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Abstract

We study in this work the two-body hadronic charmed meson decays, including both the PP and

V P modes. The latest experimental data are first analyzed in the diagrammatic approach. The

magnitudes and strong phases of the flavor amplitudes are extracted from the Cabibbo-favored

(CF) decay modes using χ2 minimization. The best-fitted values are then used to predict the

branching fractions of the singly-Cabibbo-suppressed (SCS) and doubly-Cabibbo-suppressed de-

cay modes in the flavor SU(3) symmetry limit. We observe significant SU(3) breaking effects in

some of SCS channels. In the case of V P modes, we point out that the AP and AV amplitudes

cannot be completely determined based on currently available data. We conjecture that the quoted

experimental results for both D+
s → K̄0K∗+ and D+

s → ρ+η′ are overestimated. We compare the

sizes of color-allowed and color-suppressed tree amplitudes extracted from the diagrammatical ap-

proach with the effective parameters a1 and a2 defined in the factorization approach. The ratio

|a2/a1| is more or less universal among the D → K̄π, K̄∗π and K̄ρ modes. This feature allows

us to discriminate between different solutions of topological amplitudes. For the long-standing

puzzle about the ratio Γ(D0 → K+K−)/Γ(D0 → π+π−), we argue that, in addition to the SU(3)

breaking effect in the spectator amplitudes, the long-distance resonant contribution through the

nearby resonance f0(1710) can naturally explain why D0 decays more copiously to K+K− than

π+π− through the W -exchange topology. This has to do with the dominance of the scalar glueball

content of f0(1710) and the chiral-suppression effect in the decay of a scalar glueball into two

pseudoscalar mesons. The same FSI also explains the occurrence of D0 → K0K̄0 and its vanishing

amplitude when SU(3) flavor symmetry is exact. Owing to the G-parity selection rule, D+
s → π+ω

does not receive contributions from the short-distance W -annihilation and resonant FSIs, but it

can proceed through the weak decays D+
s → ρ+η(

′) followed by the final-state rescattering of ρ+η(
′)

into π+ω through quark exchange.
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I. INTRODUCTION

The hadronic decays of charmed mesons and related physics have been studied extensively in the

past 35 years since the first discovery of charmed meson states in 1974. The experimental progress

is still impressive. For example, many hadronic multibody decays of D0,D+ and D+
s mesons have

been studied using the technique of Dalitz plot analysis in which the resonant structure is probed.

The Dalitz analysis offers the opportunity to understand the light scalar meson spectroscopy and

the underlying structure of light scalar mesons σ, κ, a0(980) and f0(980). The study of charm

physics also opens a new avenue to the search of new physics. For example, the recent observation

of D0 − D̄0 mixing will enable us to explore new physics via flavor-changing neutral currents in

the up-type quark sector. The standard model predicts almost null CP asymmetries in the charm

system. Hence, any observation of CP violation in hadronic charm decays will signal physics beyond

the standard model.

With the advent of heavy quark effective theory, it is known that physics of nonleptonic B

decays can be formulated in a QCD-inspired approach such as QCD factorization, pQCD and

soft-collinear effective theory. However, until today a theoretical description of the underlying

mechanism for exclusive hadronic D decays based on QCD is still not yet available. This has to do

with the mass of the charm quark, of order 1.5 GeV. It is not heavy enough to allow for a sensible

heavy quark expansion and it is not light enough for the application of chiral perturbation theory.

It is known that the näıve factorization approach fails to describe color-suppressed (class-II) decay

modes. Empirically, it was learned in the 1980s that if the Fierz-transformed terms characterized

by 1/Nc are dropped, the discrepancy between theory and experiment will be greatly improved

[1]. This leads to the so-called large-Nc approach for hadronic D decays [2]. Theoretically, explicit

calculations based on the QCD sum-rule analysis [3] indicate that the Fierz terms are indeed largely

compensated by the nonfactorizable corrections. However, the 1/Nc ansatz is not applicable to B

decays.

In spite of the difficulties in formulating a theoretical framework for describing nonleptonic

decays of charmed mesons, a model-independent analysis of charm decays based on the diagram-

matic approach is possible. In this approach, the flavor-flow diagrams are classified according to

the topologies of weak interactions with all strong interaction effects included. Based on flavor

SU(3) symmetry, this model-independent analysis enables us to extract the topological amplitudes

and sense the relative importance of different underlying decay mechanisms. When enough mea-

surements are made with sufficient accuracy, we can extract the diagrammatic amplitudes from

experiment and compare to theoretical estimates, especially checking whether there are any sig-

nificant final-state interactions or whether the weak annihilation diagrams can be ignored as often

asserted in the literature.

A salient feature of the diagrammatic approach analysis of charm decays is that, unlike the

B decays, the magnitude and relative strong phase of each individual topological diagram can
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be extracted from the data without making further assumptions apart from flavor SU(3) sym-

metry. Explicitly, the color-allowed amplitude T , the color-suppressed amplitude C, W -exchange

amplitude E and W -annihilation amplitude A in Cabibbo-allowed D → PP decays can be cleanly

extracted from the data. Recall that the ratio |C/T | in charmless B decays cannot be unambigu-

ously determined due to the contamination of electroweak penguin or weak annihilation diagrams

and that weak annihilation topologies in the B sector are usually neglected in the diagrammatic

approach analysis.

The topological diagram analysis of D decays evidently shows the importance of weak annihi-

lation (W -exchange or W -annihilation) contributions. Since the short-distance weak annihilation

amplitude is subject to helicity suppression, this implies that long-distance weak annihilation in-

duced by final-state interactions should play an essential role.

In this work we shall study the two-body hadronic charmed meson decays, including both the

PP and V P modes. We first analyze the latest experimental data in the diagrammatic approach.

For D → PP decays, there are new CLEO measurements with better precision [4]. There are two

different ways of extracting the topological amplitudes for D → V P decays. We shall present both

results and make a comparison between them. At present, there exist many possible solutions for

the flavor amplitudes. We will study the effective parameters a1 and a2 defined in the factorization

approach and use them as a means to discriminate among different solutions. Another goal of this

work is to see if we can understand the SU(3) breaking effects occurring in the SCS modes, in

the hope of shedding more light on or even resolving the long-standing puzzle with the ratio of

D0 → K+K− to D0 → π+π− branching fractions.

The layout of the present paper is as follows. After a brief review of the diagrammatic approach,

we extract magnitudes and strong phases of the flavor amplitudes from CF D → PP and D → V P

decays in Sec. II. From the extracted invariant amplitudes, we determine the effective parameters

a1 and a2 defined in the factorization approach in Sec. III and proceed to discuss SU(3) breaking

effects in singly-Cabibbo-suppressed modes. Using the branching fraction ratio of D0 → K+K−

to D0 → π+π− as an example, we illustrate how to explain the large SU(3) violation in the ratio

by considering the W -exchange topology induced by the nearby resonance. Sec. IV comes to our

conclusions.

For nice and comprehensive reviews of exclusive hadronic charmed meson decays, the reader is

referred to Refs. [5, 6].
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II. DIAGRAMMATIC APPROACH

A. Preamble

It has been established sometime ago that a least model-dependent analysis of heavy meson

decays can be carried out in the so-called quark-diagram approach 1. In this diagrammatic scenario,

all two-body nonleptonic weak decays of heavy mesons can be expressed in terms of six distinct

quark diagrams [7–9]:2 T , the color-allowed external W -emission tree diagram; C, the color-

suppressed internal W -emission diagram; E, the W -exchange diagram; A, the W -annihilation

diagram; P , the horizontal W -loop diagram; and V , the vertical W -loop diagram. (The one-gluon

exchange approximation of the P graph is the so-called “penguin diagram”.) It should be stressed

that these diagrams are classified according to the topologies of weak interactions with all strong

interaction effects encoded, and hence they are not Feynman graphs. All quark graphs used in

this approach are topological and meant to have all the strong interactions included, i.e., gluon

lines are included implicitly in all possible ways. Therefore, analyses of topological graphs can

provide information on final-state interactions (FSIs). Various topological amplitudes in two-body

hadronic D decays have been extracted from the data in [11–18] after making some reasonable

approximations, e.g., flavor SU(3) symmetry.

For charm decays involving an SU(3) singlet in the final product, e.g., D0 → K
0
φ, K

0
ω, K

0
η0,

there exist additional hairpin diagrams in which a quark-antiquark pair is created from vacuum

to form a color- and flavor-singlet final-state meson [19, 20]. There are four different types of

disconnected hairpin diagrams: Eh, Ah, Ph, Vh corresponding to the topological graphs E, A, P, V

(for details, see [19]). The amplitudes Eh and Ah are denoted by SE and SA, respectively, in

Ref. [12]. They appear in final states with η(′) for the PP modes and with φ, ω, and/or η(′) for the

PV modes. A test of their importance has been proposed in [12]. As they are still not strongly

called for phenomenologically (see discussions in Section IIB), we will ignore these diagrams in

the current analysis. For hadronic charm decays, contributions from the diagrams P and V are

negligible due to the cancellation of the CKM matrix elements V ∗
cdVud and V ∗

csVus.

For final states involving an η or η′, it is more convenient to consider the flavor mixing of ηq

and ηs defined by

ηq =
1√
2
(uū+ dd̄), ηs = ss̄, (1)

in analogy with the wave functions of ω and φ in ideal mixing. The wave functions of the η and η′

1 It is also referred to as flavor-diagram or topological-diagram approach in the literature.
2 Historically, the quark-graph amplitudes T, C, E, A, P named in [10] were originally denoted by

A, B, C, D, E, respectively, in [7, 9]. For the analysis of charmless B decays, one adds the variants

of the penguin diagram such as the electroweak penguin and the penguin annihilation.
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are given by
(

η

η′

)

=

(

cosφ − sinφ

sinφ cosφ

)(

ηq

ηs

)

, (2)

where φ = θ + arctan
√
2, and θ is the η−η′ mixing angle in the octet-singlet basis

(

η

η′

)

=

(

cos θ − sin θ

sin θ cos θ

)(

η8

η0

)

. (3)

The most recent experimental determination of the η−η′ mixing angle is φ = (40.4 ± 0.6)◦ from

KLOE [21], 3 which is indeed close to the original theoretical and phenomenological estimates

of 42.2◦ and (39.3 ± 1.0)◦, respectively, made by Feldmann, Kroll and Stech [23]. Notice that

charm decays involving a final-state ηs are governed by only one type of topological amplitudes, in

addition to the associated hairpin diagram. For example,

A(D0 → K̄0ηs) = E, A(D0 → K̄∗0ηs) = EV ,

A(D+
s → π+ηs) = T, A(D+

s → ρ+ηs) = TP . (4)

The D →Mη and Mη′ amplitudes then have the expressions

A(D →Mη) = A(D →Mηq) cos φ−A(D →Mηs) sin φ,

A(D →Mη′) = A(D →Mηq) sin φ+A(D →Mηs) cos φ. (5)

B. D → PP

Based on flavor SU(3) symmetry, the quark-graph amplitudes for the Cabibbo-favored

(CF), singly-Cabibbo-suppressed (SCS) and doubly-Cabibbo-suppressed (DCS) decays of charmed

mesons into two pseudoscalar mesons are listed in Tables I to III, respectively. Experimental data

on the branching fractions are taken from the most recent CLEO measurements [4]. We shall follow

the conventional practice to denote the primed amplitudes for SCS modes and double-primed am-

plitudes for DCS decays. In the SU(3) limit, primed and unprimed amplitudes should be the same.

Note that the selection rule for a vanishing D+
s → π+π0 follows from the isospin transformation

properties of the weak Hamiltonian and isospin invariance of strong interactions and hence it is

unaffected by SU(3) breaking or final-state interactions [24].

For D → PP decays, the amplitudes T,C,E,A have dimensions of energy as they are related

to the partial decay rate via

Γ(D → PP ) =
pc

8πm2
D

|A|2, (6)

3 For the mixing angle φ = arc sin(1/
√
3) = 35.26◦, the η and η′ wave functions have simple expressions

[22]: η = 1√
3
(
√
2ηq − ηs) =

1√
3
(uū+ dd̄− ss̄) and η′ = 1√

3
(ηq +

√
2ηs) =

1√
6
(uū+ dd̄+ 2ss̄).
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with pc being the center-of-mass momentum of either meson in the final state. The reduced quark-

graph amplitudes T,C,E,A are extracted from the Cabibbo-allowed D → PP decays to be (in

units of 10−6 GeV)

T = 3.14± 0.06, C = (2.61 ± 0.08) e−i(152±1)◦ ,

E = (1.53+0.07
−0.08) e

i(122±2)◦ , A = (0.39+0.13
−0.09) e

i(31+20

−33
)◦ (7)

for φ = 40.4◦, and

T = 3.08 ± 0.06 , C = (2.46+0.06
−0.07) e

−i(152±1)◦ ,

E = (1.66 ± 0.06) ei(120±2)◦ , A = (0.34+0.17
−0.18) e

i(70+10

−27
)◦ (8)

for φ = 35.26◦. The fitted χ2 value is 0.29 per degree of freedom with quality 59.2% and 1.73

per degree of freedom with quality 18.8% for the fits (7) and (8), respectively. Throughout this

paper, we take λ = 0.2253± 0.0007, the weighted average of CKMfitter [25] and UTfit [26] groups,

and neglect its small error. The relevant CKM matrix elements are Vud = Vcs = 1 − λ2/2 and

Vus = −Vcd = λ. With the inclusion of CKM factor V ∗
csVud in the amplitudes, our results in (8)

agree with those in [18]. Note that the previous fit in 2008 had [15, 17]

T = 2.78± 0.13, C = (2.04 ± 0.17) ei(−151±2)◦ ,

E = (1.68 ± 0.12) ei(117±4)◦ , A = (0.54 ± 0.37) ei(−64+32

− 8
)◦ (9)

with χ2 = 0.65 per degree of freedom.

A few words about error extraction in our analysis are in order here. To obtain the 1-σ range

of some parameter around its best-fitted value, we scan the parameter while allowing all the other

parameters to vary at the same time to minimize the χ2 function. This renders a more conservative

range than the method that fixes all the other parameters to their best-fitted values when scanning

the parameter of interest, as used, for example, in Ref. [16].

The magnitudes of the updated T and C are larger than the 2008 ones due to the newly measured

branching fractions of K̄0η, π+η and π+η′ modes being larger than the old ones. Notice that the

W -annihilation amplitude A is substantially smaller than the W -exchange one E, and it is no

longer antiparallel to E, contrary to the previous claim [11, 15]. Indeed, A is almost perpendicular

to E in fit (7) and its angle relative to E is close to 50◦ in fit (8).

A global fit to the data of singly Cabibbo-suppressed decay modes shows that the value of χ2

is very large, of order 87 per degree of freedom. One solution we find is

T ′ = 1.14, C ′ = 2.36 ei222
◦

,

E′ = 1.85 e−i52◦ , A′ = 2.51 ei100
◦

. (10)

This deviates substantially from the unprimed solution given in Eq. (7). The main processes

contributing to large χ2 are D0 → K+K− (∆χ2 = 462), D0 → π+π− (∆χ2 = 248), D0 → π0π0

(∆χ2 = 119), and D+ → π+η (∆χ2 = 96). This is an indication of large SU(3) breaking effects in
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TABLE I: Branching fractions and invariant amplitudes for Cabibbo-favored decays of charmed

mesons to two pseudoscalar mesons. Data are taken from [4]. Predictions based on our best-fitted

results in (7) are given in the last column.

Meson Mode Representation Bexp Bfit

(%) (%)

D0 K−π+ V ∗
csVud(T + E) 3.91± 0.08 3.91 ± 0.17

K
0
π0 1√

2
V ∗
csVud(C − E) 2.38± 0.09 2.36 ± 0.08

K
0
η V ∗

csVud[
1√
2
(C + E) cos φ− E sinφ ] 0.96± 0.06 0.98 ± 0.05

K
0
η ′ V ∗

csVud[
1√
2
(C + E) sinφ+ E cosφ ] 1.90± 0.11 1.91 ± 0.09

D+ K
0
π+ V ∗

csVud(T + C) 3.07± 0.10 3.08 ± 0.36

D+
s K

0
K+ V ∗

csVud(C +A) 2.98± 0.17 2.97 ± 0.32

π+π0 0 < 0.037 0

π+η V ∗
csVud(

√
2A cosφ− T sinφ) 1.84± 0.15 1.82 ± 0.32

π+η ′ V ∗
csVud(

√
2A sinφ+ T cosφ) 3.95± 0.34 3.82 ± 0.36

these decay modes. However, if we perform a fit restricted to the measured branching fractions of

D0 → π0η, π0η′, ηη, ηη′, the extracted amplitudes are (in units of 10−6 GeV and for φ = 40.4◦)

C ′ = 2.88+0.14
−0.15, E′ = (1.37+0.15

−0.17) e
−i(79±5)◦ , (11)

with χ2 = 0.29, where we have assumed C to be real and the phase on E is relative to C. Note

that there is a two-fold ambiguity in the relative strong phase, and we have picked the negative

one that is consistent with Eq. (7). These values agree with the unprimed values in Eq. (7) within

1-σ. If the data of D0 → π0π0 is also included in the above fit, it will dominate the χ2 value which

now reads 19.6. A global fit to both CF and SCS modes yields χ2 = 52 per degree of freedom.

Assuming that the primed amplitudes are identical to unprimed ones, i.e., T ′ = T, C ′ = C,

etc., the predicted branching fractions of SCS D → PP decays are shown in the last column of

Table II. It is clear that the predicted rates for π+π− and π0π0 are too large, while those for

K+K−, π+π0, π+η, π+η′, K+η and K+η′ are too small compared to experiments. The decay

D0 → K0K̄0 is prohibited by SU(3) symmetry, but the measured rate is comparable to that of

D0 → π0π0. In the next section we shall study flavor SU(3) symmetry violation in SCS decays

using the factorization approach and investigate its possible connection to final-state interactions.

Setting the double-primed topological amplitudes as unprimed ones, the branching fractions of

DCS processes are displayed in Table III.

A few remarks on our assumption of ignoring the SE and SA amplitudes are in place here. The

former (latter) diagram appears only in the singly Cabibbo-suppressed decay modes D0 → π0η(′)

and D0 → ηη(′) (D+ → π+η(′) and D+
s → K+η(′)). Ref. [18] includes them in their analysis.

Two solutions have been found for the magnitude of SE. One is relatively large when compared

7



TABLE II: Branching fractions and invariant amplitudes for singly-Cabibbo-suppressed decays of

charmed mesons to two pseudoscalar mesons. Data are taken from [4]. Predictions based on our

best-fitted results in (7) with exact flavor SU(3) symmetry are given in the last column.

Meson Mode Representation Bexp Btheory

(×10−3) (×10−3)

D0 π+π− V ∗
cdVud(T

′ + E′) 1.45 ± 0.05 2.24 ± 0.10

π0π0 1√
2
V ∗
cdVud(C

′ − E′) 0.81 ± 0.05 1.35 ± 0.05

π0η −V ∗
cdVudE

′ cosφ− 1√
2
V ∗
csVusC

′ sinφ 0.68 ± 0.07 0.75 ± 0.02

π0η′ −V ∗
cdVudE

′ sinφ+ 1√
2
V ∗
csVusC

′ cosφ 0.91 ± 0.13 0.74 ± 0.02

ηη − 1√
2
V ∗
cdVud(C

′ +E′) cos2 φ+ V ∗
csVus(2E

′ sin2 φ− 1√
2
C ′ sin 2φ) 1.67 ± 0.18 1.44 ± 0.08

ηη′ −1
2V

∗
cdVud(C

′ + E′) sin 2φ+ V ∗
csVus(E

′ sin 2φ− 1√
2
C ′ cos 2φ) 1.05 ± 0.26 1.19 ± 0.07

K+K− V ∗
csVus(T

′ + E′) 4.07 ± 0.10 1.92 ± 0.08

K0K
0
V ∗
cdVudE

′
s + V ∗

csVusE
′
d

a 0.64 ± 0.08 0

D+ π+π0 1√
2
V ∗
cdVud(T

′ + C ′) 1.18 ± 0.07 0.88 ± 0.10

π+η 1√
2
V ∗
cdVud(T

′ + C ′ + 2A′) cosφ− V ∗
csVusC

′ sinφ 3.54 ± 0.21 1.48 ± 0.26

π+η′ 1√
2
V ∗
cdVud(T

′ + C ′ + 2A′) sinφ+ V ∗
csVusC

′ cosφ 4.68 ± 0.30 3.70 ± 0.37

K+K
0
V ∗
cdVudA

′ + V ∗
csVusT

′ 6.12 ± 0.22 b 5.46 ± 0.53

D+
s π+K0 V ∗

cdVudT
′ + V ∗

csVusA
′ 2.52 ± 0.27 c 2.73 ± 0.26

π0K+ 1√
2
(V ∗

cdVudC
′ − V ∗

csVusA
′) 0.62 ± 0.23 0.86 ± 0.09

K+η 1√
2
(V ∗

cdVudC
′ + V ∗

csVusA
′) cos φ− V ∗

csVus(T
′ +C ′ +A′) sinφ 1.76 ± 0.36 0.78 ± 0.09

K+η′ 1√
2
(V ∗

cdVudC
′ + V ∗

csVusA
′) sin φ+ V ∗

csVus(T
′ + C ′ +A′) cosφ 1.80 ± 0.52 1.07 ± 0.17

aThe subscript q in E′
q refers to the quark-antiquark pair popping out of the vacuum in the final state.

bA new Belle measurement yields B(D+ → K+K̄0) = (5.50± 0.16)× 10−3 [27].
cA new Belle measurement yields B(D+

s → π+K0) = (2.40± 0.18)× 10−3 [27].

to the other amplitudes (T,C,E, and A) and thus argued unlikely. The other is close to zero,

and explains our good fit of C ′ and E′ given in Eq. (11) even without including SE. As to the

magnitude of SA, Ref. [18] finds only one large solution that is again unlikely in comparison with

the other amplitudes. Moreover, our predictions for the branching fractions of the D+ → π+η(′)

and D+
s → Kη(′) decays in Table II, which are based on the fit to Cabibbo-favored modes without

including the SA amplitude, are in better agreement with the data than the predictions given in

Table VI of Ref. [18] where the large SA solution is used. Therefore, the current data do not

suggest significant SE and SA contributions.

The quantities R(D0), R(D+) and R(D+
s ) defined by

R(D0) =
Γ(D0 → KSπ

0)− Γ(D0 → KLπ
0)

Γ(D0 → KSπ0) + Γ(D0 → KLπ0)
,
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TABLE III: Branching fractions and invariant amplitudes for doubly-Cabibbo-suppressed decays

of charmed mesons to two pseudoscalar mesons. Data are taken from [4]. Predictions based on our

best-fitted results in (7) with exact flavor SU(3) symmetry are given in the last column.

Meson Mode Representation Bexp Btheory

(×10−4) (×10−4)

D0 K+π− V ∗
cdVus(T

′′ + E′′) 1.48 ± 0.07 1.12 ± 0.05

K0π0 1√
2
V ∗
cdVus(C

′′ − E′′) 0.67 ± 0.02

K0η V ∗
cdVus[

1√
2
(C ′′ + E′′) cosφ− E′′ sinφ ] 0.28 ± 0.02

K0η ′ V ∗
cdVus[

1√
2
(C ′′ + E′′) sinφ+ E′′ cosφ ] 0.55 ± 0.03

D+ K0π+ V ∗
cdVus(C

′′ +A′′) 1.98 ± 0.22

K+π0 1√
2
V ∗
cdVus(T

′′ −A′′) 1.72 ± 0.19 1.59 ± 0.15

K+η V ∗
cdVus(

1√
2
(T ′′ +A′′) cos φ−A′′ sinφ) 0.98 ± 0.04

K+η′ V ∗
cdVus(

1√
2
(T ′′ +A′′) sin φ+A′′ cosφ) 0.91 ± 0.17

D+
s K0K+ V ∗

cdVus(T
′′ + C ′′) 0.38 ± 0.04

R(D+) =
Γ(D+ → KSπ

+)− Γ(D+ → KLπ
+)

Γ(D+ → KSπ+) + Γ(D+ → KLπ+)
,

R(D+
s ) =

Γ(D+
s → KSK

+)− Γ(D+
s → KLK

+)

Γ(D+
s → KSK+) + Γ(D+

s → KLK+)
(12)

measure the asymmetries between KS and KL production in these decays due to the interference

between CF and DCS amplitudes. It is straightforward to show that 4

R(D0) = 2 tan2 θC = 0.107 ,

R(D+) = 2 tan2 θC Re

(

C ′′ +A′′

C + T

)

= −0.019 ± 0.016 ,

R(D+
s ) = 2 tan2 θC Re

(

C ′′ + T ′′

C +A

)

= −0.008 ± 0.007 . (13)

Note that R(D+) is predicted to be 0.035 ∼ 0.044 in [29] and −0.005± 0.013 in [18], while R(D+
s )

is −0.0022 ± 0.0087 in [18]. Our results for R(D+) and R(D+
s ) differ in central values from those

in [18] since the latter were obtained using the topological amplitudes extracted for φ = 43◦. The

4 The formula R(D0) = 2 tan2 θC was originally derived under the phase convention such that KS =
1√
2
(K0 − K̄0) and KL = 1√

2
(K0 + K̄0) [28]. Of course, physics should be independent of the choice of

phase convention. If we choose the convention CP |K0(~p)〉 = |K̄0(−~p)〉, we will have KS = 1√
2
(K0 +

K̄0) and KL = 1√
2
(K0 − K̄0) in the absence of CP violation. Since the axial vector current Aµ =

s̄γµ(1 − γ5)d transforms as CP (s̄γµ(1 − γ5)d)(CP )
† = −d̄γµ(1 − γ5)s under the CP transformation, it

is clear that the decay constants of K0 and K̄0 are opposite in sign. Consequently, A(D0 → K0π0) =

−(V ∗
cdVus)/(V

∗
csVud)A(D0 → K̄0π0) = tan2 θCA(D0 → K̄0π0). It follows that D0 → K̄0π0 and D0 →

K0π0 contribute constructively to D0 → KSπ
0 and destructively to D0 → KLπ

0.
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CLEO measurements are [30]

R(D0) = 0.108 ± 0.025 ± 0.024, R(D+) = 0.022 ± 0.016 ± 0.018. (14)

Evidently, the calculated R(D0) agrees well with experiment, while there is no evidence for a

significant asymmetry in D+ → KS,Lπ
+ decays.

C. D → V P

The topological amplitude expressions for CF, SCS and DCSD → V P decays are listed in Tables

IV to VI, respectively. For reduced amplitudes T and C in D → V P decays, the subscript P (V )

implies a pseudoscalar (vector) meson which contains the spectator quark of the charmed meson.

For E and A amplitudes with the final state q1q̄2, the subscript P (V ) denotes a pseudoscalar

(vector) meson which contains the antiquark q̄2.

The invariant amplitude is related to the partial width via

Γ(D → V P ) =
pc

8πm2
D

∑

pol.

|A|2 (15)

by summing over the the polarization states of the vector meson, or through the relation

Γ(D → V P ) =
p3c

8πm2
D

|Ã|2, (16)

by taking the polarization vector out of the amplitude, where A = (mV /mD)Ã (ε · pD). The first

approach has been used in [36] for the extraction of topological amplitudes in B → V P decays,

while the second approach was employed in [11, 12, 16] for D → V P . To illustrate the relations

between Eqs. (15) and (16), we consider the channel D+
s → π+φ as an example. Its amplitude is

given by A = V ∗
csVudTV with

TV = 2fπmφA
Dsφ
0 (m2

π)(ε · pD). (17)

evaluated in the factorization approach. After summing over the polarizations of the vector meson,

the above expression can be simplified by replacing mV ε·pD withmDpc. Hence, we obtain Eq. (16)

with

T̃V = 2fπmDA
Dsφ
0 (m2

π) =
mD

mV

TV
ε · pD

. (18)

From the decays D+
s → π+φ, D0 → K̄0φ and the three CF D → K̄∗π channels, two solutions for

the magnitudes of and relative phases between TV , CP and EP are found and shown in Table VII

for two different ways of extracting topological amplitudes using (15) and (16). It is noted that

these results have no dependence on the η-η′ mixing angle. Solutions with a smaller CP , i.e. A’

and S’, are ruled out by the measurements of SCS decays D0 → π0φ and D+ → π+φ since they

10



TABLE IV: Branching fractions and invariant amplitudes for Cabibbo-favored decays of charmed

mesons to one pseudoscalar and one vector meson. Data are taken from [31]. The last two columns

show the fitted branching fractions obtained from solutions (A, A1) and (S, S1), respectively, for

φ = 40.4◦. Due to the lack of information on AP and AV , no prediction is attempted for D+
s decays

except D+
s → π+φ.

Meson Mode Representation Bexp Bfit (A,A1) Bfit (S,S1)

(%) (%) (%)

D0 K∗−π+ V ∗
csVud(TV + EP ) 5.91 ± 0.39 5.91 ± 0.70 5.91± 0.66

K−ρ+ V ∗
csVud(TP + EV ) 10.8± 0.7 10.8± 2.2 10.7 ± 2.3

K
∗0
π0 1√

2
V ∗
csVud(CP −EP ) 2.82 ± 0.35 2.82 ± 0.34 2.82± 0.28

K
0
ρ0 1√

2
V ∗
csVud(CV − EV ) 1.54 ± 0.12 1.54 ± 1.15 1.55± 0.34

K
∗0
η V ∗

csVud(
1√
2
(CP + EP ) cosφ− EV sinφ ) 0.96 ± 0.30 0.96 ± 0.32 1.12± 0.26

K
∗0
η ′ V ∗

csVud(
1√
2
(CP + EP ) sinφ− EV cosφ ) < 0.11 0.012 ± 0.003 0.020 ± 0.003

K
0
ω 1√

2
V ∗
csVud(CV + EV ) 2.26 ± 0.40 2.26 ± 1.38 2.34± 0.41

K
0
φ V ∗

csVudEP 0.868 ± 0.060 0.868 ± 0.139 0.868 ± 0.110

D+ K
∗0
π+ V ∗

csVud(TV + CP ) 1.83 ± 0.14 1.83 ± 0.49 1.83± 0.46

K
0
ρ+ V ∗

csVud(TP + CV ) 9.2 ± 2.0 9.2 ± 6.7 9.7± 5.2

D+
s K

∗0
K+ V ∗

csVud(CP +AV ) 3.91 ± 0.23 a

K
0
K∗+ V ∗

csVud(CV +AP ) 5.3 ± 1.2

ρ+π0 1√
2
V ∗
csVud(AP −AV ) —

ρ+η V ∗
csVud(

1√
2
(AP +AV ) cosφ− TP sinφ) 8.9± 0.8 b

ρ+η ′ V ∗
csVud(

1√
2
(AP +AV ) sinφ+ TP cosφ) 12.2± 2.0

π+ρ0 1√
2
V ∗
csVud(AV −AP ) —

π+ω 1√
2
V ∗
csVud(AV +AP ) 0.21 ± 0.09 c

π+φ V ∗
csVudTV 4.38 ± 0.35 4.38 ± 0.35 4.38± 0.35

aFrom the fit fraction Γ(D+
s → K̄∗0K+)/Γ(D+

s → K+K−π+) = (47.4 ± 1.5)% [32] combined with the

PDG value [31].
bFrom [33].
cFrom [34].

will lead to predictions too small by a factor of 3 when confronted with experiment, 5 while the

data can be nicely explained with the larger CP (see Table V), as noticed in [13, 16]. Although the

5 There are two different values of B(D0 → π0φ) quoted by the Particle Data Group [31]: (1.24±0.12)×10−3

obtained by BaBar [37] and CLEO [38] from the Dalitz-plot analysis with interference, and (0.76±0.05)×
10−3 obtained by Belle by measuring the background for the radiative decay D0 → φγ [39]. In this work,

we shall use the former.
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TABLE V: Same as Table IV except for singly-Cabibbo-suppressed decays of charmed mesons.

Due to the lack of information on AP and AV , no prediction is attempted for D+
s decays except

D+ → π+φ.

Meson Mode Representation Bexp Btheory (A,A1) Btheory (S,S1)

(×10−3) (×10−3) (×10−3)

D0 π+ρ− V ∗
cdVud(T

′
V + E′

P ) 4.97± 0.23 3.92 ± 0.46 5.18 ± 0.58

π−ρ+ V ∗
cdVud(T

′
P + E′

V ) 9.8± 0.4 8.34 ± 1.69 8.27 ± 1.79

π0ρ0 1
2V

∗
cdVud(C

′
P + C ′

V − E′
P − E′

V ) 3.73± 0.22 2.96 ± 0.98 3.34 ± 0.33

K+K∗− V ∗
csVus(T

′
V + E′

P ) 1.53± 0.15 1.99 ± 0.24 1.99 ± 0.22

K−K∗+ V ∗
csVus(T

′
P + E′

V ) 4.41± 0.21 4.25 ± 0.86 3.18 ± 0.69

K0K
∗0

V ∗
csVusE

′
P + V ∗

cdVudE
′
V < 1.8 0.29 ± 0.22 0.05 ± 0.06

K
0
K∗0 V ∗

csVusE
′
V + V ∗

cdVudE
′
P < 0.9 0.29 ± 0.22 0.05 ± 0.06

π0ω −1
2V

∗
cdVud(C

′
V − C ′

P + E′
P + E′

V ) < 0.26 0.10 ± 0.18 1.01 ± 0.18

π0φ 1√
2
V ∗
csVusC

′
P 1.24± 0.12 1.22 ± 0.08 1.11 ± 0.05

ηω V ∗
cdVud

1
2(C

′
V + C ′

P + E′
V + E′

P ) cosφ 2.21 ± 0.23 a 3.08 ± 1.42 3.94 ± 0.61

−V ∗
csVus

1√
2
C ′
V sinφ

η ′ω V ∗
cdVud

1
2(C

′
V + C ′

P + E′
V + E′

P ) sinφ — 0.07 ± 0.02 0.15 ± 0.01

+V ∗
csVus

1√
2
C ′
V cosφ

ηφ V ∗
csVus(

1√
2
C ′
P cosφ− (E′

V + E′
P ) sinφ) 0.14± 0.05 0.31 ± 0.10 0.41 ± 0.08

ηρ0 V ∗
cdVud

1
2(C

′
V − C ′

P − E′
V − E′

P ) cosφ — 1.11 ± 0.86 1.17 ± 0.34

−V ∗
csVus

1√
2
C ′
V sinφ

η ′ρ0 V ∗
cdVud

1
2(C

′
V − C ′

P − E′
V − E′

P ) sinφ — 0.14 ± 0.02 0.26 ± 0.02

+V ∗
csVus

1√
2
C ′
V cosφ

D+ π+ρ0 1√
2
V ∗
cdVud(T

′
V + C ′

P −A′
P +A′

V ) 0.82± 0.15

π0ρ+ 1√
2
V ∗
cdVud(T

′
P + C ′

V +A′
P −A′

V ) —

π+ω 1√
2
V ∗
cdVud(T

′
V + C ′

P +A′
P +A′

V ) 2.1 ± 0.9 b

π+φ V ∗
csVusC

′
P 6.2± 0.7 6.21 ± 0.43 5.68 ± 0.28

ηρ+ V ∗
cdVud

1√
2
(T ′

P + C ′
V +A′

V +A′
P ) cos φ < 7

−V ∗
csVusC

′
V sinφ

η ′ρ+ V ∗
cdVud

1√
2
(T ′

P + C ′
V +A′

V +A′
P ) sinφ < 5

+V ∗
csVusC

′
V cosφ

K+K
∗0

V ∗
cdVudA

′
V + V ∗

csVusT
′
V 4.4± 0.5

K
0
K∗+ V ∗

cdVudA
′
P + V ∗

csVusT
′
P 31.8± 13.8

D+
s π+K∗0 V ∗

cdVudT
′
V + V ∗

csVusA
′
V 2.25± 0.39

π0K∗+ 1√
2
(V ∗

cdVudC
′
V − V ∗

csVusA
′
V ) —

K+ρ0 1√
2
(V ∗

cdVudC
′
P − V ∗

csVusA
′
P ) 2.7± 0.5

K0ρ+ V ∗
cdVudT

′
P + V ∗

csVusA
′
P —

ηK∗+ 1√
2
(V ∗

cdVudC
′
V + V ∗

csVusA
′
V ) cos φ —

−V ∗
csVus(T

′
P + C ′

V +A′
P ) sinφ

η ′K∗+ 1√
2
(V ∗

cdVudC
′
V + V ∗

csVusA
′
V ) sin φ —

+V ∗
csVus(T

′
P + C ′

V +A′
P ) cosφ

K+ω 1√
2
(V ∗

cdVudC
′
P + V ∗

csVusA
′
P ) < 2.4 b

K+φ V ∗
csVus(T

′
V + C ′

P +A′
V ) < 0.57

aData from [35].
bData from [34].

12



TABLE VI: Same as Table IV except for doubly-Cabibbo-suppressed decays of charmed mesons.

Meson Mode Representation Bexp Btheory (A,A1) Btheory (S,S1)

(×10−4) (×10−4) (×10−4)

D0 K∗+ π− V ∗
cdVus(T

′′
P + E′′

V ) 3.0+3.9
−1.2 3.59 ± 0.72 2.69 ± 0.58

K∗0 π0 1√
2
V ∗
cdVus (C

′′
P − E′′

V ) 0.54 ± 0.18 0.74 ± 0.17

φK0 V ∗
cdVusE

′′
V 0.06 ± 0.05 0.15 ± 0.06

ρ−K+ V ∗
cdVus(T

′′
V + E′′

P ) 1.45 ± 0.17 1.91 ± 0.21

ρ0K0 1√
2
V ∗
cdVus(C

′′
V − E′′

P ) 0.91 ± 0.51 0.63 ± 0.19

ωK0 1√
2
V ∗
cdVus(C

′′
V + E′′

P ) 0.58 ± 0.40 0.85 ± 0.21

K∗0 η V ∗
cdVus(

1√
2
(C ′′

P + E′′
V ) cos φ− E′′

P sinφ) 0.33 ± 0.08 0.28 ± 0.05

K∗0 η′ V ∗
cdVus(

1√
2
(C ′′

P + E′′
V ) sinφ+ E′′

P cosφ) 0.0040 ± 0.0006 0.0061 ± 0.0004

D+ K∗0 π+ V ∗
cdVus(C

′′
P +A′′

V ) 4.35 ± 0.90

K∗+ π0 1√
2
V ∗
cdVus (T

′′
P −A′′

V )

φK+ V ∗
cdVusA

′′
V

ρ+K0 V ∗
cdVus(C

′′
V +A′′

P )

ρ0K+ 1√
2
V ∗
cdVus(T

′′
V −A′′

P ) 2.4± 0.6

ωK+ 1√
2
V ∗
cdVus(T

′′
V +A′′

P )

K∗+ η V ∗
cdVus(

1√
2
(T ′′

P +A′′
V ) cos φ−A′′

P sinφ)

K∗+ η′ V ∗
cdVus(

1√
2
(T ′′

P +A′′
V ) sin φ+A′′

P cosφ)

D+
s K∗+K0 V ∗

cdVus(T
′′
P + C ′′

V ) 1.17 ± 0.86 1.03 ± 0.55

K∗0K+ V ∗
cdVus(T

′′
V + C ′′

P ) 0.20 ± 0.05 0.22 ± 0.06

fact that the magnitude of color-suppressed CP is larger than the color-allowed TV seems to be in

contradiction with the näıve expectation, we shall see in the next section that the corresponding

effective parameter a1 is still larger than a2, as anticipated from the short-distance approach.

Using the solutions of TV , CP and EP as inputs, the other amplitudes TP , CV and EV can

be obtained by considering the decay modes D0 → K̄0ω, D0 → K̄∗0η, D0 → K−ρ+, K̄0ρ0 and

D+ → K̄0ρ+. Here we have assumed that TP and TV are relatively real. We obtain 6 solutions

A1−A6 for topological amplitudes extracted from (16) and 5 solutions S1−S5 when amplitudes

are extracted from (15), as given in Table VIII.

Several remarks are in order: (i) All the solutions are exact with χ2 = 0, except for S1 where

the fit χ2 value is 0.42. This is reflected in some of the predicted branching fractions in Table IV.

(ii) Solutions displayed in Table VIII are obtained using the η − η′ mixing angle φ = 40.4◦. If the

angle φ = 35.26◦ is employed, we obtain

(A1) TP = 7.85+0.54
−2.27, CV = (3.63+0.71

−1.21) e
i(172+16

−14
)◦ , EV = (2.51+1.19

−1.18)e
−i(110+16

−23
)◦ ,

(S1) TP = 3.12+0.29
−0.39, CV = (1.25+0.32

−0.39) e
i(177+13

−11
)◦ , EV = (1.42+0.29

−0.34)e
−i(107+10

−11
)◦ . (19)

where the amplitudes in the A1 solution are quoted in units of 10−6 and those in the S1 solution

in units of 10−6(ε · pD). By comparing them with solutions A1 and S1 in Table VIII, we see that a

small decrease of the η−η′ mixing angle will reduce TP and CV slightly and enhance the magnitude
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TABLE VII: Solutions for TV , CP and EP . The top two solutions in units of 10−6 are obtained

using Eq. (16), while the bottom two solutions in units of 10−6(ε ·pD) are extracted using Eq. (15).

TV CP EP

A 4.16+0.16
−0.17 (5.14+0.30

−0.33)e
−i(162±3)◦ (3.09 ± 0.11)e−i(93±5)◦

A’ 4.16+0.16
−0.17 (3.00+0.35

−0.32)e
−i(158+3

−4
)◦ (3.09 ± 0.11)ei(93±5)◦

S 2.15+0.08
−0.09 (2.68+0.14

−0.15)e
−i(164±3)◦ (1.69 ± 0.06)e−i(103±4)◦

S’ 2.15+0.08
−0.09 (1.53+0.17

−0.15)e
−i(162+3

−5
)◦ (1.69 ± 0.06)ei(103±4)◦

TABLE VIII: Solutions for TP , CV and EV with inputs from solution A and S in Table VII.

Solutions A1−A6 in units of 10−6 are obtained using Eq. (16), while solutions S1−S5 in units of

10−6(ε · pD) are extracted using Eq. (15). Here we take φ = 40.4◦.

TP CV EV

A1 8.11+0.32
−0.43 (4.15+0.34

−0.57)e
i(164+36

−10
)◦ (1.51+0.97

−0.69)e
−i(124+57

−26
)◦

A2 6.16+0.55
−0.51 (1.99+0.63

−0.60)e
−i(165+9

−8
)◦ (3.95+0.31

−0.41)e
−i(89±6)◦

A3 −6.59+0.79
−0.62 (4.09+0.29

−0.39)e
−i(39+12

−11
)◦ (1.66+0.66

−0.59)e
−i(113±16)◦

A4 −6.39+1.05
−1.03 (2.19+1.16

−1.07)e
−i(12+14

−21
)◦ (3.83+0.56

−1.03)e
−i(89±10)◦

A5 −3.33+0.34
−0.37 (1.74+0.59

−0.76)e
−i(111+15

−17
)◦ (4.06+0.32

−0.38)e
−i(185+11

−9
)◦

A6 −3.46+0.39
−0.45 (2.03+0.59

−0.79)e
i(99+16

−13
)◦ (3.93+0.38

−0.44)e
−i(185±10)◦

S1 3.14+0.31
−0.50 (1.33+0.36

−0.51)e
i(177+16

−13
)◦ (1.31+0.40

−0.47)e
−i(106+13

−16
)◦

S2 −2.20+0.96
−0.35 (1.46+0.19

−0.30)e
−i(53+14

−19
)◦ (1.13+0.28

−0.26)e
−i(131+15

−57
)◦

S3 −2.11+0.64
−0.37 (0.46+0.43

−0.30)e
−i(39+21

−65
)◦ (1.79+0.12

−0.20)e
−i(104+9

−12
)◦

S4 −1.41+0.17
−0.30 (0.82+0.34

−0.35)e
−i(102+26

−19
)◦ (1.66+0.16

−0.78)e
−i(177+22

−11
)◦

S5 −1.38+0.14
−0.15 (0.75+0.24

−0.31)e
i(109+18

−14
)◦ (1.69+0.14

−0.15)e
−i(177+13

−10
)◦

of EV . (iii) Using φ = 35.26◦ and removing the CKM angles V ∗
cdVud from the amplitudes, we are

able to reproduce solutions A1−A6 in Table III of [16]. 6 (iv) The relation EV = −EP used in

[12] is not borne out in this analysis. Instead, the angle between EV and EP turns out to be

small. (v) To see the relative phase δTV TP
between TP and TV , we fit to the data of the CF D0,

D+ decays and the channel D+
s → π+φ and find that δTV TP

is of order (16 ∼ 18)◦ when using

Eq. (15) and (−1 ∼ 1)◦ when using Eq. (16). Therefore, the assumption of relatively real TP and

TV amplitudes is justified. (vi) A careful comparison between the two sets of solutions (A1−A6 and

S1−S5) in Table VIII shows that there is no solution in the latter set that corresponds to solution

A2. Ref. [16] claims that solution A2 is an alternative solution to A1 as it produces roughly the

same χ2 as A1 when they are applied to the SCS decays. However, we find that the D0 → φη

mode alone contributes ∆χ2 = 285 in solution A2, sufficient to disregard this solution.

6 It seems to us that there is a sign typo in solution A6 of [16]: The amplitude TP there should be negative.
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Now we come to the remaining parameters AP and AV appearing in the CF D+
s decays. The

non-observation of the decaysD+
s → ρ0π+ and ρ+π0 gives a strong constraint on theW -annihilation

amplitudes. The mode D+
s → ρ0π+ was quoted by the Particle Data Group as “not seen” [31].

While the ratio Γ(D+
s → ρ0π+)/Γ(D+

s → π+π+π−) was measured by E791 to be (5.8±2.3±3.7)%

[40], a most recent Dalitz plot analysis of D+
s → π+π+π− by BaBar yielded the fit fraction

(1.8 ± 0.5 ± 1.0)% [41]. This mode was also not seen by the FOCUS Collaboration [42]. Given

the branching fraction B(D+
s → π+π+π−) = (1.11 ± 0.08)% [31], the BaBar result leads to the

upper limit B(D+
s → ρ0π+) < 5 × 10−4. If we ignore the decays D+

s → ρ0π+ and ρ+π0 for

the moment, the annihilation amplitudes AP and AV can be determined from the four channels

K̄∗0K+, K̄0K∗+, ρ+η and π+ω in conjunction with the information of CP from solution A or S

and TP , CV from solution A1 or S1. It turns out that although the above four D+
s modes are

nicely fitted, the predicted B(D+
s → ρ0π+) of order 4× 10−3 is too large. 7

From the measured rates of D+
s → π+ρ0 and D+

s → π+ω we have

|AV −AP | < 0.20× 10−6(ε · pD), |AV +AP | = (0.41 ± 0.09) × 10−6(ε · pD) (20)

obtained using Eq. (15) and

|AV −AP | < 0.50 × 10−6, |AV +AP | = (1.04 ± 0.22) × 10−6 (21)

using Eq. (16). Hence, the magnitudes of AP and AV are much smaller than that of CP and CV .

In principle, the annihilation amplitudes can be determined when the above equation is combined

with the amplitudes of D+
s → K̄∗0K+ and K̄0K∗+. However since |CP | > |CV | ≫ |AP |, |AV |, it

is not possible to have a nice fit to the data of K̄∗0K+, K̄0K∗+, π+ω and π+ρ0 simultaneously.

To see this, we set AV ≈ AP as a consequence of the non-observation of D+
s → ρ0π+. Under this

relation, it is naively expected that D+
s → K̄0K∗+ has a rate larger than D+

s → K̄∗0K+ since

|CP | > |CV |. Experimentally, it is the other way around: B(D+
s → K̄∗0K+) = (3.97 ± 0.21)%

and B(D+
s → K̄0K∗+) = (5.3 ± 1.2)%. Since the former has been measured several times in the

past decade (see Particle Data Group [31] and the latest one [32]) while the latter was measured

two decades ago [43], it is likely that the quoted experimental result for D+
s → K̄0K∗+ was

overestimated. In short, a sensible determination of AP and AV cannot be made at present and

we have to await more accurate measurement of D+
s → K̄0K∗+.

The cited experimental result for D+
s → ρ+η′ is also problematic. Since |TP | ≫ |AV +AP |, we

can neglect the annihilation contributions for the moment. It follows that if we use the solution with

the largest TP , the predicted branching ratios will be B(D+
s → ρ+η) = (7.4± 0.7)% [(7.1 ± 1.8)%]

7 In Ref. [16], the amplitudes AV and AP were determined from D+
s → (K̄∗0K+, K̄0K∗+, π+ω). It is

not clear to us how the four unknown parameters (two magnitudes and two phases) can be extracted

out of three data points. Anyway, solutions A1 and A2 given in Table IV of [16] for AP and AV lead

to B(D+
s → ρ0π+) ∼ 1.2% and 2.2% in their central values, respectively, which are obviously too large

compared to experiment.
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and B(D+
s → ρ+η′) = (2.7±0.2)% [(2.6±0.7)%)] for solution A1 [S1]. While the predicted rate for

the former is close to the recent CLEO measurement B(D+
s → ρ+η) = (8.9±0.8)%, the latter is far

below the quoted result B(D+
s → ρ+η′) = (12.2 ± 2.0)%. It is very unlikely that the flavor-singlet

contribution unique to the η0 production can enhance its branching fraction from 3% to 12%. This

issue should be clarified by new measurement of D+
s → ρ+η′.

Among the solutions A1−A6 and S1−S5, A1 and S1 are our preferred solutions for the following

two reasons: (i) A global fit to the SCS decays of theD0 meson (data ofD+ andD+
s are not included

in the fit due to the lack of information on AP and AV ) indicates that A1 and S1 have the lowest

values of χ2, 89 and 165, respectively, and (ii) TP has to be sufficiently large in order to possibly

accommodate the data of D+
s → ρ+η.

III. PHENOMENOLOGICAL IMPLICATIONS

A. Parameters a1 and a2

In the diagrammatic approach, the topological amplitudes extracted using the χ2 fit method

are not unique. Indeed, several other solutions are also allowed. It is useful to consider the

amplitudes for color-allowed and color-suppressed diagrams in the factorization approach in order

to discriminate between different solutions. For CF D → K̄π, K̄∗π, K̄ρ decays, the factorizable

amplitudes read

T =
GF√
2
a1(Kπ) fπ(m

2
D −m2

K)FDK
0 (m2

π),

C =
GF√
2
a2(Kπ) fK(m2

D −m2
π)F

Dπ
0 (m2

K),

TV =
GF√
2
a1(K

∗
π) 2fπmK∗ADK∗

0 (m2
π)(ε · pD),

CP =
GF√
2
a2(K

∗
π) 2fK∗mK∗FDπ

1 (m2
K∗)(ε · pD), (22)

TP =
GF√
2
a1(Kρ) 2fρmρF

DK
1 (m2

ρ)(ε · pD),

CV =
GF√
2
a2(Kρ) 2fKmρA

Dρ
0 (m2

K)(ε · pD),

where we have followed [44] for the definition of form factors. Factorization implies a universal,

process-independent a1 and a2, for example, a2(Kρ) = a2(K
∗
π) = a2(Kπ).

Under the näıve factorization hypothesis, one has

a1(µ) = c1(µ) +
1

Nc
c2(µ), a2(µ) = c2(µ) +

1

Nc
c1(µ), (23)

for decay amplitudes induced by current-current operators O1,2(µ), where c1,2(µ) are the corre-

sponding Wilson coefficients and Nc is the number of colors. However, it is well known that this

naive factorization approach encounters two difficulties: (i) the coefficients ai given by Eq. (23) are

renormalization scale and γ5-scheme dependent, and (ii) it fails to describe the color-suppressed
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TABLE IX: Form factors at q2 = 0 and the shape parameter α.

FDπ
0 FDK

0 FDπ
1 FDK

1 ADρ
0 ADK∗

0

F (0) 0.666 0.739 0.666 0.739 0.74 0.78

α 0.21 0.30 0.24 0.33 0.36 0.24

decay modes due to the smallness of a2. In particular, the ratio of D0 → K̄0π0 to D0 → K−π+ is

predicted to be of order 10−2, while experimentally it is close to 1/2. Therefore, it is necessary to

take into account nonfactorizable corrections:

a1 = c1(µ) + c2(µ)

(

1

Nc
+ χ1(µ)

)

, a2 = c2(µ) + c1(µ)

(

1

Nc
+ χ2(µ)

)

, (24)

where nonfactorizable terms are characterized by the parameters χi, which receive corrections

including vertex corrections, hard spectator interactions involving the spectator quark of the heavy

meson, and FSI effects from inelastic rescattering, resonance effects, etc. The nonfactorizable terms

χi(µ) will compensate the scale and scheme dependence of Wilson coefficients to render ai physical.

In the so-called large-Nc approach, a rule of discarding subleading 1/Nc terms is formulated [2].

This amounts to having a universal nonfactorizable term χ1 = χ2 = −1/Nc in Eq. (24) and hence

a1 ≈ c1(m̄c) = 1.274 , a2 ≈ c2(m̄c) = −0.529 (25)

for ΛMS = 215 MeV and m̄c(mc) = 1.3 GeV [45]. This corresponds to a relative strong phase of

180◦. Empirically, this set of a1 and a2 gives a good description of the hadronic charm decays.

Hence, a1 and a2 in the large-Nc approach can be considered as the theoretical benchmark values.

From the topological amplitudes obtained in Sec. II, we are ready to determine the effective

Wilson coefficients a1 and a2 and their ratios. For the invariant amplitudes of D → V P determined

from Eq. (15), a1,2 are extracted using the factorizable amplitudes given in Eq. (22). However, if

the topological amplitudes of D → V P are extracted from Eq. (16), we should use the following

factorizable amplitudes

T̃V =
GF√
2
a1(K

∗
π) 2fπmDA

DK∗

0 (m2
π),

C̃P =
GF√
2
a2(K

∗
π) 2fK∗mDF

Dπ
1 (m2

K∗),

T̃P =
GF√
2
a1(Kρ) 2fρmDF

DK
1 (m2

ρ),

C̃V =
GF√
2
a2(Kρ) 2fKmDA

Dρ
0 (m2

K) (26)

to determine a1,2. As noted in passing, the amplitudes Ã and A are related by Eq. (18).

In order to extract the parameters a1,2 we need to know the form factors and their q2 dependence.

There exist many model and lattice calculations for D to π,K transition form factors. In this work

we shall use the following parametrization for form-factor q2 dependence [46]

F (q2) =
F (0)

(1− q2/m2
∗)(1 − αq2/m2

∗)
(27)
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TABLE X: The extracted parameters a1 and a2.

D → K
∗
π D → KρD → Kπ

A S A1 S1

|a1| 1.22 ± 0.02 1.32 ± 0.05 1.43 ± 0.06 1.38 ± 0.06 1.29 ± 0.17

|a2| 0.82 ± 0.02 0.87 ± 0.05 0.95 ± 0.05 1.06 ± 0.12 0.82 ± 0.27

|a2/a1| 0.67 ± 0.02 0.66 ± 0.05 0.67 ± 0.05 0.77 ± 0.09 0.63 ± 0.22

Arg(a2/a1) −(152± 1)◦ −(162 ± 3)◦ −(164± 3)◦ (164 ± 23)◦ (177 ± 15)◦

with m∗ being a pole mass. Specifically, m∗ = mD∗

s
, mDs

, mD∗, mD for form factors FDK
1,0 , ADK∗

0 ,

FDπ
1,0 and ADρ

0 , respectively. The inputs for the parameters F (0) and α are summarized in Table

IX. Form factors for D to π and K transitions are taken from the recent CLEO-c measurements

of D meson semileptonic decays to π and K mesons [47], while D → ρ,K∗ transition form factors

from [46] with some modification. For decay constants we use fπ = 130.4 MeV, fK = 155.5 MeV

[31], fρ = 216 MeV and fK∗ = 220 MeV [48].

The extracted parameters a1,2 are shown in Table X, where we have used solutions A and S

for the topological amplitudes TP , CV and T̃P , C̃V , respectively, and the preferred solution A1 for

TV , CP and S1 for T̃V , C̃P . Due to final-state interactions, the magnitude of a2 is substantially

larger than the benchmark value 0.529 , while the magnitude of a1 is of order 1.3 ∼ 1.4 forD → K̄∗π

and D → K̄ρ decays.

As noticed in passing, solutions of CP with magnitude smaller than TV (solutions A’ and S’

in Table VII) are ruled out since the predicted rates for SCS decays D0 → π0φ and D+ → π+φ

are too small compared to experiments. This can also be seen from the extracted ratio |a2/a1|
which is expected to be similar for all two-body hadronic D decays. For solutions A’ and S’ with

smaller CP , the ratio |a2/a1| is 0.38 and deviates substantially from the value of 0.68 obtained

from D → K̄π decays. Notice that although |CP | > |TV |, the extracted parameters look normal,

namely, |a1| > |a2|. Among solutions A1−A6 and S1−S5, it is natural to select solutions A1 and

S1 since the magnitude of their a2 and the ratio |a2/a1| are closer to those in solutions A and S

(see Table X). As stressed before, a large TP is definitely needed in order to accommodate the

data of D+
s → ρ+η.

B. SU(3) breaking and final-state interactions

As discussed before, based on the exact flavor SU(3) symmetry and our best solutions to the

topological amplitudes extracted from CF charm decays, the predicted branching fractions of SCS

D decays are too large for π+π−, π0π0 and too small for K+K−, π+η and π+η′. In the following,

we shall first examine SU(3) breaking effects in color-allowed and color-suppressed tree amplitudes

within the factorization approach (for an earlier study of SU(3) violation in charm decays, see

[49]). It turns out that while part of the SU(3) breaking effects can be accounted for by SU(3)
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symmetry violation manifested in T and C amplitudes, in some cases such as the ratio R = Γ(D0 →
K+K−)/Γ(D0 → π+π−), SU(3) breaking alone in spectator amplitudes does not suffice to account

for R. This calls for the consideration of SU(3) violation in the W -exchange amplitudes.

1. SU(3) breaking

To illustration the effect of SU(3) symmetry violation in external and internal W -emission

amplitudes, we consider the following modes: D+ → π+π0, π+η, π+η′ and D0 → K+K−, π+π−

D+ → π+π0

Since the isospin of the π+π0 state is I = 2, this channel does not have nontrivial final-state

interactions. Indeed, it does not receive weak annihilation contributions. This means that the

short-distance approach should suffice to describe this decay. The factorizable amplitudes read

T ′
ππ =

GF√
2
a1fπ(m

2
D −m2

π)F
Dπ
0 (m2

π),

C ′
ππ =

GF√
2
a2fπ(m

2
D −m2

π)F
Dπ
0 (m2

π). (28)

Hence,

T ′
ππ

T
=
m2

D −m2
π

m2
D −m2

K

FDπ
0 (m2

π)

FDK
0 (m2

π)
,

C ′
ππ

C
=
fπ
fK

FDπ
0 (m2

π)

FDπ
0 (m2

K)
, (29)

where use of Eq. (22) has been made. Numerically, we find T ′
ππ/T = 0.96 and C ′

ππ/C = 0.78.

Therefore,

A(D+ → π+π0) =
1√
2
V ∗
cdVud(0.96T + 0.78C). (30)

Because of the less destructive interference between color-allowed and color-suppressed amplitudes

due to SU(3) breaking effects, B(D+ → π+π0) is enhanced from (0.89 ± 0.10) × 10−3 to (0.96 ±
0.04) × 10−3, in better agreement with the experiment.

D+ → π+η(
′)

The relevant factorizable amplitudes here are

T ′
πηq

=
GF√
2
a1fπ(m

2
D −m2

ηq
)F

Dηq
0 (m2

π),

C ′
πηq

=
GF√
2
a2fq(m

2
D −m2

π)F
Dπ
0 (m2

ηq
),

C ′
πηs =

GF√
2
a2fs(m

2
D −m2

π)F
Dπ
0 (m2

ηs), (31)

where fq, fs are the decay constants of ηq and ηs, respectively. The masses of ηq and ηs read [23]

m2
ηq

=

√
2

fq
〈0|muūiγ5u+mdd̄iγ5d|ηq〉+

√
2

fq
〈0|αs

4π
GG̃|ηq〉 ≈ m2

π +

√
2

fq
〈0|αs

4π
GG̃|ηq〉

m2
ηs

=
2

fs
〈0|mss̄iγ5s|ηs〉+

1

fs
〈0|αs

4π
GG̃|ηs〉 ≈ 2m2

K −m2
π +

1

fs
〈0|αs

4π
GG̃|ηs〉, (32)
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where contributions to their masses from the gluonic anomaly have been included. We shall use

the parameters extracted from a phenomenological fit [21, 23]: φ = (40.4 ± 0.6)◦ and

1√
2fq

〈0|αs

4π
GG̃|ηq〉 = 0.265 ± 0.010,

〈0|αs

4πGG̃|ηq〉√
2〈0|αs

4πGG̃|ηs〉
=
fs
fq

= 1.352 ± 0.007, fq = fπ. (33)

Assuming that the unknown form factor F
Dηq
0 is the same as FDπ

0 , the decay amplitudes are

modified to

A(D+ → π+η) =
1√
2
V ∗
cdVud(0.85T + 0.93C + 2A) cos φ− V ∗

csVus1.28C sinφ,

A(D+ → π+η′) =
1√
2
V ∗
cdVud(0.85T + 0.93C + 2A) sin φ+ V ∗

csVus1.28C cosφ, (34)

where we have assumed A′ = A. It follows that B(D+ → π+η) = (2.68 ± 0.29) × 10−3 [(3.54 ±
0.21) × 10−3] and B(D+ → π+η′) = (5.03 ± 0.32) × 10−3 [(4.68 ± 0.30) × 10−3], where the data

are shown in the squared brackets. Hence the discrepancy between theory and experiment is

substantially improved. Presumably, a better agreement will be achieved if SU(3) violation in

the W -annihilation amplitude is included. For example, if A′ = 0.7A is taken, we will have

B(D+ → π+η) = (3.02 ± 0.19) × 10−3 and B(D+ → π+η′) = (4.69 ± 0.21) × 10−3, bringing our

predictions closer to the observed data.

D0 → π+π−,K+K−

Experimentally, the rate of D0 → K+K− is larger than that of D0 → π+π− by a factor of

2.8, while they should be the same in the SU(3) limit. This is a long-standing puzzle since SU(3)

symmetry is expected to be broken at the level of 30%. Without the inclusion of SU(3) breaking

effects in the topological amplitudes, we see from Table II that the predicted rate of K+K− is even

smaller than that of π+π− due to less phase space available to the former. In the factorization

approach we have

T ′
KK

T ′
ππ

=
fK
fπ

m2
D −m2

K

m2
D −m2

π

FDK
0 (m2

K)

FDπ
0 (m2

π)
. (35)

Using the form factor parametrization given by Eqs. (27) and input parameters given in Table IX,

and assuming no SU(3) symmetry breaking in E so that E′
KK = E′

ππ = E, we obtain T ′
KK/T

′
ππ =

1.32, implying that B(D0 → K+K−) = (3.4±0.1)×10−3 and B(D0 → π+π−) = (2.1±0.1)×10−3.

Therefore, SU(3) symmetry breaking alone in T ′ is not adequate to resolve the puzzle. This calls

for the consideration of SU(3) flavor symmetry violation in the W -exchange amplitudes. We will

come back to this issue in the next subsection.

2. Final-state interactions

We learn from the above few examples that when SU(3) breaking effects in color-allowed and

color-suppressed amplitudes are included, the discrepancy between theory and experiment for SCS
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FIG. 1: Contributions to D0 → K
0
π0 from the color-allowed weak decay D0 → K−π+ followed by

a resonant-like rescattering (a) and quark exchange (b). While (a) has the same topology as the

W -exchange graph, (b) mimics the color-suppressed internal W -emission graph.

decays will be significantly reduced. However, in order to get a better agreement, violation of SU(3)

symmetry in weak annihilation (W -exchange and W -annihilation) must be taken into account.

This is particularly true for the ratio R = Γ(D0 → K+K−)/Γ(D0 → π+π−); SU(3) violation in

spectator amplitudes accounts for only half of the ratio R.

Under the factorization hypothesis, the factorizable W -exchange and W -annihilation ampli-

tudes are proportional to a2 and a1, respectively.
8 They are suppressed due to the smallness of

the form factor at large q2 = m2
D. This corresponds to the so-called helicity suppression. At first

glance, it appears that the factorizable weak annihilation amplitudes are too small to be consistent

with experiment at all. However, in the diagrammatic approach here, the topological amplitudes

C, E, A can receive contributions from the tree amplitude T via final-state rescattering, as illus-

trated in Fig. 1 for D0 → K̄0π0: Fig. 1(a) has the same topology as the W -exchange diagram E,

while 1(b) mimics the internal W -emission amplitude C. Therefore, even if the short-distance W -

exchange vanishes, a long-distance W -exchange can be induced via inelastic FSIs. Historically, it

was first pointed out in [52] that rescattering effects required by unitarity can produce the reaction

D0 → K
0
φ, for example, even in the absence of the W -exchange diagram. Then it was realized

that this rescattering diagram belongs to the generic W -exchange topology [7].

There are several different forms of FSIs: elastic scattering and inelastic scattering such as

quark exchange, resonance formation, etc. For charm decays, it is expected that the long-distance

weak annihilation is dominated by resonant FSIs. That is, the resonance formation of FSI via

qq̄ resonances is usually the most important one due to the fact that an abundant spectrum of

resonances is known to exist at energies close to the mass of the charmed meson. Indeed, the

sizable magnitude of E and its large phase determined from experiment are suggestive of nearby

8 In the QCD factorization (QCDF) approach [50], E and A are proportional to the Wilson coefficients c1

and c2, respectively, and hence A = (c2/c1)E [29, 51]. However, the charm quark is not heavy enough to

justify the use of QCDF in charm decays.
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resonance effects. (As noted in [53], weak annihilation in V P systems receives little contributions

from resonant FSIs. We shall show below that the W -annihilation amplitude in D+
s → π+ω arises

from final-state rescattering via quark exchange.) A direct calculation of the resonant FSI diagram

is subject to many theoretical uncertainties. Nevertheless, as emphasized in [54, 55], most of the

properties of resonances follow from unitarity alone, without regard to the dynamical mechanism

that produces the resonance. Consequently, as shown in [53, 54], the effect of resonance-induced

FSIs can be described in a model-independent manner in terms of the mass and width of the nearby

resonances. It was found that weak annihilation amplitudes are modified by resonant FSIs as (see

e.g., [53])

E = e+ (e2iδr − 1)

(

e+
T

3

)

, A = a+ (e2iδr − 1)

(

a+
C

3

)

, (36)

with

e2iδr = 1− i
Γ

mD −mR + iΓ/2
, (37)

where the W -exchange amplitude E and W -annihilation A before resonant FSIs are denoted by

e and a, respectively. Therefore, resonance-induced FSIs amount to modifying the W -exchange

amplitude and leaving the other quark-diagram amplitudes T and C intact. We thus see that even if

the short-distance weak annihilation vanishes (i.e. e = 0 and a = 0), as commonly asserted, a long-

distance W -exchange (W -annihilation) contribution still can be induced from the tree amplitude

T (C) via FSI rescattering in resonance formation.

D0 → π+π−,K+K− revisited

We have discussed before that resonant FSIs usually give the most important contributions

to the weak annihilation topology in the PP modes. For ∆S = 1 D → K̄π decays, there is a

JP = 0+ resonance K∗
0 (1950) in the sd̄ quark content with a mass 1945±10±20 MeV and a width

201 ± 34 ± 79 MeV [31]. 9 Assuming e = 0 in Eq. (36), we obtain

E = 1.68 × 10−6 exp(i143◦)GeV, (38)

which is close to the “experimental” value E = (1.53+0.05
−0.06)×10−6 exp[i(122±1)◦] GeV. Presumably,

a non-vanishing short-distance e will render the phase of E in agreement with experiment. For

∆S = 0 D → PP decays, there is a nearby scalar resonance f0(1710) which decays to KK̄ and ππ̄,

as depicted in Fig. 2. This long-distance contribution has the same topology as the W -exchange

diagram.

Recent lattice and phenomenological studies indicate that f0(1710) is dominated by the scalar

glueball component [57, 58]. If f0(1710) is primarily a scalar glueball G, it is näıvely expected that

Γ(G→ ππ̄)/Γ(G → KK̄) ≈ 0.9 after phase space correction due to the flavor independent coupling

of G to PP . However, experimentally there is a relatively large suppression of ππ̄ production

9 The importance of the K∗
0 (1950) contribution to D0 → K−π+ has been emphasized in [56].
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D0 f0(1710)

K, π

K̄, π̄

FIG. 2: Long-distance resonant contribution to the color-suppressed tree amplitude of D0 →
KK̄, ππ̄ through the intermediate state f0(1710), where the blob stands for a transition due to

weak interactions. This has the same topology as the W -exchange topological diagram.

relative to KK̄ in f0(1710) decays. The ratio Γ(f0(1710) → ππ̄)/Γ(f0(1710) → KK̄) is measured

to be 0.41+0.11
−0.17 by BES from J/ψ → γ(K+K−, π+π−) decays [59]. To explain the large disparity

between ππ̄ and KK̄ production in scalar glueball decays, it was first noticed by Carlson et al.

[60], by Cornwall and Soni [61] and vitalized recently by Chanowitz [62] that a pure scalar glueball

cannot decay into a quark-antiquark pair in the chiral limit, i.e., A(G → qq̄) ∝ mq. Since the

current strange quark mass is an order of magnitude larger than mu and md, decay to KK̄ is

largely favored over ππ̄. However, chiral suppression for the ratio Γ(G→ ππ̄)/Γ(G → KK̄) at the

hadron level should not be so strong as the current quark mass ratio mu/ms. It has been suggested

[63] that mq should be interpreted as the scale of chiral symmetry breaking since chiral symmetry

is broken not only by finite quark masses but is also broken spontaneously.

In short, if the glueball component of f0(1710) is dominant, then this will explain qualitatively

why the D0 meson decays to K+K− more copiously then π+π− through the resonant FSIs.

D0 → K0K̄0

It is known that the decay D0 → K0K̄0 proceeds only through the W -exchange mechanism

and vanishes under SU(3). Since the short-distance W -exchange is expected to be small and

furthermore subject to SU(3) cancellation, this mode can only occur through long-distance W -

exchange induced by final-state rescattering [64]. The nearby pole contribution from f0(1710) will

contribute to the decay D0 → K0K̄0. However, in contrast to D0 → K+K−, this channel is

prohibited under exact SU(3) symmetry. To see this, Fig. 3 shows some possible weak transition

between D0 and f0(1710). It is clear that for K
0K̄0 production, both s and d quarks get involved

and compensate each other in SU(3) limit due to the cancellation of CKM matrix elements, while

only the s quark gets involved in K+K− production. It has been shown in [58] that in the limit of

SU(3) symmetry, f0(1710) is composed of a scalar gluonium and a small amount of SU(3) singlet.

Consequently, the D0−f0(1710) weak transition for K0K̄0 production indeed vanishes when SU(3)

flavor symmetry is exact.
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FIG. 3: Possible D0 − f0(1710) transition from (a) intermediate states such as K+K−, π+π− etc.,

and (b) W -exchange.

C. Annihilation amplitudes AP and AV from final-state rescattering

As discussed before, we have some difficulties in extracting and understanding the W -

annihilation amplitudes AP and AV in D → V P decays. The topological amplitude expressions of

D+
s → π+ρ0 and D+

s → π+ω are given by

A(D+
s → π+ρ0) =

1√
2
V ∗
csVud(AV −AP ),

A(D+
s → π+ω) =

1√
2
V ∗
csVud(AV +AP ). (39)

Näıvely it is expected that AP = −AV . The argument goes as follows. The direct W -annihilation

contributions via cs̄→W → ud̄ are not allowed in D+
s → π+ω, ρ+η, ρ+η′ decays since the (ud̄) has

zero total angular momentum and hence it has the quantum number of π+. Therefore, G(ud̄) = −
and the final states should have an odd G-parity. Since the G-parity is even for ωπ+ and odd

for π+ρ0, it follows that the former does not receive any direct W -exchange contribution. Can

one induce D+
s → π+ω from resonant FSIs? The answer is no because the J = 0, I = 1 meson

resonance made from a quark-antiquark pair ud̄ has an odd G parity. As stressed in [65], the

even-G state π+ω (also ρη and ρη′) does not couple to any single meson resonances, nor to the

state produced by the W -annihilation diagram with no gluons emitted by the initial state before

annihilation. Indeed, a general consideration of resonant FSIs gives the relations [53, 54]

Ar
P +Ar

V = aP + aV ,

Ar
P −Ar

V = aP − aV + (e2iδr − 1)

(

aP − aV +
1

3
(CP − CV )

)

, (40)

with the superscript r denoting the annihilation amplitude arising from resonant FSIs. The above

relation shows that AP + AV does not receive any q̄q′ resonance (e.g., the 0− resonance π(1800))

contributions. Since the above G-parity argument implies aV = −aP , the decay D+
s → π+ω is

forbidden, whereas D+
s → π+ρ0 receives both factorizable and resonance-induced W -annihilation

contributions. Experimentally, however, it is the other way around: B(D+
s → π+ω) = (2.1±0.9)×

10−3, while B(D+
s → π+ρ0) is not seen.
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FIG. 4: Long-distance contributions to D+
s → π+ω from the weak decay D+

s → ρ+η(
′) followed by

quark exchange. Plots (a) and (b) have the same topology as AV and AP , respectively. Owing to

G-parity conservation, ρ+η(
′) cannot rescatter into π+ρ0.

To resolve the above-mentioned puzzle, we note that there are long-distance final-state rescat-

tering contributions to D+
s → π+ω allowed by G-parity conservation. A nice example is the

contribution from the weak decay D+
s → ρ+η(

′) followed by quark exchange (Fig. 4). The

rescattering of ρ+η(
′) into π+ρ0 is prohibited by the G-parity selection rule. Consequently,

AP + AV = Ae
P + Ae

V = 2Ar
P , where the superscript e indicates final-state rescattering via quark

exchange, and AP − AV = Ar
P − Ar

V . Since D+
s → ρ+η has the largest rate among the CF

D+
s → V P decays, 10 it is conceivable that D+

s → π+ω can be produced via FSIs at the 10−3 level

as its branching fraction. Other processes such as the weak decays D+
s → K̄(∗)0K(∗)+ followed

by K̄(∗)0K(∗)+ → π+ω have been discussed in [66, 67]. However, this rescattering process does

not involve quark exchange. This decay may also proceed through pre-radiation of the ω. For

instance, the D+
s meson can dissociate into two meson states such as D(∗)0K(∗)+ and D(∗)+K(∗)0

which rescatter strongly to (cs̄)ω while the virtual cs̄ state decays weakly to π+ [68].

As pointed out in [69], the ω meson can be produced from the decay D+
s → π+φ followed by

ω − φ mixing. This will be possible if φ is not a pure ss̄ state and contains a tiny qq̄ component.

Neglecting isospin violation and the admixture with the ρ0 meson, one can parametrize the ω–φ

mixing in terms of an angle δ such that the physical ω and φ are related to the ideally mixed states

ωI ≡ (uū+ dd̄)/
√
2 and φI ≡ ss̄ by

(

ω

φ

)

=

(

cos δ sin δ

− sin δ cos δ

)(

ωI

φI

)

, (41)

and the mixing angle is about |δ| ∼ 3.3◦ [70] (see [21] for the latest determination of δ). Therefore,

the production of π+ω through ω − φ mixing is expected to be

B(D+
s → π+ω)ω−φ mixing = B(D+

s → π+φ)

(

pc(πω)

pc(πφ)

)3

tan2 δ ∼ 2.2× 10−4, (42)

10 As discussed before, from the theoretical point of view, B(D+
s → ρ+η′) is at most of order 3%.
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FIG. 5: Manifestation of Fig. 4 as the long-distance t-channel contributions to theW -annihilation

amplitude of D+
s → π+ω.

which is too small by one order of magnitude. Hence, it is not the dominant mechanism for the

D+
s → π+ω decay.

Since FSIs are nonperturbative in nature, in principle it is extremely difficult to calculate their

effects. It is customary to evaluate the final-state rescattering contribution, Fig. 4, at the hadron

level manifested in Fig. 5. One of the diagrams, namely, Fig. 5(b), has been evaluated in [67]. As

stressed in [71], the calculation of the meson-level Feynman diagrams such as Fig. 5 involves many

theoretical uncertainties. If one näıvely calculates the diagram, one will obtain an answer which

does not make sense in the context of perturbation theory since the contributions become so large

that perturbation is no longer trustworthy. Moreover, because the t-channel exchanged particle is

not on-shell, a form-factor cutoff must be introduced to the vertex to render the whole calculation

meaningful. We will leave the calculation of Fig. 5 to a separate publication.

Finally, we would like to point out that the study of the decays D+
s → (ρ+, a+1 , a

+
0 )ω will

help understand the annihilation mechanisms in D+
s decays. Unlike the π+ω mode, D+

s → ρ+ω

can be induced by resonant FSIs and hence it is anticipated to have a larger rate. The recent

CLEO measurements of D+
s exclusive decays involving an ω show that the branching fractions of

D+
s → (π+π0, π+π+π−, π+η)ω are (2.78±0.70)%, (1.58±0.46)% and (0.85±0.54)%, respectively

[72]. Assuming the validity of the narrow width approximation, B(a+0 (980) → π+η) = 1 and

B(a+1 (1260) → (3π)+) = 100% in conjunction with the assumption of B(a+1 → π+π+π−) = B(a+1 →
π+π0π0), the branching fractions of D+

s → a+0 (980)ω and D+
s → a+1 (1260)ω are ready to obtain.

D. Comments on D → V V and D → (S,A, T )(P, V ) decays

D → V V

A handful number of V V modes, such as D+ → K̄∗0ρ+, D0 →
K̄∗0ρ0, K∗−ρ+, K∗0K̄∗0, ρ0ρ0, φρ0, K̄∗0ω and D+

s → ρ+φ, ρ+ω, K∗+K̄∗0, have been ob-

served. These decays have a richer structure as they have three partial-wave or helicity states.

Näıvely it is expected from the factorization hypothesis that the longitudinal polarization is
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dominant. However, the Mark III measurement [73] has indicated that the branching fraction of

the decay D0 → K̄∗0ρ0 is already saturated by the transverse polarization state, while longitudinal

and transverse polarizations are comparable in D0 → K∗−ρ+ (see, e.g., [74] for a detailed

discussion). A Dalitz-plot study of four-body D decays will be helpful to resolve the puzzle.

D → (S,A, T )(P, V )

Thanks to the powerful Dalitz plot analyses of multi-body decays of D mesons, the structure of

many resonances can be probed. Besides the vector meson resonances, many parity-even states such

as the scalar mesons a0(980), f0(980), f0(1370), f0(1500), f0(1710), a0(1450),K
∗
0 (1430), the axial-

vector mesons a1(1260),K1(1270),K1(1400) and the tensor mesons f2(1270), a2(1320),K
∗
2 (1430)

have been studied. Branching fractions of quasi-two-body decays D → SP, V P, TP with S,A, T

standing for scalar, axial-vector and tensor mesons, respectively, can be extracted from the Dalitz

analyses of three-body decays of D mesons. The study of D → SP opens a new avenue to the

understanding of the light scalar meson spectroscopy, recalling that the underlying structure of light

scalar mesons σ, κ, a0(980) and f0(980) is not well established experimentally and theoretically.

The topological amplitudes for D → SP,AP, TP decays have been discussed in [75–77]. There

are several new features. First, one generally has two sets of distinct external W -emission and

internal W -emission diagrams, depending on whether the emitted particle is a party-even meson

or a parity-odd one. Let us denote the primed amplitudes T ′ and C ′ for the case when the emitted

meson is a parity-even one. Secondly, because of the smallness of the decay constants of parity-

even mesons except for the 3P1 axial-vector state, it is expected that |T ′| ≪ |T | and |C ′| ≪ |C|.
This feature can be tested experimentally. Thirdly, since K∗

0 and the light scalars σ, κ, f0, a0 fall

into two different SU(3) flavor nonets, one cannot apply SU(3) symmetry to relate the topological

amplitudes in D+ → f0π
+ to, for example, those in D+ → K

∗0
0 π

+. Finally, we notice that the new

data of quasi-two-body decays have been accumulated in the past years to the extent that they

warrant a serious theoretical study.

IV. SUMMARY AND CONCLUSION

We have studied in this work the two-body hadronic charmed meson decays, including both

the PP and V P modes. The latest experimental data are first analyzed in the diagrammatic

approach. The magnitudes and strong phases of the flavor amplitudes are extracted from the

Cabibbo-favored (CF) decay modes using χ2 minimization. The best-fitted values are then used

to predict the branching fractions of the singly-Cabibbo-suppressed (SCS) and doubly-Cabibbo-

suppressed decay modes in the flavor SU(3) symmetry limit. In doing so, we have observed SU(3)

breaking effects more significant than the two-body hadronic bottom meson decays.

In Section II, we find from the CF PP modes that

T = 3.14± 0.06, C = (2.61 ± 0.08) e−i(152±1)◦ ,
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E = (1.53+0.07
−0.08) e

i(122±2)◦ , A = (0.39+0.13
−0.09) e

i(31+20

−33
)◦ (43)

for the η-η′ mixing angle φ = 40.4◦ inferred by KLOE [21]. Due to the larger branching fractions

of K̄0η and π+η(′) modes, the magnitudes of T and C quoted above are larger than previously

obtained. Also, the T and C amplitudes subtend a strong phase of about 150◦. Moreover, the E

and A amplitudes are roughly perpendicular to each other.

In the case of V P modes, we find two possible solutions for the TV , CP , and EP amplitudes, as

given in Table VII. The SCS V P modes D0,+ → π0,+φ favor the solution with a large CP (namely,

solutions A and S in Table VII depending on which formula is used to extract the invariant

amplitude). By assuming that TP and TV are relatively real, we then obtain several possible

solutions for TP , CV , and EV , as listed in Table VIII. Again, only one of them (solutions A1 and

S1, with the largest TP ) is in better agreement with the SCS V P modes, such as the D+
s → ρ+η

mode. In this case, |(T,C,E)P | > |(T,C,E)V |. The conclusion does not change much even if

we make the relative phase between TP and TV a free parameter because it turns out to be very

close to zero. Finally, the AP and AV amplitudes cannot be completely determined based on

currently available data. Instead, we use the non-observation of D+
s → π+ρ0 to argue that they

are of similar magnitudes, and use the measured rate of D+
s → π+ω to show that they are much

smaller in size than the color-suppressed ones. However, this leads to a contradiction with data, as

B(D+
s → K̄0K∗+) > B(D+

s → K̄∗0K+) while the former is dominated by CV and the latter by CP .

So a full determination of the AP and AV amplitudes still await more precise data on the related

modes. We conjecture that the currently quoted experimental results for both D+
s → K̄0K∗+ and

D+
s → ρ+η′ are overestimated and problematic.

In Section III, we compare the sizes of color-allowed and color-suppressed tree amplitudes

extracted in Section II with the effective parameters a1 and a2 defined in the factorization approach.

The extracted a2, as given in Table X, is significantly larger than that obtained from short-distance

calculations. The ratio |a2/a1| is more or less universal among the D → K̄π, K̄∗π and K̄ρ modes.

This feature allows us to discriminate between different solutions of topological amplitudes. The

relative strong phase extracted from the K̄ρ modes and that from the K̄π and K̄∗π modes are all

in the vicinity of 180◦, as expected from näıve factorization.

Some Cabibbo-suppressed modes exhibit sizable violation of flavor SU(3) symmetry. We find

that part of the SU(3) breaking effects can be accounted for by SU(3) symmetry violation mani-

fested in the color-allowed and color-suppressed tree amplitudes. However, in other cases such as

the ratio R = Γ(D0 → K+K−)/Γ(D0 → π+π−), SU(3) breaking in spectator amplitudes is not

sufficient to explain the observed value of R. This calls for the consideration of SU(3) violation in

theW -exchange amplitudes. Since weak annihilation topologies in D → PP decays are dominated

by nearby scalar resonances via final-state rescattering (for example, the resonance K∗
0 (1950) helps

explain the magnitude and phase of E), we argue that the long-distance resonant contribution

through the intermediate state f0(1710) can naturally explain why D0 decays more copiously to

K+K− than π+π− through the W -exchange topology. This has to do with the dominance of the
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scalar glueball content of f0(1710) and the chiral-suppression effect in the decay of a scalar glueball

into two pseudoscalar mesons. The same FSI through the f0(1710) pole contribution also explains

the occurrence of D0 → K0K̄0. However, in contrast to D0 → K+K−, this channel vanishes under

SU(3) symmetry owing to the cancelation of CKM matrix elements V ∗
csVus and V

∗
cdVud and the fact

that f0(1710) is composed of a scalar gluonium and a small amount of SU(3) singlet in the SU(3)

limit.

The CF decays D+
s → ρ+π0, ρ0π+, π+ω, ρ+ω proceed only through the W -annihilation topol-

ogy. Owing to the G-parity selection rule, D+
s → π+ω does not receive contributions from the

short-distance W -annihilation and resonant FSIs. Nevertheless, it can proceed through the weak

decays D+
s → ρ+η(

′) followed by the final-state rescattering of ρ+η(
′) into π+ω through quark

exchange. In contrast, D+
s → ρ+ω can be induced by resonant FSIs and hence it is anticipated to

have a larger rate.

Finally we have made some brief remarks on other hadronic decays such as D → V V and

D → (S,A, T )P , the detailed investigation of which is left to a future work.
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