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Abstract. The inverse problem of the variational calculus is discussed in the present paper.
We shall show step by step how to find a Lagrangian for the large deflections of a rhombic
plate from the nonlinear partial differential equation proposed by Banerjee.
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1. Introduction

It is well known from the literature [1] that a system of differential equations has a
variational representation if it is self-adjoint, but it is very difficult to identify the
variational model in a traditional way. If the system of equations is not self-adjoint
there is no simple way to find an equivalent variational model.

For example, first let us consider the following equation

"

%+a:0a u' (x) # 0, (1.1)

which is clearly self-adjoint [1]. As we have just mentioned, it is difficult to find an
equivalent variational model in the traditional way. By applying the semi-inverse
method [2, 3, 4, 5], however, we can easily obtain the corresponding variational func-
tional.

Let us assume that the Lagrangian of equation (1.1) can be expressed as
L(z,u,u’)=4Inu' + F (z,u) , (1.2)

where F' is an unknown function to be determined. Therefore we obtain the following
Euler equation
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then equation (1.4) coincides with the original equation (1.1). It follows from equation
(1.5) that the unknown function F' has the form

F=—au. (1.6)

Consequently, we have obtained the following functional for equation (1.1):

J(u) = /(u/ Inu' — au) dzx. (1.7)
Howerer, if equation (1.1) is written in the form
v +au' =0, (1.8)

then it is clearly not self-adjoint.

According to He’s semi-inverse method [2, 3, 4, 5], a Lagrangian assumes the form
L(z,u,u’) = F (z,u)u’?, (1.9)

where F' is an unknown function. The corresponding Euler equation can be written
as

oF
%u@ —2(Fu) =0, (1.10)
from where by performing the derivation we have
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- d — = 1.1
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then equation (1.12) coincides with equation (1.8). In addition it immediately follows
from equations (1.13) that the unknown functional has the form

F = (e, (1.14)

where C' is a nonzero constant. In other words, the variational representation for
equation (1.8) can be expressed as

J(u) = /C’e‘”‘u'2 dz. (1.15)

In the present paper, we shall propose a straightforward approach to the inverse prob-
lem of the calculus of variations, and seek a Lagrangian for the differential equation
which describes the large deflections of rhombic plates [6]. We should remark that we
shall neglect the question of boundary conditions.
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2. Mathematical formulae for small displacement theory

Consider a rhombic plate made of an elastic, isotropic material and having a uniform
thickness h. Let the size of each side of the skew plate be sufficiently large compared
to h. The origin of the rectangular Cartesian coordinate system (z,y) is located at
one of the corners of the skew plate.

J

Figure 1. Skew plate

Following Banerjee’s hypothesis [7], the differential equation which describes the
large deflection of plates is a complex nonlinear 4th order partial differential equation
[6,7]:

124
Viw — o (Waz + VWyy) —
6A 2 2 2 2 q
2 (3wmwz + 3wyywy + Wepwy, + wyywy + 4w$ywmwy) =5 (2.1)

where F is the modulus of elasticity, D is the flexural rigidity, h is the thickness of

the plate, ¢ is the load intensity, v is the Poisson ratio of the plate material, A = v2,

A is a constant, w is the deflection normal to the middle plane of the plate.

First we shall consider the biharmonic equation
Viw =0. (2:2)
The Lagrangian of equation (2.2) can be found with ease:
Ly (w) = % (V2w)®. (2.3)

To proceed, we regard the equation

Waz + VWyy =0, (2.4)
for which obviously
1
Ly (w) = —3 (w2 + vwz) (2.5)

is the Lagrangian. Now we consider the Lagrangian

1
Ls (w) = —iwi + wz (2.6)
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since the corresponding Euler equation reads
(), + (), =0 1)
or which is the same
wmwz + wyng + 4wz wywey = 0. (2.8)
It is obvious that the left side of equation (2.8) is involved in equation (2.1).

Now we take the following Lagrangian
Ly (w) = w (wzpw? + wyywi) . (2.9)

The corresponding Euler equation reads

W wh + (wwl) =2 (Wweety), + wwy,w) + (wwi)yy —2 (wwyyw,), = 0. (2.10)

By a simple manipulation, equation.(2.10) can be transformed into the form

3w w2 + 3wyyw§ =0. (2.11)

which is again a part of equation (2.1). Making use of equations (2.3), (2.5) (2.6) and
(2.7), we obtain

124 6\ 3
L(w) =Ly (w) = 55 La(w) = 15 <L3 + ZL4> (2.12)
1 2 64 3\ 9\
=3 (V2w)” + T (w2 +vw)) + ﬁwgwg — v (Waew? + wyywy) .

as the Lagrangian of equation (2.1). It can easily be checked by determining the Euler
equation of the functional (2.12) that the former really coincides with equation (2.1).

3. Conclusion

We have found a Lagrangian for the Banerjee equation which describes the large
deflections of a rhombic plate. However, the paper has dealt neither with the issue
of the boundary conditions nor with the effect the skew angle in the rhombic has on
the solutions. As regards the issue how to involve boundary conditions in the model,
we refer the reader to paper [8]. At the same time we remark that the singularities
due to discontinuous distributions of bending moments can be taken into account by
applying the method proposed in the book by Washizu [9].
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