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Abstract. The kinematic determinacy of a bar-and-joint mechanism is dependent on the
topology and the metric properties of the structure. Special arrangements can result in
singularities, such as bifurcation points on the compatibility paths. The analysis of a special
four-bar linkage yields an infinitely degenerate bifurcation point. Modifications in plane and
in space are investigated in order to produce the most general perturbations of the system.
The compatibility path can be perturbed to have a shape of arbitrary finite order or to result
in compatible states in an arbitrary finite number.
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1. Introduction

A mechanism consisting of rigid bars with a prescribed length and a given topology is
called a mechanism with a single degree-of-freedom if it typically has compatible posi-
tions where, applying a suitable displacement to a suitable element, the displacement
of the other elements can be uniquely determined. Compatibility paths form a set of
points which belong to compatible positions in the space of the state variables chosen
to define the position of the mechanism. The compatibility paths usually consist of
lines which can intersect one another (bifurcation points).

Bifurcation points arise from special geometric configurations. If a mechanism is
created with a special geometry, it may have certain positions where the number of
instantaneous kinematic degrees-of-freedom increases. At these points the mechanism
can change shape and continue its motion along a different path.

Bifurcations of compatibility paths have been studied by several researchers. Tarnai
[1] and Litvin [2] have shown mechanisms producing asymmetric bifurcations. Lengyel
and You [3] discussed further examples and compared this phenomenon to the well-
known equilibrium bifurcations of elastic structures. They made further examinations
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with the aid of the elementary catastrophe theory [4]. Their method was based on
the analogy between equilibrium and compatibility equations.

In paper [5] we proposed a general classification of the points of the compatibility
paths. With the aid of an energy function we showed a connection between singulari-
ties and catastrophe types in Thom’s theorem [6]. A catastrophe point is a singularity
of the system where a small change of the parameter(s) may cause significantly dif-
ferent behavior according to the perturbation. Consequently the number of solutions
of the governing equations may change, i.e. in this case the number of possible com-
patible states. Hence at catastrophe points one may apply small perturbations to
the original layout of the system so that a different number of states is obtained
[5]. The maximum number of the compatible configurations forms the basis of the
classification of the singular points.

In paper [5] we also showed a degenerate planar mechanism that produced infinite
compatible positions at the critical value of the control parameter. This paper ex-
amines the mechanism and presents a perturbation that reduces the degeneracy to
arbitrary finite order. The layout of the paper is as follows. The second part intro-
duces the basic structure. The third part defines the geometrical modifications of the
system and the mathematical formulation is given in the fourth.

2. Basic structure

Consider a special four-bar linkage with all bars having unit length shown in Figure 1a.
The compatibility paths of the mechanism consist of straight lines plotted in the
coordinate system

(α, β)

as shown in Figure 1b [4, 5]. Each value of β corresponds to a certain position of node
B on the perimeter of a unit circle centered at OB. Geometrically possible positions
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Figure 1. Four-bar mechanism (a) basic structure (b) compatibility
path
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of node A must be at a unit distance from both OA and B, and hence compatible
configurations of the mechanism are obtained at the intersections of a unit circle
centered at OA (set S1) and another one centered at B (set S2).

The behaviour of the points of the compatibility paths is determined by the proper-
ties of the intersections, which can be further studied by examining the transversality
of the sets [7]. Let X and Y be affine subspaces of R

n of dimensions s, t, respectively,
where R denotes the set of real numbers. They meet transversely if either their inter-
section X ∩ Y is empty or its dimension is s + t− n (if this number is non-negative).
Two submanifolds of R

n meet transversely at a given point provided either they do
not meet, or their tangent affine hyperplanes meet transversely.
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Figure 2. Compatible configurations at different values of parameter
β (a) β = 0 (b) 0 < β < π (c) β = π

At β = 0 only one compatible configuration exists as the two circles have one common
point (see Figure 2a). The tangents are common, hence the intersection is not trans-
verse. At 0 < β < π two intersections are obtained: α = 0 and α = β (see Figure 2b).
Here the two sets meet transversely because the tangents are not parallel. At β = π
node B and OA coalesce and the two circles become the same (see Figure 2c). This
is again a non-transverse intersection. Here all values of α correspond to compatible
configurations. Thus at the bifurcation point

(α = 0, β = π)

there is an infinitely degenerate compatibility path.

A small perturbation of the system modifies the sets S1 and S2 and, consequently,
the number of compatible positions of the mechanism. The first of the three cases
above is non-transverse. A small perturbation of the geometry, such as imperfections
of lengths of the bars or of positions of supports, would make the circles detach or
intersect at two points transversely (Figure 3a). In the second case the circles meet at
two points transversely and the transversality is unchanged by a small perturbation
(Figure 3b). In the third case the two circles coalesce and a small perturbation can
reduce the number of intersections to two, one, or none (Figure 3c). The three cases
are denoted by dashed, dotted and dashdot lines, respectively.
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Figure 3. Transversality of intersections of two circles

Planar imperfections can modify the behaviour to produce one or two compatible
configurations or none. Our goal is to create a non-transverse intersection that can
be modified by a suitable small perturbation so that the number of compatible con-
figurations is any arbitrarily chosen number. In order to obtain this, we introduce a
spatial structure.

3. Spatial configuration

Consider the mechanism in Figure 1a with unchanged topology but with spherical
joints applied at nodes OA, A and B. Also keep the revolute joint at OB . The
mechanism has two independent degrees-of-freedom by means of these modifications.
Sets S1 and S2 become unit spheres in the

(X, Y, Z)

coordinate system shown in Figure 4a. The two spheres typically meet at transverse
points forming a circle C1 = S1 ∩S2. At point β = π the two spheres coalesce and all
points are non-transverse intersections (Figure 4b): C1 = S1 = S2.
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Figure 4. Spatial configuration (a) 0 < β < π (b) beta = π
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In order to obtain a mechanism with a single degree-of-freedom, the number of degree-
of-freedom has to be reduced by introducing an additional support. Let now node A
be supported by a roller allowing it to move on a given smooth surface

S3 = S3 (X, Y )

(Figure 6). Hence now the motion of node A is restricted to the intersection set
C2 = S1 ∩ S3, i.e. the common points of the sphere S1 and the surface S3, which is
a curve on the surface of sphere S1. Compatible positions can be obtained only at
points which are on curve C1 as well because A has to be on S2, the circle centered
at B. The set of compatible positions is now defined as

P = C1 ∩ C2 = S1 ∩ S2 ∩ S3 .

Now in case of β = π it is possible to apply appropriate imperfections to the structure
so that the set of intersections is reduced to a required finite number. Let
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Figure 5. Imperfection of joint OB (a) tilting angle (b) intersection
circle

us do this in a number of steps as follows. First let the axis of rotation of joint OB be
tilted from Z by a small angle 2δ anticlockwise in plane (X, Z) as is shown in Figure
5a. Node B at β = π is out of the plane (X, Y ):

B (1 − cos 2δ, 0, sin 2δ) .

Hence the intersection of the two spheres is a circle: C1 = S1 ∩ S2. It is centered at
M , the middle point of section OAB and is fitting to point OB (Figure 5b), hence its
plane is tilted from (X, Y ) by angle δ. It is then possible to define the surface S3 so
that C1 and C2 meet non-transversely at OB and they produce a required number of
intersections.

In order to do that, let us define the final shape of C2 in a few steps. First construct
S3 so that C2 be equal to C1. Then rotate points P ∈ C2 around axis MOB by an
angle which is not constant but proportional to the nth order of the sine of the arc
length OBP. It adds an nth order perturbation to circle C2. The first perturbation
term is shown in Figure 7a. If a suitable linear combination of these terms of various
orders is applied, then an oscillating curve is obtained which has n intersections with
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Figure 6. Perturbation of motion A
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Figure 7. Perturbation (a) single term (b) combination

C1 in the vicinity of OB (Figure 7b). If the highest order term is the nth, a maximum
of n intersections can be obtained by suitable imperfections. These are the only points
referring to compatible configurations of the mechanism.

4. Transformations

The mathematical formulation of the principles above is as follows. C1 is a circle
centered at

M ((1 − cos 2δ) /2, 0, sin 2δ/2)

with radius r = cos δ. A local

(x, y, z)

coordinate system is created so that x and y cover the plane of C1 and x is aligned
with MOB as shown in Figure 5b. In this local system the points of the circle c ∈ C1

can be defined as

c = (r cosϕ, r sin ϕ, 0)
T
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where angle ϕ measures the OBP arc length. An ith order rotational perturbation
around axis x mentioned above is given by the transformation matrix:

Ti =





1 0 0
0 cos

(

pi sini ϕ
)

− sin
(

pi sini ϕ
)

0 sin
(

pi sini ϕ
)

cos
(

pi sini ϕ
)



 , (1)

where pi is a suitable constant and i is a positive integer number. A linear combination
of these terms gives the final shape of the curve C2 in the local (x, y, z) coordinate
system:

c
xyz
2

=
∑

i

Tic =
∑

i





1 0 0
0 cos

(

pi sini ϕ
)

− sin
(

pi sini ϕ
)

0 sin
(

pi sini ϕ
)

cos
(

pi sini ϕ
)









r cosϕ
r sinϕ

0



 . (2)

In the global coordinate system (X, Y, Z) a rotation and a translation yield the
equation

c
XY Z
2

= Tc
xyz
2

+ v , (3)

where the rotational matrix T and the translation vector v define the transformation
from (x, y, z) to (X, Y, Z):

T =





cos δ 0 sin δ
0 1 0

− sin δ 0 cos δ



 , v =





(1 − cos 2δ) /2
0

(sin 2δ) /2



 . (4)

5. Conclusions

In this paper we have examined how the compatibility of an infinitely degenerate
mechanism can be modified by suitable imperfections of the geometry. Discrete geo-
metric imperfections of the structure, e.g. a constant error of the length of the bars
or of the position of the supports can only add a limited (second order) variation to
the degenerate compatibility path as not more than two possible compatible positions
can be obtained at a certain value of the parameter. Therefore, in order to exploit
the potential of the degeneracy of the geometry, a spatial modification has been in-
troduced incorporating a continuum perturbation of the system. Forcing the motion
of node A on a smooth continuous surface above the coordinate plane allows us to
define a compatibility path of arbitrary shape in the neighborhood of the bifurcation
point.
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