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Abstract. Due to the deformation of a solid body its metric tensor changes. In this paper
the Riemann-Christoffel curvature tensor, considered as the compatibility field equation of
the nonlinear theory of deformation and written in terms of the metric tensor of the deformed
body, is derived from the principle of complementary virtual work.
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1. Introduction

The deformation tensors of a solid body are uniquely defined by its displacement
field. Otherwise, when the deformation tensors are known, a single-valued continuous
displacement field (without rigid body motions) can be derived only in the case when
the deformation tensors satisfy the compatibility conditions. Compatibility conditions
consist of compatibility field equations and compatibility boundary conditions. In this
paper the compatibility field equations are investigated only.

In the infinitesimal theory of deformation, the compatibility field equation is equiv-
alent to the vanishing of the Saint-Venant compatibility tensor. In the nonlinear de-
formation theory, the compatibility condition is usually expressed by the requirement
that the metric tensor of the deformed body be the metric tensor of a Euclidean
space (note that the metric tensor of the deformed body is the Green deformation
tensor in the reference configuration and the Cauchy deformation tensor in the cur-
rent configuration). This means that vanishing of the Riemann-Christoffel curvature
tensor written in terms of the metric tensor of the deformed body is equivalent to the
compatibility field equation.

Both the tensorial Saint-Venant equation and the zero-valued Riemann-Christoffel
curvature tensor have six scalar equations. These six equations are not independent
of each other. The problem of necessary and sufficient compatibility conditions arises
from this fact. A partial solution for this problem was given by Washizu [1]. In the
framework of the classical elasticity theory, the necessary and sufficient compatibility
conditions were given by Grycz [2], the compatibility field equations and compatibility
boundary conditions were derived from the principle of virtual work by the author,
see Kozék [3,4].
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The papers [5,6] by Bertoti established compatibility field equations and boundary
conditions of the first kind in the linear theory of elasticity. For micropolar case and
within the framework of the linear theory Kozdk-Szeidl [7] determined the necessary
and sufficient conditions the strains should meet to be compatible.

This paper derives the Riemann-Christoffel curvature tensor as the compatibility
field equation of the nonlinear theory of deformation using the principle of comple-
mentary virtual work. The necessary and sufficient conditions of compatibility in the
nonlinear theory of deformation are not investigated here. In this respect we refer to
an earlier work of the author Kozak [8].

In the following we assume that the volume of the body is simple-connected and
bounded by a closed smooth single surface . Both the invariant (symbolic) and indicial
(tensorial) notation of tensor calculus will be used. When indicial notation is used,
the covariant derivative of a tensor as well as the partial derivative of a two-point
tensor will be denoted by a semicolon followed by an index in the subscript, whereas
the total covariant derivative of a two-point tensor will be denoted by a colon followed
by an index in the subscript.

2. Coordinate systems. Deformation gradients

2.1. Let the spatial point, the position vector, the spatial coordinates and the base
vectors be denoted as follows:

— in the reference coordinate system (in the reference configuration of the body):

pP° o ok 1° _ Or®
y Ty Ty Bkoy 8 gk078x0k

— in the spatial coordinate system (in the current configuration of the body):

or
Pv r, ‘Tpa gp7 gq7 gp:%

In the course of deformation the arbitrary point P of the body, moves from the
space point Pe(2°!,2°2,2°%) to the space point P(z!, 2% 2%). The trajectory of the
point P is determined by the motion:

oxP

xP = xP (2°, 2°2, 2% 1), J = det e

>0. (2.1)

The inverse motion is given by
x°F = 2% (2!, 2% 23 1) . (2.2)

Using material coordinate system, let the point, the coordinates and the base vectors
be denoted as follows
— in the reference configuration of the body:

or° Ox°!

P, X°K = XK Ggo, G° Ggo =50 =
) ) K°, ’ K 8X°K

= oxeR
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— in the current configuration of the body:

or Oz
oxP ~ oxPe
2.2. At arbitrary time ¢ the direct and inverse mappings are given by

P, X = X°F, Gp, G@, Gp =

dr = F - dr°, dr° = F~'.dr (2.3)
respectively, where F is the deformation gradient:

o

6xp o o
F:F”logpgl = nggl :GQGQ (2.4)

and F~! is the inverse deformation gradient:

—1 —1 k° axko Q
F= (F ) qgkogq = Oz9 8iog? = GG~ . (2.5)

F and F~! are two-point-tensors.

In the reference configuration they can be written as
Frote = giote + oo = gropFl = guop (5 + 710 (2.6)
and in the current configuration as
(Fﬁl)pq = 9pq — Upyq = Ypke (Fil)k; = 9pke (550 - “k?q> (2.7)

k°

where grop = gpro is a shifter, u® = ugog® = u,g? = u is the displacement vector.

3. The principle of complementary virtual work

3.1. We assume that on the surface part (A;) loads, on the surface part (A,) dis-
placements are prescribed and (A;) = (A¢) U (A,) is the whole surface of the body.
In addition we assume that the variation of the Cauchy stress tensor satisfies the
following conditions:

6SP% =0 and 5P =487, x € (B) (3.1)
3SPn,dA =0 x € (Ap)

where n, is the normal unit vector to (A).

The principle of complementary virtual work states that when equation

/ (9 = (F71),,| 957av = / i,05P 1, d A (3.3)
(B) (A)
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holds for any 6577 satisfying (3.1) and (3.2) in the current configuration (B) of the
body, where 4, is the prescribed displacement field, then the inverse deformation
gradient and the gradient of the displacement vector

— ]{)O o _ o o
(F 1) q - gk g (F 1)pq and uk%q = gk Pup;q (34)
are kinematically admissible.

3.2. Any tensor 577 satisfying (3.1) can be derived from a second-order, symmet-
ric, otherwise arbitrary stress function tensor 6 H,:

dSPT = P e Hygimm (3.5)
Inserting (3.5) in (3.5) we obtain:

/5”"’5‘15" [gpq - (Fﬁl)pq} 0Hsmn dV = / Upe? e Hygmnngd A (3.6)
(B) (Aw)

Applying the Gauss-theorem twice on the volume integral, another form of the prin-
ciple of complementary virtual work is obtained:

M _qsn —1 o TN _qSn —1
/ Pt (B 6 H, AV = / n e gy — (F1), | 9Hrpn dA +
(B) (4)
+ / e Mt (FY) 6 H, dA / lipTge” ™ S Hygommngd A . (3.7)
(4) (Aw)

Taking into account that § H,.s is arbitrary in the volume of the current configuration of
the body, from (3.7) we get the compatibility field equation for the inverse deformation
gradient F~':

oPrm qsn (F—l) =0, x € (B). (3.8)

pg:mn

As mentioned in the introduction, this paper does not investigate the necessary and
sufficient compatibility conditions of the nonlinear theory of deformation, therefore
equation (3.7) is used for the derivation of the compatibility field equation (3.8) only.

4. The compatibility field equation and the curvature tensor

4.1. In the following our investigations will be carried out in a material coordinate
system, proposed by Lurie [9]. In this case the inverse deformation gradient can be
written as

Fl = (F1), Gk G? = Gg- GO (4.1)

ie.,

[oy3] = [xer] = [6) - 42

O O =
o = O
= o O
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and
1 _1\K°
(F )PQ = Gpko (F ) Q> (4.3)
where G pgo is a shifter.

The form of the compatibility field equation (3.8) in the material coordinate system
is
PRM _QSN (-1
ePMeQSN(FY) oy =0, 2 €(B). (4.4)
To carry out the covariant differentiations in (4.4), the rule for the total covariant
differentiation of two-point tensors will be used, taking into account that the total
covariant derivative of a shifter is zero. First we obtain:

_ _ KO _ KO
(F 1)PQ:M - |:GPK° (F 1) Q:|M :GPKO (F 1) Q:M (45)
where
_1\ K° 1\ K° 1\ A° 1\ K°
(F 1) QM (F 1) Q:A° (F 1) m T (F 1) QM
=8 (F ), (F ), T8 (F ), (4.6)

In (4.6) T'k. 4. and 'y, are Christoffel symbols of the second kind.

Following from (4.5) and (4.6) we can write:

(F™Y) pourn = Grrce (F—l)KQO:MN : (4.7)
where
N i = [E N o] o EN N+ [E N ], @)
(P o] = 3; ;';g (F N, (F N 4T e (FY,, (49)
and
_ Tou D°

_ K° _ K° - K° B
[(F 1) Q:M};N* OXN (F 1) U*%N (F 1) V;M*F%N (F 1) oW (4.10)

Now we make the following transformations: first we insert (4.6) in (4.9) and (4.10),
then (4.9) and (4.10) in (4.8). After some algebra, we obtain the compatibility field
equation (4.4) in the current configuration in terms of material coordinates (with
changed dummy indices):

IMP_JN -1

€ eNe (F )PQ:MN =

(9FKO o o A° B° c°
IMP_JN BoA° K D ~1 ~1 ~1

= MPINCGp o l( X C +FCODOFA°B°> (F ) W () o (F ) n| -

_IMP_INQG

aFgM U W —1\K°
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Making use of the components of the inverse deformation gradient given in (4.2),
(4.11) can be written in the following form:

o o o o 8FKO o o
- A C ©A°
€IMP€JNQ (F 1)PQ:MN:€I P EJ B GPoKo (w?—oé—FFgoDoFgoBo) —
IMP_JNQ 81—‘81\/[ U w
—& g GPUO M—N + FNWFMQ . (4.12)

4.2. The Riemann-theory states that in order to tensor G pg of the material coor-
dinate system be the metric tensor of a Euclidean space in the current configuration,
it is necessary and sufficient that Gpi be positive definite and satisfy the following
equation:

Mg Y
A MQ MN A 1B A 1B
where Ry At is the Riemann-Christoffel curvature tensor. If tensor Gpq is defined
as a metric tensor, just like in our case (see equation (4.21)), positive definiteness of
Gpgk is a priori satisfied and the only condition left to be investigated is the zero-
valuedness of the Riemann-Christoffel curvature tensor (4.13).

Instead of the Riemann-Christoffel curvature tensor, the so-called Ricci tensor can
also be used. Definition of the Ricci tensor is given by

1 1
Al — ZEIMPgJNQRNQIMP _ ZSIMPSJNQGPARNQMA _
1 or4
- ngﬂ%JNQGPA<—k&g§«—rﬁBrﬁQ =0. (4.14)

Both the Riemann-Christoffel curvature tensor and the Ricci tensor have six indepen-
dent non-zero components:

1 1 1

AM = — Roso3, A?? = — Ra131, A3 = = Rio12,
G G G (4.15)
A2 = l1132131 A% = i17“33112 A3l = lR1223
G ’ G ’ G ’
G = det |Gpal . (4.16)

According to (4.15), zero-valuedness of the Riemann-Christoffel curvature tensor
is equivalent with the zero-valuedness of the Ricci tensor.

In the material coordinate system and reference configuration the Ricci tensor
reads:
o ) 1 o o o ) o o 1 o o o ) o o o
AT — Zgl APPS_JCOB R b o pe = ZgI AP L I°CB® Gtpy ko R po gk =

_Lrwrrerg, (L8 pue ppe ) g (4.17)
4 P°K 8X°C copel pgopo . .
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If the space of the reference configuration is Euclidean, then Rgopgo 4o = 0 and
A" =0 | and similarly, if the space of the current configuration is Euclidean then
Ryoait =0and A7 =0.

4.3. Comparing the compatibility field equation (4.12) obtained from the princi-
ple of complementary virtual work and equation (4.14) for the Ricci tensor in the
current configuration as well as equation (4.17) for the Ricci tensor in the reference
configuration we obtain:

IMP_JNQ

g!MPg —2GT. Gl AT 1241 = 0. (4.18)

(Fﬁl)PQ:MN =

4.4. Then, assuming that in the case of the direct mapping the reference configu-
ration is Euclidean, i.e., A°7"/" = 0, it follows from (4.18) and (4.14) that

- 1
SIZ\/IPEJNQ (F 1)PQ:MN — 2AIJ — ZEIMP&JNQGPARNQMA =0 , (419)
A
IMP_JNQ aFMQ r4 s _ 4.9
e € PA 8XN + NBLY MQ —O ( . 0)

In other words, the compatibility field equation (4.18) is equivalent to the zero-
valuedness of the Ricci, as well as - according to (4.15) - the Riemann-Christoffel
curvature tensor in the current configuration, provided they are expressed in terms of
the changed metric tensor Gpa. Tensor Gp4 is nothing but the Cauchy deformation
tensor:

GPA = GPOAO + QEPA (421)

where Epy4 is the Euler-Almansi strain tensor. For equation (4.20) we have to take
into consideration that
0 0 0
G —Gy —=G
axm @S T axatMs T gy MQ]

0 0 0
= GAS |:FM0Q07SO + (M—M QS“F 6XQE S — aXSEMQ)] (422)

where I'yg,s and I'progo,so are Christoffel symbols of the first kind.

1
T = G¥Tugs=5G" [

4.5. When, in contrary to the above, the inverse mapping is considered and we
assume that the space of the current configuration is Euclidean, i.e., AT/ = 0 from
(4.18) and (4.17) we have

IMP_JNQ {—1 _ I~ gol°J° _
glMPg (F )PQ:MN =-2G1.G7. A =

1 o o o o o o o
—§GIOG~5051 AP IO B Qo o Rpo o aols. =0 (4.23)

and

I°A°P° _J°C°B° aFgSAO ° D°
3 € GpoKo - DX C *FCoDoFAoBo =0. (4.24)
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Thus, in this case the compatibility field equation (4.18) is equivalent to the zero-
valuedness of the Ricci, as well as - according to (4.15) - the Riemann-Christoffel
curvature tensor in the reference configuration, provided they are expressed in terms
of the changed metric tensor Gpogo. Tensor Gpo o is nothing but the Green defor-
mation tensor:

GPOKO == GPK - QE%OKO (425)

where Ep. o is the Green-Lagrange strain tensor. For equation (4.24) we have to
take into consideration that

o o o 1 o o a a a
FKo o:GKLF o Bo o:—GKL Gporo —— G pojo — ——G popo | =
BoA A°B° L 5 XA B°L +8X°B A°L XL A°B
o o a o a o 6 °
= GK L |:FAB,L - <M—0AEBOLO + a‘X—OBEAOLO - M—OLEAOB<>>:| (426)

5. Conclusions

Applying a material coordinate system it has been pointed out that for solid bodies
the compatibility field equation obtained from the principle of complementary virtual
work is equivalent to the zero-valuedness of the Riemann-Christoffel curvature tensor:

— in the case of direct mapping the Riemann-Christoffel curvature tensor is ex-
pressed, according to (4.19)-(4.22), by the Cauchy deformation tensor defined as
the metric tensor of the current configuration,

— in the case of inverse mapping the Riemann-Christoffel curvature tensor is ex-
pressed, according to (4.23)-(4.26), by the Green deformation tensor defined as
the metric tensor of the reference configuration.

In the above statements, instead of the Riemann-Christoffel curvature tensors the
Ricci tensors can equally be used.

Note. This paper is dedicated to I. Pdczelt on the occasion of his 60th birthday since it
applies one of the proposals of Prof. Lurie in his book 'Theory of elasticity’ and 1. Paczelt
was a graduate student of Prof. Lurie in the years of 1966-1969.
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