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Abstract. The paper examines the transverse vibrations of belts and the impact of the
vibration modes on unstable speed ranges. Supposing large deformations, it produces a
more general non-linear motion of equation for the vibrations, which may be suitable for
the examination of further linear and non-linear vibrations. It is shown that in the course
of the belt motion, parametrically excited non-linear vibrations develop. The parametrical
excitation is caused by the change in length of the belts resulting from the eccentricity of one
of the belt pulleys. Next the paper examines the impact of vibration modes developing during
the transverse vibrations of the belts on the main instability range. A first approximation
of a closed form is developed for the main instability ranges of transverse vibrations. It is
shown that the instability ranges belonging to the higher vibration modes become wider and
tend to move towards higher numbers of revolutions.
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1. Introduction

Belt drives are extensively used in mechanical engineering practice for the transmis-
sion of moments and power between axles located far away from each other. Its
widespread application – in the automobile industry, a number of branches of the
light industry, general engineering and machine tool industry, etc. – can be explained
by its inexpensive realisation, quiet operation, easy mounting, favourable vibration
damping, and last but not least by its good efficiency. The theory of belt drive design
has been known and applied in engineering practice for a long time. Today renowned
belt manufacturers support graphical dimensioning of belts based on diagrams. The
basis of these selection and dimensioning procedures is provided by strength calcula-
tions.

In applications requiring higher accuracy – for example the main and feed drives of
machine tools – it is not sufficient to dimension the particular machine elements, in
particular belts, exclusively in terms of strength. In such cases it is also essential
to apply a knowledge of vibrations that will facilitate the solution or elimination
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of dynamic problems in the design phase. When designing belt drives, basically
two kinds of dynamic tasks are to be solved. One of them is an examination of
the problems arising from the longitudinal vibrations of the belts. The other is an
examination of the transverse vibrations of the belts. It is known both from the
literature and from practical experience that at a certain running speed the belts lose
their stability and develop transverse vibrations. These vibrations exert a detrimental
influence on the life of the belt and in some cases on that of the machine, and – in the
case of machine tools – may exert a non-desirable effect on the machining process and
the manufacturing accuracy. Therefore it is expedient and important to determine in
the design phase the instability ranges where the non-desirable vibrations mentioned
above may develop. The following is a stability analysis of transverse vibrations.

2. The system of equations of motion of a single belt

2.1. The mechanical model. On the basis of the understanding of the literature it
is expedient in the analysis of certain types of vibrations arising in the application of
belt drives to consider the non-linear material properties of the belt (cf. e.g. [3]). One
possible way to do so is to approximate the characteristic curve of the belt with a third
degree polynomial. Accordingly, the material law applying to the belt is supposed to
have the following form

σx = Eεx + βε3
x, (2.1)

where σx is the tensile stress arising in the belt, εx is the strain in direction x, E and
β are material constants, which have to be determined by means of measurements.
In the derivation of the equations of motion the following are supposed to hold:

• the belt moves only in plane xz according to Figure 1,
• only the force stretching the belt acts on the belt,
• the cross-sectional area of the belt is constant, its material properties do not

change along the axis x,
• in the beginning the internal damping of the belt is neglected,
• the effects of the belt separating from and being stretched on the discs are

neglected in accordance with [4].

Figure 1. Mechanical model of the drive
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As usual, the line connecting the centres of gravity of the cross-sectional areas is called
the centre line of the belt. The displacement of the point with abscissa x of the belt
centre line in direction x is denoted by u (x, t), and that in direction z is denoted by
w (x, t). In accordance with our supposition, the displacement in direction y is zero,
therefore the strain of the center line according to [1, 3] is approximated by

εx0 =
∂u

∂x
+

1
2

[(
∂u

∂x

)2

+
(

∂w

∂x

)2
]

. (2.2)

On the basis of experience
(

∂u
∂x

)2
in (2.2) may be negligible as related to the very

small ∂u
∂x , but

∂w
∂x may be large as compared with ∂u

∂x . Therefore on the basis of [1]
the approximation

εx0 =
∂u

∂x
+

1
2

(
∂w

∂x

)2

(2.3)

is used. If the curvature of the center line is approximated by ∂2w
∂x2 , then the axial

strain of an arbitrary fibre in the belt can be written in the form

εx =
∂u

∂x
+

1
2

(
∂w

∂x

)2

− z
∂2w

∂x2
. (2.4)

2.2. Equations of motion. The equations of motion are derived by means of the
Hamilton principle. Therefore the following can be written

δ

∫ t2

t=t1

(W − T ) dt = 0 .

After the calculations detailed in Appendix A the following equations of motion are
obtained:
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= 0 (2.5)
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= 0 , (2.6)

(cf. [5]) where % is the density, A is the cross-sectional area, Iy is the moment of
inertia of the cross-section calculated for the axis y, Iny, n = 3, 4 are the higher order
moments of the cross-sectional area, L is the length of the belt between the belt
pulleys, E is the linear part of the modulus of elasticity, β is the non-linear part of
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the modulus of elasticity. Equations of motions (2.5) and (2.6) describe the general
motion of a single belt. When supplemented with the right fitting and boundary
conditions, they are suitable for performing general dynamic analyses. Later on the
above equations of motion (2.5) and (2.6) are regarded as our starting point for further
research.

3. Analysis of transverse vibrations

When analyzing transverse vibrations, the non-linear partial differential equation sys-
tem (2.5) and (2.6) is used as the starting point. Their accurate solution, suitable for
engineering work, is not known yet. The method to be presented, based on Kirchhoff
[2] and Kauderer [1], was used by Faragó [3] and Patkó [5] for belts as follows. In
order to produce simpler equations of motion, the suppositions in [2] were used in
(2.5), (2.6) according to which in the expression of the kinetic energy the coordinate(

∂u
∂t

)
in direction x of the velocity vector of the belt element performing the trans-

verse vibration may be neglected beside the component
(

∂w
∂t

)
in direction z. Thus,

instead of (2.5) and (2.6) a simpler partial differential equation system is obtained.
Relying on the train of thoughts by Kauderer and on the basis of the measurement
results by Faragó, it is acceptable, as a first approximation in an analysis of trans-
verse vibrations, to approximate the function σx = σx (ε) by its linear part. Using
the approximations mentioned, the system of the equations of motion (2.5) and (2.6)
of the belt can be written in the form

∂
∂x

{
AE

[
∂u
∂x + 1

2

(
∂w
∂x

)2
]}

= 0 (3.1)
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∂x
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{
AE

[
∂u
∂x + 1

2

(
∂w
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)2
]}}

= 0. (3.2)

Comparing equations (3.1) and (3.2) with (2.3) shows that the elongation of the center
line of the belt does not depend on place x, therefore it can only depend on time t.
Integrating (3.1) according to variable x gives the form

AE

[
∂u

∂x
+

1
2

(
∂w

∂x

)2
]

= F (t) . (3.3)

Equation (3.3) is again integrated along length L of the belt from x = 0 to x = L,
which gives

AE

L

[
u (L, t)− u (0, t) +

1
2

∫ L

x=0

(
∂w

∂x

)2

dx

]
= F (t) . (3.4)

Thus supposing a constant belt cross-sectional area from (3.2) and (3.4) for the func-
tion w = w (x, t) describing the transverse vibrations gives the following integro-
differential equation

%A
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∂t2
+IyE
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]}
= 0. (3.5)
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There are time-dependent boundary conditions belonging to (3.5). If the coordinate
system xyz is taken so that axis x passes through the current points of contact between
the belt and the belt plates, then these boundary conditions can be formulated in the
following forms

w (vt, t) = 0

and
w (vt + L, t) = 0,

where v = constant, the velocity of the belt in the coordinate system xyz. Let us

Figure 2. Mechanical model of the drive after transformation of coordinates

attach a coordinate system ξης according to Figure 2 to the belt side in motion so
that there should only be a translation in direction x between the coordinate systems
xyz and ξης. Let us transform differential equation (3.5) into the coordinate system
ξης that the time dependence of the boundary conditions will be eliminated. Let us
introduce the transformation

x = ξ + v · t (3.6)

according to Figure 2, thus the equation of motion is transformed into the form

%A∂2w
∂t2 − 2%vA ∂2w

∂ξ∂t + %Av2 ∂2w
∂ξ2 + IyE ∂4w

∂ξ4 −

−∂2w
∂ξ2

{
AE
L

[
u (L, t)− u (0, t) + 1

2

∫ L

0

(
∂w
∂ξ

)2

dξ

]}
= 0 (3.7)

and the boundary conditions are transformed into the time-independent forms

w (0, t) = 0 (3.8)

and
w (L, t) = 0. (3.9)

Equation (3.7) is a non-linear partial integro-differential equation. In the analysis of
certain types of non-linear vibrations the Galerkin method is widely used [6]. On
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the basis of observations and experience the solution of the above integro-differential
equation (3.7) is looked for in the following trigonometric series

w (ξ, t) =
∞∑

n=1

qn (t) sin
(nπ

L
ξ
)

, (3.10)

the members of which are orthogonal in the interval [0, L] and satisfy the boundary
conditions (3.8) and (3.9). Then

q̈k +
(

kπ
L

)2

{
(

kπ
L

)2 Iy

A
E
% − v2 + E

%L

[
u (L, t)− u (0, t) + π2

4L

p∑
m=1

(
m2q2

m

)
]}

qk = 0

(k = 1, 2, 3, . . . , p) (3.11)

is obtained. A detailed presentation of the calculations can be found in Appendix B.
Let us introduce the notations

Qk (ξ) = sin
(

kπ

L
ξ

)
(k = 1, 2, 3, . . . , p)

where the functions Qk (ξ) are from now on called vibration modes. On the basis
of experience (cf. [7]) it can be supposed that the arising vibrations in the first
approximation have the property that there is a dominant vibration mode Qk (ξ)
and a dominant frequency belonging to them, beside which the amplitudes qm (t)
belonging to the other Qm (ξ) (m 6= k) are mostly negligibly small. Based on the
above, in (3.11) only one such function qk (t) considered to be dominant is kept. Thus
instead of (3.11) it is sufficient to analyse the differential equation

q̈k +
(

kπ
L

)2
{(

kπ
L

)2 Iy

A
E
% − v2 + E

%L

[
u (L, t)− u (0, t) +

(
kπ
2

)2 1
Lq2

k

]}
qk = 0

(k = 1, 2, 3, . . . , p) . (3.12)

4. Stability analysis

4.1. The exciting effect. In order to investigate the stability of belt, let us linearise
(3.12) at qk0 = 0, which gives

q̈k +
(

kπ

L

)2
{(

kπ

L

)2
Iy

A

E

%
− v2 +

E

%L
[u (L, t)− u (0, t)]

}
qk = 0 . (4.1)

It can be seen from the equation of motion that one possible cause of the transverse
vibrations of belts is the longitudinal elongation of the belt, which changes in time.
Let us examine the case when the longitudinal displacement of the ends of the belts
is caused by the eccentricity of one of the belt pulleys. Let us suppose that in the
coordinate system ξηζ one end of the belt does not get displaced, that is

u (0, t) = 0, (4.2)

and its other end gets displaced by the value u0 resulting from the pre-tensioning
and the transferred moment, then performs an oscillatory motion described by the
function uL = e2 cos (νt) in direction ξ due to the eccentricity of one of the belt pulleys
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Figure 3. The model of a drive with eccentricity

(in this case the driven one), where e2 is the eccentricity of the driven belt pulley, ν
is its angular velocity, and using them gives

u (L, t) = u0 + e2 cos (νt) . (4.3)

The velocity of the belt can be expressed in terms of the angular velocity of the driving
plate denoted by 1 and gives

v = R1ν, (4.4)
where ν is the angular velocity of the driving plate and R1 is the radius of the driving
plate – see Figure 3. Substituting equations (4.2)-(4.4) into (4.1), let us introduce the
dimension-free time coordinate

τ =
1
2
νt , (4.5)

and we get

q
′′
k + 4

(
kπ

L

)2
{(

kπ

L

)2

κ (h)
E

%ν2
−R2

1 +
E

%ν2L
[u (L, τ)− u (0, τ)]

}
qk = 0

(k = 1, 2, 3, . . . , p) , (4.6)

where the comma denotes differentiation according to τ and κ (h) =
√

Iy

A is the
inertia-radius. Let us furthermore introduce the notations

λk = 4
(

kπ
L

)2
{

E
%ν2

[(
kπ
L

)2
κ (h) + u0

L

]
−R2

1

}
, (4.7)

µk = −2
(

kπ
L

)2 E
L%ν2 e2 . (4.8)

Thus (4.6) will take the form

q
′′
k + (λk − 2µk cos (2τ)) qk = 0 (k = 1, 2, 3, . . . , p) . (4.9)

The stability ranges of the above Mathieu-type differential equations are known from
the literature [1, 8]. The case λk < 0 is of no importance for practical belt drives.
Among the instability ranges what is called the main instability range is the most
dangerous, for here even for small µk values may arise stability loss in a wide interval
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λk. The other instability ranges are of smaller significance due to the dampings not
taken into account here. Therefore this paper is limited to an analysis of the main
instability range. It should be noted here that due to the damping present in the
system, but not taken into account now, the sizes of the instability ranges decrease.

4.2. First approximation of the main instability ranges. Practical calculations
show that the values µk in belt drives are small, therefore in the first approximation

unstable

stable

stable

–1

0

1

2

3

λ

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

µ

Figure 4. First approximation of the main instability range of the
Mathieu equation

it is sufficient to approximate the main instability range by its tangents. Accordingly,
the main instability range of (4.9) is approximated – see Figure 4. – in the form

λk = 1± µk . (4.10)

Substituting the variables (4.7)-(4.8) into (4.10) and solving the expression obtained
for angular velocity ν of the belt plates, the relationship

ν = 2kπ

√
E

[
k2π2Iy + LA

(
u0 ± e2

2

)]

%AL2 (4k2π2R2
1 + L2)

(4.11)

is obtained. It means that the unstable angular velocities are in the region

2kπ

√
E

[
k2π2Iy + LA

(
u0 − e2

2

)]

%AL2 (4k2π2R2
1 + L2)

< ν < 2kπ

√
E

[
k2π2Iy + LA

(
u0 + e2

2

)]

%AL2 (4k2π2R2
1 + L2)

. (4.12)

It describes the first approximation of the main instability range as depending on the
further belt parameters. The following is an analysis of how the positions of the main
instability ranges change for different vibration patterns.
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4.3. Analysis of the impact of vibration patterns. It can be seen from equation
(4.11) as well as from the Figures that when number k of the vibration pattern
being analysed is increased, the instability range moves towards the higher revolution
numbers. It can be observed and can also be seen from relationship (4.11) that for
higher values of k and for the usual belt parameters the ranges become slightly wider.
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Figure 5. First approximations of the main instability domains for
k = 1, 2, 3, e2 = 3 · 10−3[m], Iy = 3.2 · 10−11[m4], % = 2 · 103[kg/m3],
E = 1.5·109[N/m2], A = 2.1·10−7[m2], R1 = 0.1[m], u0 = 6·10−3[m]
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Figure 6. First approximations of the main instability domains for
k = 1, 2, 3, L = 1[m], Iy = 3.2 · 10−11[m4], % = 2 · 103[kg/m3], E =
1.5 · 109[N/m2], A = 2.1 · 10−7[m2], R1 = 0.1[m], u0 = 6 · 10−3[m]

Figure 5 shows the boundaries of the instability ranges calculated from (4.11) with
the values k = 1, 2, 3. In the diagrams of Figure 5 the instable angular velocity range
is drawn versus length L of the belt. In the diagrams of Figure 6 the unstable angular
velocity range is drawn versus eccentricity e2 of the pulley. It can be seen from the
Figures that certain revolution number ranges may become dangerous even for differ-
ent vibrations. Relationship (4.12) lends itself to further noteworthy conclusions. The
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formula shows what impact the belt parameters exert on the positions and dimensions
of unstable ranges.

5. Concluding remarks

The paper has shown more general equations of motion of transverse vibrations of
belts than those known from the literature. These are the equations of motion (2.5),
(2.6), (3.5) and (3.11), which take into account the non-linear behaviour of the belts
and also provide a basis for further research. Based on the above, it can be stated that
one possible cause of the transverse vibrations of belts is the eccentricity of the belt
pulleys. In that case the transverse vibrations are described by a differential equation
system with a non-linear variable coefficient. The stability analysis of the belt has
also been presented. The first approximation of the main instability range has been
performed versus the angular velocity of the belt pulley. It has been investigated how
the main instability domains of the transverse vibrations of a belt change with the
different vibration patterns. It was found that the main instability ranges belonging
to the higher vibration patterns move towards the higher numbers of revolution and
become slightly wider.
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Appendix A. Derivation of the equations of motion

The Hamilton integral is

H =
∫ t2

t=t1

(W − T ) dt, (A.1)
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where W represents the strain work of the belt, and T is its kinetic energy. Let us first
determine the strain work resulting from the flexible displacements in the transverse
and longitudinal directions of the belt cross-sections. Let U be the strain work of the
belt for unit volume. Then, using (2.1)

Ū =
∫ εx

εx=0

(
Eεx + βε3

x

)
dεx =

1
2
Eε2

x +
1
4
βε4

x (A.2)

can be written. The strain work of the belt for unit length can be calculated by using
(2.4) and (A.2) according to

U =
∫∫

A

Ūdydz, (A.3)

where A is the cross-section of the belt. Giving details of expression (A.3)
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]4

dydz (A.4)

is obtained. When U is known, the strain work accumulated in the belt can be
calculated as

W =
∫ L

x=0

Udx,

which is detailed to give the following integral
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In the integration of function Ū the facts that the first moment Sy =
∫∫

A
zdydz of

the belt cross-section calculated for its centroidal axis is zero and that the quantity∫∫
A

zidydz was designated Iiy (i = 3, 4) were made use of.

Let us now turn to calculating the kinetic energy of the elementary belt. Let the
mass of the belt per unit length be denoted by m0 = %A. The velocity of one point
of the central line of the belt is calculated according to

v0 =

√(
∂u

∂t

)2

+
(

∂w

∂t

)2

. (A.6)

If the moments of inertia of the individual belt elements are neglected - and thus the
kinetic energy resulting from the angular velocities of the revolutions of the cross-
sections is also neglected - then the kinetic energy can be written as

T =
1
2
m0

∫ L

x=0

[(
∂u

∂t

)2

+
(

∂w

∂t

)2
]

dx. (A.7)
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If now the relationships (A.5) and (A.7) are substituted into (A.1), this gives the
integral of form

H =
∫ t2

t=t1

∫ L

x=0
F

(
∂u
∂t ; ∂u

∂x ; ∂w
∂t ; ∂w

∂x ; ∂2w
∂x2

)
dxdt (A.8)

from which the Euler-Lagrange equations

∂
∂x

∂F

∂( ∂u
∂x ) + ∂

∂t
∂F

∂( ∂u
∂t ) = 0 (A.9)

∂w
∂x

∂F

∂( ∂w
∂x ) −

∂2

∂x2
∂F

∂
�

∂2w
∂x2

� + ∂
∂t

∂F

∂( ∂w
∂t ) = 0 (A.10)

can be derived [1] on the basis of the Hamilton variation principle (δH = 0). Com-
pleting the differentiations designated gives the differential equations (2.5) and (2.6)
describing the motion of the belt.

Appendix B. Details of the calculations using the Galerkin method

According to (3.7) the equation of motion can be written in the form

%A
∂2w

∂t2
− 2%vA

∂2w

∂ξ∂t
+ %Av2 ∂2w

∂ξ2
+ IyE

∂4w

∂ξ4
−

− ∂2w

∂ξ2

{
AE

L

[
u (L, t)− u (0, t) +

1
2

∫ L

0

(
∂w

∂ξ

)2

dξ

]}
= 0 (B.1)

and the boundary conditions are transformed into the time-independent forms

w (0, t) = 0 (B.2)

and

w (L, t) = 0. (B.3)

The solution of equation (B.1) is sought following Galerkin’s method in the form

w (ξ, t) =
∞∑

n=1

qn (t) sin
(nπ

L
ξ
)

(B.4)

which satisfies the boundary conditions (B.2) and (B.3). Substituting (B.4) in the
equation of motion (B.1) results in equation

∞∑
n=1

{{
%Aq̈n − %Av2 n2π2

L2
qn + IyE

n4π4

L4
qn +

(
n2π2

L2
qn

){
AE

L
[uL (t)+

+
L

4

∞∑

k=1

(
k2π2

L2
q2
k

)]}}
sin

(nπ

L
ξ
)}

= 0 . (B.5)
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Let us multiply equation (B.5) by the expression sin
(

iπ
L ξ

)
, then integrate it on the

interval [0, L]. In accordance with Galerkin’s method, the equation
∞∑

n=1

{{
%Aq̈n − %Av2 n2π2

L2
qn + IyE

n4π4

L4
qn +

(
n2π2

L2
qn

){
AE

L
[uL (t)+

+
L

4

∞∑

k=1

(
k2π2

L2
q2
k

)]}}} ∫ L

ξ=0

sin
(nπ

L
ξ
)

sin
(

iπ

L
ξ

)
dξ = 0 (B.6)

can be written. Completing the integrations designated gives equation

%Aq̈i +
i2π2

L2

[
IyE

i2π2

L2
− %Av2 +

AE

L

(
uL (t) +

π2

4L

∞∑

k=1

k2q2
k

)]
qi = 0. (B.7)


