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Abstract. In the present paper a model for the nonlinear deformations in stochastic com-
posites under microdamaging is developed for three-component composites providing that
the microdamage is accumulated in the matrix. The composite is treated as an isotropic ma-
trix strengthened by two different types of spheroidal inclusions with transversally-isotropic
symmetry of elastic properties. It is assumed that the loading process leads to accumulation
of damage in the matrix. Fractured microvolumes are modeled by a system of randomly dis-
tributed quasispherical pores. The porosity balance equation and relations for determining
the effective elastic modules for the case of transversally-isotropic components are taken as
basic relations. The fracture criterion is assumed to be given as the limit value of the inten-
sity of average shear stresses occurring in the undamaged part of the material. Based on the
analytical and numerical approach the algorithm for determination of nonlinear deformative
properties of such a material is constructed. The nonlinearity of composite deformations is
caused by finiteness of component deformations. Using the numerical solution, the nonlin-
ear stress-strain diagrams for three-component concrete for the case of uniaxial tension are
obtained.
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1. Introduction

Deformation of composites may become nonlinear with increase in macrostrains or
macrostresses. Physical nonlinearity of macrostress - macrostrain relations is due to
the nonlinearity of physical deformations in the components or microdamages man-
ifesting itself as micropores or microcracks. In this paper the nonlinear effective
deformation properties of a composite attributed to the growth of microdamage in
the deformed components are considered.

The idea on accumulation of scattered microscopic cavities occurring in a material
under a load, resulting in a decrease in the effective (bearing) cross-sectional area,
is based on the theory of material damage. The corresponding research is based on
the introduction of a so-called ´damage’ parameter with the associated evolution-
ary equation postulated in [1, 2]. Constants entering this equation are determined
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from long-term strength or creep tests. Such a formal approach is essentially equiv-
alent to replacing time by another parameter (damage), which depends on time in a
certain way so that it cannot provide knowledge or conceptions, supplementing the
experiment, about the nature of the process, especially about structural changes in
the material or the specific mechanism of the process. Moreover, any identification
of damage with time will not encompass the extensive class of phenomena of short-
period damage, manifested in the experimentally observed one-to-one dependence of
the content of submicroscopic cracks on the given deformation, for example as it was
shown in [3]. This also leaves aside the fundamental question on the structure of
the relationship between damage and the physical and mechanical properties of a
material.

The above indicates that a rational approach to the description of damage to a
material and the phenomena accompanying it can be based only on the simulation
of damage by specific structural microscopic elements in the form of the system of
microcracks or micropores and on the construction of appropriate equations for the
mechanics of a macroscopically inhomogeneous medium, allowing for the interaction
of the processes of damage and deformation of the material. Such an informal ap-
proach applies to short-term damage of materials. The damage process is simulated
by formation of a system of randomly distributed micropores, which are empty or are
filled with destroyed material, in those microscopic volumes where microscopic de-
struction (microdestruction) occurs. The destruction criterion is taken in the form of
the ultimate value of the intensity of shear stresses averaged over the undamaged part
of the material or the Schleicher-Nadai criterion. The yield strength is assumed to be
the random function of the coordinates, the single-point distribution of which is de-
scribed by the power-law or Weibull distribution. The effective deformative properties
and the stress-strain state of the material are determined from stochastic equations of
the elasticity theory [4] - [6], which allow for the random nature of the arrangement
of microdestruction. An equation of porosity balance is formulated for determining
the porosity, which changes as a consequence of microdestruction. This fact makes
it possible to describe the combined process of deformation and microdamage with
allowance for their interaction, which leads to the nonlinear relationships between
macrostresses and macrodeformations.

Microdestructions occur in the weakest microvolumes of a material under high-
level loads, which reduces the bearing section of the material and leads to a redistri-
bution of microstresses, and hence to nonlinear relationships between macrostresses
and macrodeformations. The essence of this mechanism is described in [3] using the
simplest working scheme for a material, in the form of the system of parallel, linearly
elastic rods having a randomly distributed yield strength and acted upon by a uniform
tensile load. The successive destruction of some of the rods under load results in a
nonlinear deformation of a pattern.

The deformation and microdestruction of actual materials are considerably more
complex processes, due primarily to the three-dimensional character of the stress-
strain state and the random arrangement of the local microdestructions. The struc-
tural inhomogeneity of elastic properties, typical of composite materials, introduces
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additional complications. Experimental research [3] shows that during uniaxial stretch-
ing of polymer materials, submicrocracks develop with ratios of transverse to longi-
tudinal dimensions ranging from 0.4 to 1.3. If we will assume that the part of the
material in the vicinity of a disk-shaped crack does not carry a load along the major
axis, as well as the disorientation of submicrocracks is not uniform and the stress
state is complex due to the non-uniformity of the structure, then there are every
reasons to simulate an individual act of microdestruction by a quasi-spherical pore.
We take the limiting value of intensity of shear stresses in the microvolume as the
condition for the appearance of individual microdestruction. Nor does invariance of
the microdestruction criterion provide a basis for assuming a certain orientation for
the individual microdestruction. We assume the arrangement of individual pieces of
microdestruction in the material to be random, satisfying the criteria of statistical
uniformity and isotropy.

The model of short-term microdamaging of composites of the stochastic structure,
taking into account the distribution of material strength, is proposed by Khoroshun
in [7]. This model is developed in papers [8, 9] for composite materials with isotropic
components provided that microdestructions occur in the matrix or inclusions. The
approach has received development in paper [10] for anisotropic materials, and then
for composites with anisotropic components in [11]. The present work is devoted to
the investigation of macrodeformations in three-component composites representing
an isotropic matrix, randomly reinforced by two types of unidirectional spheroidal
inclusions with various elastic properties and geometrical parameters. It is assumed
that the accumulation of microdamage occurs in the matrix.

2. Mechanical model

Let us consider the representative volume V of a composite material subjected to
uniform macrodeformations 〈εαβ〉. The composite is treated as an isotropic matrix
strengthened by stochastically distributed unidirectional spheroids with various elastic
constants and various geometrical parameters. Such a type of composite is shown in
Figure 1. We suppose that the physical and mechanical properties of the material
of inclusions have transversally-isotropic symmetry. It is assumed that the matrix
shows initial microdamage, which is modelled by a system of randomly distributed
micropores of quasispherical shape. The effective deformative properties and the
stress-strain state of such a composite is determined on the basis of the stochastic
equations of the elasticity theory by the method of conditional moment functions
stated in [5].

Under homogeneous loading, the stresses and strains appearing in the representa-
tive volume will form statistically homogeneous random fields satisfying the ergodicity
condition. In this case we can replace the operation of averaging over the represen-
tative volume by the operation of averaging over an ensemble of realizations. Then
the macroscopic stresses 〈σij〉 and strains 〈εαβ〉 of such a material will be related by
Hooke’s law:

〈σij〉 = λ∗∗

ijαβ 〈εαβ〉 , ( i, j, α, β = 1, 2, 3 ) . (2.1)
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Figure 1. Type of the composite under consideration.

Here λ∗∗

ijαβ is the tensor of effective elastic constants for the given composite which is
determined in three steps. In the first step the elastic modules of the matrix weakened
by micropores (microdamage) is determined on the basis of the results presented in
paper [12]

λ
p
ijαβ = λ

p
ijαβ

(

λ
[3]
ijαβ , p0

)

. (2.2)

Here λ
p
ijαβ is the tensor of elastic modules of a porous matrix, which depends on

the elastic constants of matrix material λ
[3]
ijαβ and the initial porosity po of matrix.

Then using the results, obtained in paper [6] for transversally-isotropic composites of
stochastic structure, we can calculate the effective elastic modules of a two-component
composite with porous matrix and spheroidal inclusions

λ∗

ijαβ = λ∗

ijαβ

(

λ
[1]
ijαβ , λ

p
ijαβ , c1, t1

)

, (2.3)

as the function of elastic module tensors of inclusions λ
[1]
ijαβ and porous matrix λ

p
ijαβ ,

volume content of inclusions in matrix c1 and their geometrical parameters t1, which
are characterized by the ratio of the spheroid semi-axes. In the last step we calcu-
late the effective elastic properties of the composite material with a porous matrix
stochastically reinforced by spheroidal fibres of two types which have different elastic
properties and geometrical parameters:

λ∗∗

ijαβ = λ∗∗

ijαβ

(

λ∗

ijαβ , λ
[2]
ijαβ , c2, t2

)

, (2.4)

where λ
[2]
ijαβ is the elastic module tensor of the material of inclusions of the second

type, and c2 and t2 are their volume content and the ratio of the spheroid semi-axes.
Considering equations (2.2) - (2.4), it is possible to make the conclusion that the
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effective elastic properties of such a composite λ∗∗

ijαβ certainly depend on the elastic
constants of components and geometrical parameters of fibers, and also on the initial
porosity of matrix p0

λ∗∗

ijαβ = λ∗∗

ijαβ

(

λ
[1]
ijαβ , λ

[2]
ijαβ , λ

[3]
ijαβ , c1, c2, p0, t1, t2

)

. (2.5)

For the known effective elastic modules of such a composite, it is possible to calculate
the matrix macrostrains 〈εαβ|3〉 using consecutively the relations obtained in paper
[11] for two-component composites:

〈εαβ |3 〉 =

(

Iαβkl + (1 − c2)
(

c2λ
[2]
αβkl + (1 − c2)λ∗

αβkl − λ∗∗

αβkl

) (

λ
[2]
klγρ − λ∗

klγρ

)

−1
)

∗

∗
(

Iγρmn + c
′

3

(

〈λγρmn〉 − λ∗

γρmn

)

λ
[4]−1
mnij

)

〈εij〉 , (2.6)

in which

〈λγρmn〉 = c
′

1λ
[1]
γρmn + c

′

3λ
[3]
γρmn; λ

[4]
mnij = λ

[1]
mnij − λ

[3]
mnij , (2.7)

where

( i, j, k, l, m, n, α, β, γ, ρ = 1, 2, 3 ) .

Here c3 is the volume content of the binding in a composite, and c
′

1 and c
′

2 are
defined by the following ratios:

c
′

1 =
c1

c1 + c3
, c

′

3 =
c3

c1 + c3
, c1 + c2 + c3 = 1 . (2.8)

Macrostrains and macrostresses in a matrix are related to each other by Hooke’s
law:

〈σij |3 〉 = λ
[3]
ijαβ 〈εαβ |3 〉 . (2.9)

At the same time, stresses averaged over the matrix skeleton
〈

σ
3p
ij

〉

are connected

with average stresses over all the matrix 〈σij |3 〉 by the following dependence:
〈

σ
3p
ij

〉

=
1

1 − p0
〈σij |3 〉 . (2.10)

Thus, on the basis of expressions (2.6)-(2.10) stresses averaged over the matrix skele-

ton
〈

σ
3p
ij

〉

are connected with macrostrains by means of the relationships:

〈

σ
3p
αβ

〉

=
1

1 − p0
λ

[3]
αβmn∗ (2.11)

∗

(

Iαβkl + (1 − c2)
(

c2λ
[2]
αβkl + (1 − c2)λ∗

αβkl − λ∗∗

αβkl

)(

λ
[2]
klγρ − λ∗

klγρ

)

−1
)

∗

∗
(

Iγρmn + c
′

3

(

〈λγρmn〉 − λ∗

γρmn

)

λ
[4]−1
mnij

)

〈εij〉 .

Let us take the strength condition for the microvolume of the undestroyed part of a
matrix as the Huber-Mises criterion [3]:

I3
σ =

(

〈

σ
3p
ij

〉
′

,
〈

σ
3p
ij

〉
′
)

= k3, (2.12)
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where
〈

σ
3p
ij

〉
′

is the deviator of stresses averaged over a matrix skeleton, and k3 is the

corresponding limit value of microstrength of the matrix, being a stochastic function
of coordinates. One-point distribution function F (k3) of random variable k3 can be
described by the exponential distribution function in a semi-infinite domain, i.e. the
Weibull distribution:

F (k3) =

{

0 if k3 < k0 ,

1 − exp (−n (k3 − k0)
α) if k3 ≥ k0 .

(2.13)

Here k0 is the lower limit value of the intensity of the averaged tangential stresses
over the matrix skeleton where destruction in some microvolumes begins; n and α are
the factors chosen from a condition of the best approximation of strength distribution
which is determined experimentally for each material.

If the stresses of the matrix skeleton
〈

σ
3p
ij

〉

are known, the function F
(

I3
σ

)

de-

termines, according to formulas (2.12), (2.13), the relative content of the destroyed
microvolumes in a matrix. If the destroyed microvolumes are modeled by the pores,
it is possible to write down the balance porosity equation:

p = p0 + F
(

I3
σ

)

(1 − p0) , (2.14)

where p0 is the initial porosity of the matrix. According to the formula (2.11), stresses

of matrix skeleton
〈

σ
3p
ij

〉

can be expressed as a function of macrostrains of all com-

posite 〈εαβ〉. These equations enable us to determine the current porosity of ma-
trix p, generated by microdestructions, from nonlinear algebraic equations (2.12) -
(2.14), as a dependence on macrostrains. Thus, we obtain the nonlinear dependence
of macrostresses on macrostrains (2.2) - (2.14), caused by the matrixes microdestruc-
tions, with regard to strength distribution of a material.

3. Iterative scheme of equation solution

On the basis of the proposed model and the constructed solutions for the effective
properties and stress-strain state of the elastic material, reinforced by two types of
spheroidal inclusions with various elastic properties and geometrical parameters it
is possible to investigate the accumulation of damage and the nonlinear deforma-
tion caused by microdamaging of transversally–isotropic composite under uniform
macrodeformations. For given uniform macrostrains 〈εαβ〉 the matrix microdamag-
ing, characterized by porosity p, is determined from the nonlinear system of equations
(2.12) - (2.14). The solution of such a system of nonlinear equations can be obtained
on the basis of the following iterative scheme.

Matrix porosity p(n) for the n-th approximation is determined as the function of
the limiting value of averaged tangential stresses of a binding skeleton for the n-th

approximation I
3(n)
σ . The averaged tangential stresses of the skeleton are related to

the current porosity of a matrix in the (n− 1)-th approximation p(n−1) via equations
(2.5), (2.11).
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Thus, on the basis of equations (2.13), (2.14) we can write

p(n) = p0 + F
(

I3(n)
σ

)

(1 − p0) , (3.1)

where

F
(

I3(n)
σ

)

=

{

0 if I
3(n)
σ < k0 ,

1 − exp
(

−n
(

I
3(n)
σ − k0

)

α
)

if I
3(n)
σ ≥ k0 .

(3.2)

According to expressions (2.6) – (2.12)

I3(n)
σ = ϕ

(

λ
∗∗(n−1)
ij , p(n−1), 〈εαβ〉

)

, (3.3)

while the tensor components of the effective elastic modules for the composite can be
determined from formulas (2.5)

λ
∗∗(n−1)
ijαβ = λ∗∗

ijαβ

(

λ
[1]
ijαβ , λ

[2]
ijαβ , λ

[3]
ijαβ , c1, c2, p

(n−1), t1, t2

)

. (3.4)

Hence, equations (3.1)-(3.4) allow us to investigate the effective elastic characteris-
tics of porous transversally isotropic composites as a function of macrodeformations

λ∗∗

ijαβ = lim
n→∞

λ
∗∗(n)
ijαβ . (3.5)

Thus, giving the macrodeformation of the composite, and determining its effective
elastic modules, from equations (3.1)-(3.5) it is possible to investigate the macrostresses
arising in such a composite.

4. Numerical results and discussion

Using the above method and the relations obtained for determining the current poros-
ity of a matrix material, as an example, we can construct the nonlinear diagram of
macrodeformation and investigate the behavior of a concrete representing the cement
matrix, strengthened by crushed stones and metal fibres under uniaxial extension

(〈ε11〉 6= 0, 〈ε22〉 = 0, 〈ε33〉 = 0) . (4.1)

The elastic modulus and Poisson’s ratios of crushed stone, metal and concrete are,
respectively, equal to:

E[1] = 3 · 108 Πa , ν[1] = 0.4 ,

E[2] = 2000 · 108 Πa , ν[2] = 0.25 , (4.2)

E[3] = 300 · 108 Πa , ν[3] = 0.2 ,

the volume contents of crushed stone and metal fibres are:

c1 = 0.1 , c2 = 0.3 , (4.3)

and the ratios of the spheroid semi-axes of crushed stone and metal are, respectively:

t1 = 1.0 , t2 = ∞ , (4.4)

the lower limit value of the intensity of the averaged tangential stresses over matrix
skeleton is equal to:

k0 = 0.8 · 108 Πa . (4.5)
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Figure 2. Stress-strain diagrams for various values of initial poros-
ity and parameters characterizing the distribution function of the
strength distribution.
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Figure 3. Stress-strain diagrams for various values of initial poros-
ity and parameters characterizing the distribution function of the
strength distribution.
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In Figures 2–3 the nonlinear diagrams of stress-strain state for macrostresses 〈σ11〉,
and 〈σ33〉 depending on macrostrain 〈ε11〉 for various values of initial porosity of
concrete p0 (p0 = 0; 0.2; 0.4) and parameters characterizing the distribution function
of the strength distribution are represented. On the diagrams the continuous line
designates the curves which take into account the strength distribution of a material
with parameters α = 2; n = 60, the dotted line – the curves which take into
account the strength distribution with parameters α = 2; n = 30, the dash-dot
line – the curves which take into account the strength distribution with parameters
α = 2; n = 10. For different values of matrix porosity, all three curves coincide up
to the moment of the appearance of microdamage. Moreover, varying the parameters
n and α, the experimental curve of macrodeformation can be fitted to the theoretical
one for every specific material in the best way.

5. Conclusions

Thus, we may conclude that the above method and proposed numerical and analyti-
cal procedure based on the methods of conditional moment function and the iterative
secant method allows us to investigate the nonlinear behavior of stochastic three-
component composites representing an isotropic matrix, strengthened by spheroidal
inclusion, under loading. It is assumed that the nonlinearity of composite deforma-
tions is caused by matrix microdamage. The numerical analysis demonstrates that
the deformative properties of such a composite depend on elastic modules of compo-
nents, shape and volume concentration of inclusions and initial matrix porosity. It is
shown that the strength distribution of a matrix material has significant influence on
the stress-strain diagrams of the composite.
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