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Abstract. The present paper refers to the torsion of cylindrical bars, the cross section of
which is a simple or multiply connected plane domain. Examples illustrate the application
of the Bai-Shield’s identity. A lower bound relation is presented for the greatest shearing
stress developed in the twisted cylindrical bar and an upper bound relation is proven for the
plastic limit torque. Three types of the upper bound formulae are derived for the torsional
rigidity of nonhomogeneous isotropic elastic bars.
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1. Introduction

Consider a bar bounded by a cylindrical surface (”side-surface” ) and two planes (”end
cross sections” ), normal to the side surface. For greater generality, it is assumed that
the bar under consideration may contain longitudinal cylindrical cavities so that the
cross-section of the bar may be multiply connected. Further assumptions are that
there are no body forces present, that the side surface of the bar is free from external
stresses and that given forces (satisfying the equilibrium conditions of the body as
whole) are shearing stresses applied to the end cross sections of the bar. We also
suppose that the bar is composed of a material which is homogeneous in the axial
direction.

A three-dimensional rectangular Cartesian coordinate system (x,y, z) will be used.
The axis Oz is directed parallel to the generators of the side surface and the plane
Ozy is chosen to coincide with the “lower” end of the bar. The “upper” end of the
bar will then have the coordinate z = L, where L is the length of the bar.

Following Bai and Shield [1], we suppose that 7,, and 7,. are the only nonzero
stresses in the whole bar. In this case the equilibrium conditions can be formulated
as [5-6, 9]:

Tvz ) inA (1.1)
TyaNg + Ty2My =0 onc (1.2)

where A is the cross-section of the cylindrical bar, ¢ is the boundary of A and ny,n,
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are the components of the outward unit normal to the curve c.
Tt follows from equations (1.1) and (1.2) that [1-2, 5]

X = / TerdA =0 and Y = / Ty2dA =0, (1.3)
A A

that is, there are no transverse forces on the cross-section of the bar.

The only moment acting on a cross-section is a twisting moment 7' given by

T = [ (x7y, — y7a)dA. (1.4)
/

Bai and Shield proved [1] that each of the rectangular components of shearing stress
provides one half of the twisting moment

T
/ 27y, dA = —/ YTedA = = (1.5)
A A 2

Equation (1.5) is valid both for simply connected cross-sections and and for multiply
connected ones. It is also independent of any material properties provided that the
material properties depend on the cross-sectional coordinates x,y only.

2. Lower bound for the shearing stress

Let 7 be the greatest shearing stress in cross-section A of a cylindrical bar subjected
to a twisting moment 7. We have

T=maxy /72, +72, , (z,y)€eA=AUc . (2.1)

Regrading equation (1.5) as a point of departure and using the Schwarz inequality we
can write that

T2
/ 2dA/T dA>— and / 2dA/T dA>—. (2.2)

A combination of inequality
/ (T;?z + sz)dA < T2 A (23)
A

with inequalities (2.2); 2 results in the following lower bound

> (2.4)

where I, and I, are the second moments of the cross-section about the axes x and y,
respectively, and A is the area of the cross-section.
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3. Upper bound for the limit plastic torque

Let us assume that the material of the cylindrical body is elastic-perfectly plastic. In
the case of fully plastic torsion we have

72 +Ty22:r§ in AUc, (3.1)

Tz

where 79 = 7o(x,y) is the yield stress in pure shear, which may depend on the cross-
sectional coordinates x,y. Let Ty be the plastic torque of the cross section [4,7]. The
constant Ag is defined by

Aoz/ngA. (3.2)
A

Making use of equations (2.2); 2 and the Huber-v. Mises-Hencky yield condition (3.1)
we obtain the following upper bound

[41,1, Ay
Ty < [ =220 3.3
oS\ T, (3.3)

Remarks to relations (2.4) and (3.3)

R1. Relation (2.4) is an equality for a thin-walled circular tube with constant
thickness.

R2. Relation (3.3) is also an equality for a homogeneous thin-walled circular tube
with constant thickness.

R3. It can be proved that relation (2.4) leads to the best lower bound for 7, and
formula (3.3) gives the sharpest upper bound for 7, if the axes z,y are principal
centroidal axes of the cross-section [3].

4. Upper bound for the torsional rigidity

In this section it is assumed that the material of the twisted bar is inhomogeneous
isotropic elastic, the equilibrium state of the bar is the pure torsion according to
Saint-Venant’s theory [3], [5-6]. A consequence of the nonhomogenity is that the
shear modulus G may depend on z,y that is G = G(z,y).

Once again we regard equation (1.5) as our point of departure and use the Schwarz
inequality. We get

TIQ - </A mysz>2 - UA <\T/y@> (x\/(_;*) dAr g/ATi;ZdAA/GxQdA . (4.1a)
TIQ - </A yTMdA>2 = UA <7(__;> (y\/é) dAr < /A%deA/AGdeA . (4.1b)
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The strain energy stored in the unit length of the twisted bar [5-7], [9] is given by

72 4+ 72
U= / Tae ¥ Moz gy (4.2)
e

The torque-twist relation is of the form
T =Ry, (4.3)

where R is the torsional rigidity of the cross-section and ¥ is the rate of twist [5-6],
[9].
We shall consider a unit length of the bar. In this case
T2

1
W=3T0= 7 (4.4)

is the work done by the twisting moment T'. According to the Clapeyron theorem [9]
we can write

T2
=—. 4.
U 5R (4.5)
Combination of equations (4.1a,b) with formula (4.2) gives
Jp +J,
>t 4.6
Uz, (46)
where
Jp = / Gy*dA  and  J, = / Gz?dA (4.7)
A A

are the G-weighted second moments of the cross-section about the centroidal axes x
and y, respectively. Inserting equations (4.1a,b) into inequality (4.6) we obtain the
upper bound

4J,J,
R< —Y 4.8
T~ S+ Jy (48)
Let Jy be defined as
Jo=Jp+J, = /G(:r,2 +y?)dA. (4.9)
A
It is clear that
(Jo — ) = (Jo + Jy)? —4JpJ, >0 (4.10)
from which we get the lower bound
4J,Jy
> 4.11
Joz 5= T, (4.11)

Relations (4.8) and (4.11) show that

R<Jo. (4.12)
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The upper bound (4.12) is weaker than the upper bound (4.8).
Combination of inequalities (4.1a,b) with the lower bounds

T2 Ty2
U > | 22dA U > | LdA
U_/AGd and U_/AGd

and equation (4.5) yields the Grammer type upper bound
R < min{dJ, , 4J,} (4.13)
for the torsional rigidity of nonhomogeneous cylindrical bars. This estimation is used
mainly for narrow rectangular cross-sections [3].
Remarks to relations (4.8), (4.12) and (4.13):
R1. For a homogeneous bar, estimation (4.8) was first derived by Nicolai [8].

R2. For a homogeneous bar the upper bound (4.12) was deduced from the theory
of Saint-Venant by Diaz and Weinstein [2].

R3. It can be proved that inequality (4.12) gives the best upper bound if the origin
of the cross-sectional coordinate system is chosen in such a way [3] that the equations

/xG(m, y)JdA=0  and /yG(x, y)dA=0 (4.14)
A A
hold.

R4. Tt is proved in [3] that inequalities (4.8) and (4.13) lead to the best upper
bound if the origin and the direction of the axes of the cross-sectional coordinate
system x,y are chosen in such a way [3] that equations (4.14) and equation

/azyG(az, y)dA=0 (4.15)
A
are all satisfied.

R5. Relations (4.8) and (4.12) are equalities if the cross-section is bounded by two
concentric circles on which

m2+y2:a% and m2+y2:a§

and the shear modulus depends only on the radial coordinate r = /(22 + y2). Here,
a1 and ag are the radii of the boundary circles.

5. Conclusions

Some applications of the Bai-Shield identity for the torsion of a nonhomogeneous
cylindrical bar have been presented. A lower bound is derived for the greatest shearing
stress developed in twisted cylindrical bars and an upper bound is set up for the plastic
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limit torque. Three different upper bounds are derived for the torsional rigidity of
nonhomogeneous isotropic elastic bars. It is assumed that the material properties of
the bar do not depend on the axial coordinate.

All derivations are based on the Bai-Shield identity and the strength of materials’
approach makes it possible to avoid the use of variational methods and the application
of the procedures known from higher analysis [3].

The formulas derived are also valid for cases when the bar is a composite one made
of different homogeneous materials. These bars are compound bars and reinforced
bars. Their discontinuities in the material properties do not affect the validity of the
bounding formulas presented here.
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