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ON UNSATURATED INFILTRATION IN SOILS
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Abstract. The infiltration of water into the soil was investigated by many researchers using
both theoretical and experimental approaches. While the ponded infiltration more or less
can also be treated with analytical methods, the unsaturated infiltration can generally be
solved only by numerical procedures. Unfortunately, the latter method provides no generally
valid relatonships.

Based on the analysis of the wetting front and on experimental results, some general rela-
tonships were established to calculate the equilibrium moisture content corresponding to a
given water flux.
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1. Introduction

Infiltration from rainfall or sprinkler irrigation is of great importance for the practice.
An excess of rainfall over infiltration may cause severe overland flow and soil erosion.
In the case of saturated or ponded infiltration all of the pores are filled with water
and the hydraulic conductivity of the soil equals the saturated conductivity. If the
rate of supply of water is limited in comparison to the maximum rate, then the water
content at the surface and in the transmission zone can not reach the fully saturated
value Wi.

In the wetting front of an infiltration process the matric potential of the soil pre-
dominates and, therefore, the absorption of water takes place. Behind the advancing
wetting front, in which the water content is nearly constant (transmission zone), the
gravitational potential becomes dominant.

If the water content of the transmission zone for any infiltration rate were known,
then the wetting front velocity (or pore water velocity) could simply be determined.
From the continuity equation of flow it follows that the average depth of the wetting
front is given by

-t
y=—" -t (1.1)

where

v is the rain intensity, cm/h,
Wi, W are the initial and asymptotic volumetric water content,



124 Gy. Sitkei

t is the elapsed time,
w is the velocity of the wetting front.

Unfortunately, the asymptotic water content for different infiltration conditions is
generally not known. Therefore we have analyzed the wetting front, especially the
distribution of the matric potential and the gradient of water content in it. We used
also experimental results obtained on packed plexiglass columns.

2. Theoretical Considerations

In any infiltration process a wetting front starts as it is shown in Figure 1.
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Figure 1. Wetting profiles for different water fluxes. 1 —v = K, 2 — v = 0.001 x K

The profile of water content generally shows a very steep wetting front and, there-
fore, in many cases a simplified approach may be used. Measurements on different
types of soils have shown that the steepness of the water profile decreases with increas-
ing hydraulic conductivity. The driving potential is the sum of the matric potential
of the dry soil and the gravitational potential. In the wetting front the absorption of
water occurs by tension forces while behind the wetting front the gravitational effect
becomes more dominant. The steady-state one-dimensional motion of water can be
described by Darcy’s law as

d (¥ +y) dw
—w=KW) —L k(W) — +1 2.1
V=K ) S W)+ (21)
where
K (W) is the hydraulic conductivity of the soil,
) is the matric potential.

In order to use equation (1.1), the asymptotic water content must be known. In
the case of ponded infiltration W = Wy, that is the saturated water content. Under
unsaturated conditions the water content at the surface should approach a value
appropriate for K to equal v. Our main task is to find an appropriate relationship
to describe the variation of the asymptotic water content in terms of soil physical
properties such as the relative rain intensity K /v or the soil matric potential.
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The soil water diffusivity and the hydraulic conductivity are interrelated by the
soil matric potential as follows

dw
K =D - —. 2.2
(W) =D (22)
The soil matric potential is approximated by the following expression [1]:
1 1
MR= —— 7 andm=1—— (2.3)
1+ (a-0)"] n

where the moisture ratio is defined as

W —Ww,

MR = ———7.
W — W,

In this equation W,. is a small moisture value and serves first of all to achieve a better
fitting.

In order to use equation (2.2), the soil water diffusivity relationship is needed.
Earlier experiments have shown that the diffusivity is influenced first of all by the
degree of saturation [2]. Indeed, we have always found good correlation using the
following expression

D =Dy -exp[-A(1—DS)] (2.4)

where A is a constant (for soils in question its value is 9.75 and 7.39 respectively) and
the degree of saturation is given by

o W — Wmin

DS=——
Ws - I/Vmin

(2.5)
Win means a minimum water content at which the liquid diffusion coefficient dras-
tically decreases and it is corresponding to pF-values between 4.2 and 4.5 (wilting
point). For water contents less than Wi, Darcy’s law becomes no longer valid and
the water movement occurs more and more in vapor phase.

Examining equation.(2.1), it is easy to realize that the ratio of infiltration rate
to saturated conductivity has a fundamental influence on the equilibrium moisture
content in the transmission zone. In the following we analyze the structure of wetting
front for different flux conditions. Using the term saturated and relative hydraulic
conductivity and, keeping in mind that d¥/dy = (d¥/dW) - (dW/dy), the moisture
gradient in the wetting front is given by

aw _ v 1 (2.6)

dy K, avy -
K, [ —

This relationship for soil 1 is demonstrated in Figure 2. The curves decline below
15% moisture content because of the deviation from Darcy’s law.

Knowing the moisture gradient, the potential gradient can also be calculated, which
for different relative flux values is plotted in Figure 3. From this Figure the equilibrium
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An integration of equation (2.6)
gives the cumulative wetting front
Figure 2. Moisture gradient in the wetting  depth between two given moisture con-

front as a function of moisture content. 1— tents. We can write

v= K, 2—v=0.1K,, 3—v=0.01K,, 4— K

v = 0.001K,. /dy = /KT (0)dw . (2.7)
v

It is interesting to note that the integral on the right side is the so-called Kirchhoff-
potential often used in analytical solutions. The solution of equation (2.7) for soil 1 is
given in Figure 4. It can clearly be seen that the cumulative wetting front thickness
with increasing moisture content and with decreasing water flux rapidly increases.

A dimensionless equation describing the wetting front propagation can be derived
in the following way. The moisture variation by time is expressed as

AW dwdy W
A dy b dy ¥

where w means the effective pore velocity of water. Using equations (1.1) and (2.6)
we can write

aw _ o 1
dt W -W KK, ($F)

(2.8)

Keeping in mind equation (2.2), a formal integration of equations (2.6) and (2.8)
supplies the following relationship:
2

vy vt

== 2.9

D (W-wy)D (29)
which is equivalent to equation (1.1). In the above equation y means the average
depth of the wetting front corresponding to the mean water content W. The left and
right sides of equation (2.9) can be used as dimensionless coordinates to represent
measurement data.
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Figure 3. Matric potential gradient in  Figure 4. Cumulative wetting front
the wetting front. Different relative  thickness for different relative fluxes.

fluxes from those in Figure 2.

In all equations derived above the unknown water content W appears. In order
to calculate this water content either the diffusion function D(W) and the matric
potential curve ¥ (W) or the relative hydraulic conductivity K, (W) is needed. In the
first case, the solution of the following equation (keeping in mind that d¥/dy = 1):

U DndAw
K, " K, dvU

supplies the equilibrium moisture content. In the second case, if the K,.(W) function
is available (see Figure 5), then the moisture content value can simple be read from
the curve.

3. Results

From the above discussion it is obvious that a generally valid closed form relation
for calculating the asymptotic moisture content cannot be obtained. Nevertheless, an
appropriate approximation would facilitate a rapid estimation of the expected value.

In order to establish such a relationship both theoretically derived asymptotic val-
ues and experimentally obtained values were used. For measurements two different
soils were used with several initial moisture contents. The hydraulic properties of
soils are given in Figure 5 and in Table 1.

soil porosity | Do, “2= | K, < | W | W, a, = |n
silty loam | 50% 2000 | 3.0 015 | 003 [0.015 | 1.25
loam 40% 400 0.4 012 002 [0018 |1.25
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Figure 5. PF-curve and relative conductivity as a function of water content for soils.
1-silty loam, 2-loam
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Figure 6. Equilibrium moisture content  Figure 7. Equilibrium moisture content
as a function of the relative water flux. as a function of pF-number.

Measurements were carried out on packed plexiglass columns with K /v ratios
between 5 and 200 and with initial moisture contents of 10% and 20%.

The calculated and experimentally obtained results are plotted in Figure 6. using
double logaritmic scale and dimensionless quantities. To describe the relationship the
following simple equation is obtained:

W — W KN\ ™"
m—<v) (3.1)

where the exponent n varies between 0.08 and 0.1.
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Using equation (2.9), equation (3.1) can be rewritten as

vy vt (B)"

=— v/ 2
D D W, —-W; (32)

In some cases it is interesting to express the equilibrium moisture content as a function
of matric potential or pF-number. Such relationship for the two soils in question is
to be seen in Figure 7. This curve can be approximated by the following empirical
equation:

W — W

Ws - Wl
where the constants have the following values: A = 0.08 and m = 1.75. The pF-
number corresponds to the equilibrium moisture content for a given flux.

=1— ApF™

4. Conclusion

Based on theoretical and experimental investigations the following conclusions can be
drawn:

— the steepness of the wetting front is determined by the local moisture content
and the relative flux ratio v/ K,

— the equilibrium moisture content in all cases can be approximated as the inter-
section of the matric potential gradient and the d¥/dy = 1.0 lines,

— a simple dimensionless equation is obtained for determining the equilibrium
moisture content which is in good correlation with the experimental results,

— to represent wetting front propagations the dimensionless quantities vy/D and
v2t/[D(W — W1)] can be used.
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