients a,, = 0.3587, ay =
0.5380, as = 0.2690, 81 = 0.2, B2 = 0.3, 72 = 2 are used. Figure 1 shows the
variations of the size effect function £ (p) and of the hyperbolic function.
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Figure 1. Size effect £ (p) as a function of volume ratio p = v/v..

The parameters in the above equations are obtained from experiments on specimens
of various sizes where mean strength and dispersion (standard deviation) are mea-
sured. To analyze the reliability of a component with a given size, its mean strength
is obtained from (2.2) and is then used in a two parameter Weibull distribution given
as

=2 (5 e[ (3)] o

where the parameters  and A are obtained as

g Ulalrba)-e e

A(p) = =50 (2.8)

F[l+%]

where 0 is the coefficient of variation and T'[.] is the gamma function.

The corresponding reliability function for a given level of induced stress, o, is
obtained as

L(o,p) = exp [~ (f)"} (2.9)

As an illustration, a set of density functions, fr(r,p) is presented in Figure 2 for a
characteristic mean strength, 7. = 30 MPa, a coefficient of variation, § = 0.2 and
various volume ratios, p = v/v.. Figure 3 is a three dimensional plot of the density
function fg (r, p). Reliability functions are plotted in Figure 4.
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Figure 2. Probability densities fg (r, p) as functions of strength, r, for various
volume ratios, p.

Figure 3. Variations of probability densities fr (r, p) as functions of strength, =, and
volume ratio, p.
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Figure 4. Reliabilities, L (o, p), as functions of applied stress, o, for various volume
ratios, p.

It is seen that the reliability of a component is volume dependent, first increasing
and then decreasing with increasing volume. The reliabilities for a uniform plate
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subjected to far-field applied uniform stress o along the zo-direction (Figure 5 as
a — 0), are plotted in Figure 6 as functions of plate volume ratios p for various values
of applied stress.
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Figure 6. Reliabilities as functions of plate volume ratio, p, for various levels of
applied stress og.

3. Analysis of Plates with Circular Holes

Plates of unit thickness with various hole sizes, as shown in Figure 5, are analyzed.
As the hole diameter is varied, the stressed volume of material in the vicinity of the
hole also changes.

Stresses in terms of the stress functions, ® (r,6), in polar coordinates (r,6) are
given by

100 1 0%0
o () = o e (3.1)
0?®
oge (r,0) = o2’ (3.2)
d (109
Oro (’I“, 9) = —E <;%) . (33)

The general solution for the stress function

O (r,0) = g+ pre’’ + Y dne™” (3.4)
n=1



98 S. Thangjitham and R. A. Heller

where
bo(r) = ag + boInr + cor® + dor* Inr, (3.5)
61 (r) = arr +byr ' 4 ey +dyrlnr, (3.6)
G (1) = @nr ™™ + byr* " ™ + dr? (3.7)
with integration constants a,, b,, ¢,, and d,; n = 0,1,2,..., to be evaluated by

applying the proper boundary conditions.

For an infinite plate subjected to far-field uniaxial stress, oy, in the zo-direction,
equations (3.1)-(3.3) are reduced to

2 2 4
O (1,0) = %00 [(1 - i—2> - (1 - 42—2 + 3‘;—4> cos 29] : (3.8)

(0 = Loo [ (14 Z) + (1535 ) cos26 (3.9)
0gg \T, - 20—0 r2 4 ) .
1 a® a*\ |
org (r,0) = 590 (1 + 27"_2 - 3r_4> sin 26 . (3.10)
The stress functions ¢,; n = 0,1,2,..., for a semi-infinite plate (Figure 5), also

loaded with far-field uniaxial stress o, in the zs-direction, satisfying the traction-free
boundary conditions at the hole surface of radius a, are given as

2
$o(r) = ao + bo (1117“ - T‘LQ) ) (3.11)
a* +rt
¢1(r) = arr + by ( . ) , (3.12)
n () = an (17— (n+1)a 2" 4 na 2t pn+2) 4
n (1) ( (n+1) ) (313)

bn (r*™" — (n+1) a=2=Npn 4 pg=npnt2)

It is noted that only two integration constants (a,, and b,) remain to be determined
by the traction-free boundary conditions on the free edges at z; = +b and the far-field
stress boundary conditions at zo — oo.

Because of symmetry of loading and plate geometry, the stress function is reduced
to

P (7‘, 9) = ¢0 + Z ¢n (T) einé . (3.14)

n=2,4,6,...

Depending on the level of accuracy required, the stress function is truncated to a
finite number of N functions, ¢,; n = 0,1,2,..., N. This leads to a total number
of 2N + 1 constants (ag is not required in the stress expressions) that need to be
evaluated. To accomplish this, the method of least squared boundary collocation is
used.
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The rectangular stress components, 011, 022, and o1 are obtained as

Orr + Og0 Orr — 009

011 (r,0) = 5 5 cos 20 — 7,9 sin 20, (3.15)
099 (1,0) = Jrr _; 900 _ Trr ; 790 0520 + 00 Sin 20 (3.16)
o192 (r,0) = m sin 20 + 0,9 cos 26 . (3.17)

The average normal stress in the net area (b — a) is calculated as

1 b
Oavg = b_/ Orr(r,0)dr . (3.18)

—a

4. Probability Analysis of Plates with Holes

The stresses in semi-infinite plates with various widths (2b) and hole sizes (2a) have
been calculated using (3.11)-(3.17). The average stress has also been obtained from
(3.18). In order to examine the volume effects created by the presence of holes,
average stresses were calculated for applied stresses og of 20 MPa and 25 MPa and
their reliabilities were computed from (2.9).

The results are plotted in Figs. 7 and 8 as functions of the plate volume ratio p for
several plate width to hole size ratios, b/a. The effective plate volume, v, per unit
length along the xo-direction, corresponding to a finite hole size is greater than the
actual plate volume per unit length along the x,-direction of the plate. This effective
volume is given as

Ve = KU (4.1)
where the non-dimensional factor x is computed using the average stress
(o .
K= —5 (4.2)
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Figure 7. Reliabilities as functions of plate volume ratio, p, for various hole size
ratios, b/a, subjected to applied stress g = 20 MPa
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Figure 8. Reliabilities as functions of plate volume ratio, p, for various hole size
ratios, b/a, subjected to applied stress g = 25 MPa

Table 1 presents the conventional stress concentration factor, k = opmax/00 and the
effective volume ratio .

Table 1. Stress concentration factor, k, and effective volume factor, x, for
various plate width to hole diameter ratios, b/a
b/a
2 3 4 5 6
k 4.141 3.444 3.224 3.133 3.082
K 1.999 1.501 1.339 1.256 1.204

Because this effective volume, v, is greater than the actual volume, v, the size
effect (larger size is weaker) is apparent. As the hole size ratio, b/a, increases, the
curves approach the reliability function of a solid plate.

5. Conclusions

Experimentally observed size effects have been modelled by a modified hyperbolic
function that indicates strength variations as a function of stressed volume. Applied
to the reliability of porous materials, these reliability functions also show the effects
of volume. The analysis of plates containing circular holes of various sizes indicates
that as the plate width to hole diameter ratio increases, i.e., as the hole becomes
smaller, the reliability of the plate increases. This is due to the fact that the critical
stressed volume around the hole is also smaller. Experiments are needed in order to
determine the coefficients of the size effect relationships.
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