
ar
X

iv
:1

00
1.

42
30

v2
  [

he
p-

ph
] 

 2
 M

ar
 2

01
0

Higher order forward spin polarizability

B. Pasquinia,b, P. Pedronib, D. Drechselc

aDipartimento di Fisica Nucleare e Teorica,
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abilities of the nucleon, we have constructed the forward amplitude for polarized

Compton scattering by dispersion integrals. These integrals have been saturated

by recently measured helicity-dependent photoabsorption cross sections as well as

predictions for pion photoproduction multipoles from several phenomenological de-
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I. INTRODUCTION

Real Compton scattering (RCS) probes the response of a complex system to an external

electromagnetic field. In particular, photon scattering off the nucleon is described by six

independent helicity amplitudes depending on the lab energy Eγ and the scattering angle

θ of the photon. The low-energy expansion (LEX) of these amplitudes defines two spin-

independent (scalar) and four spin-dependent (vector) polarizabilities, appearing at order

E2
γ and E3

γ , respectively. These polarizabilities are fundamental structure constants of the

nucleon just as its size and shape.

Whereas the scalar polarizabilities have been measured quite accurately by comparing the

RCS data directly to the LEX [1, 2], the quest to determine the vector polarizabilities is still

going on. The difficulty to measure the vector polarizabilities is caused by their suppression

at low energies, which makes it impossible to extract them at energies Eγ < 100 MeV. With

increasing energies, on the other hand, the LEX converges slower and slower and finally

breaks down at pion-production threshold, Eγ = mπ + m2
π/(2M) ≈ 150 MeV, where mπ

and M are the pion and nucleon masses, respectively. In order to determine the vector

polarizabilities from RCS data, it is prerequisite to (i) analyze the data within a theoretical

framework covering the energy region up to the ∆(1232) resonance at Eγ ≈ 300 MeV and

(ii) perform dedicated experiments with polarized photons and nucleons with increased sen-

sitivity to the spin-dependent amplitudes.

The sensitivity of various single and double polarization observables to the spin polarizabil-

ities has been studied by subtracted dispersion relations based on the pion photoproduction

multipoles [3]. The authors concluded that a complete separation of the polarizabilities

should be possible by dedicated polarization experiments between pion threshold and the

∆(1232) region, provided that polarization measurements can be achieved within an accu-

racy of a few percent. Such an experiment to extract the spin polarizabilities has recently

been proposed at MAMI [4].

The predictions of chiral perturbation theory (ChPT) at O(p4) are in good agreement with

the empirical data for the scalar polarizabilities of the proton [5]. However, in order to cover

the energy region necessary for the extraction of the vector polarizabilities, the ∆(1232)

must be included as a dynamic degree of freedom [6–9].

Recently, these polarizabilities have also been studied in lattice QCD. The first results for
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the magnetic polarizability of the proton are quite encouraging [10], whereas quite different

values are reported for the electric polarizability [11–16]. It was also proposed to extract

the spin polarizabilities from lattice calculations [17]. However, calculations with dynamic

and lighter quarks are prerequisite to extrapolate to the physical point in a reliable way,

because these polarizabilities show distinct signatures of chiral dynamics [7].

As stated above, the complete separation of the six polarizabilities of the nucleon requires

both new polarization data and a theoretical framework for RCS, which will necessarily con-

tain some model dependence through parameters describing the high-energy regime. Such

parameters are the low-energy constants appearing in ChPT, and in dispersion relations

the extrapolation of the photoproduction data to regions not covered by the experiment.

Any additional confirmation of the theoretical framework by independent experimental in-

formation is therefore most welcome. On that ground it is the aim of the present work to

construct the full spin-dependent RCS amplitude in forward direction from data given by

(helicity-dependent) total photoabsorption cross sections. In Sec. II we present the formal-

ism necessary to discuss the forward scattering amplitudes and their relations to dispersion

integrals over inclusive photoabsorption cross sections, the LEX defining the leading and

higher order forward spin polarizabilities (FSPs) as well as the “dynamic” FSP describing

the full spin-dependent response to forward scattering. The relevant dispersion integrals are

evaluated in Sec. III and compared with several model predictions. Finally, we conclude

with a brief section summarizing our findings.

II. KINEMATICS, AMPLITUDES, AND SPIN POLARIZABILITIES

The polarizability of the nucleon is determined by Compton scattering [18, 19],

γ(k) +N(p) → γ(k′) +N(p′) , (1)

where k and p denote the momentum four-vectors of the incoming photon and nucleon,

respectively, with the primed quantities standing for the final state momenta. Compton

scattering can be described by the two Lorentz invariants ν = K · P/M and t = (k − k′)2,

with K = (k+k′)/2 and P = (p+ p′)/2. These invariants are related to the initial (Eγ) and
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final (E ′

γ) photon laboratory energies, and to the laboratory scattering angle θlab by

t = −4EγE
′

γ sin
2 θlab

2
= −2M(Eγ − E ′

γ) ,

ν = Eγ +
t

4M
=

1

2
(Eγ + E ′

γ). (2)

In the forward direction, the invariants take the values

ν = Eγ = E ′

γ , t = 0. (3)

For the theoretical calculations of Compton scattering it is convenient to use the center-of

momentum (c.m.) system. With ω and ω′ the photon c.m. energies in the initial and final

states, respectively, and ω = ω′, the analog of Eq. (3) in the c.m. frame is

ν = ω(
√

1 + ω2/M2 + ω/M) , t = 0. (4)

The forward Compton amplitude takes the form

T (ν, θ = 0) = ~ε ′∗ · ~ε f(ν) + i ~σ · (~ε ′∗ × ~ε) g(ν) , (5)

where ~ε and ~ε ′ are the photon polarizations in the initial and final states, respectively, and

~σ is the spin operator of the nucleon. Because of the crossing symmetry, the amplitude T is

invariant under the transformation ~ε → ~ε ′ and ν → −ν. As a result, f is an even and g an

odd function of ν.

The amplitudes f and g can be determined by scattering circularly polarized photons (e.g.,

helicity λ = 1) off nucleons polarized along or opposite to the photon momentum ~k. Depend-

ing on the relative orientation of the spins, the absorption of the photon leads to hadronic

excited states with spin projections 1/2 or 3/2. The optical theorem expresses the unitarity

of the scattering matrix by relating the respective absorption cross sections, σ1/2 and σ3/2,

to the imaginary parts of the forward scattering amplitudes,

Im f(ν) =
ν

8π

(

σ1/2(ν) + σ3/2(ν)

)

,

Im g(ν) =
ν

8π

(

σ1/2(ν)− σ3/2(ν)

)

. (6)

In the following, we restrict the discussion to the spin-dependent amplitude g(ν). Using

causality, the crossing symmetry, the optical theorem and an appropriate high-energy be-

havior of the scattering amplitude, we may set up the following unsubtracted dispersion
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relation:

Re g(ν) =
ν

4π2
P

∫

∞

ν0

σ1/2(ν
′)− σ3/2(ν

′)

ν ′2 − ν2
ν ′dν ′ , (7)

where ν0 = mπ + m2
π/(2M) is the threshold for producing a pion with mass mπ. If the

integral exists, it has a Taylor series expansion about ν = 0, with a convergence radius given

by the onset of inelasticities at ν0. This series can be compared to the LEX of the spin-flip

amplitude [19],

g(ν) = −
e2κ2

N

8πM2
ν + γ0ν

3 + γ̄0ν
5 +O(ν7). (8)

The leading term of this expansion is due to intermediate nucleon states (Born terms). The

comparison of the LEX with the Taylor expansion of Eq. (7) yields the Gerasimov-Drell-

Hearn (GDH) relation between the anomalous magnetic moment of the nucleon, κN , and

the spin-dependent absorption spectrum,

πe2κ2
N

2M2
=

∫

∞

ν0

σ3/2(ν
′)− σ1/2(ν

′)

ν ′
dν ′ ≡ IGDH. (9)

The higher-order terms are produced by the hadronic excitation spectrum (non-Born or

dispersive contributions). These terms parameterize the FSPs of the nucleon. In particular,

the leading and next-to-leading FSPs are given by

γ0 =
1

4π2

∫

∞

ν0

σ1/2(ν
′)− σ3/2(ν

′)

ν ′3
dν ′ ,

γ̄0 =
1

4π2

∫

∞

ν0

σ1/2(ν
′)− σ3/2(ν

′)

ν ′5
dν ′ . (10)

Furthermore, we may define the crossing-even “dynamic” FSP γdyn
0 (ν) by

g(ν) = −
e2κ2

N

8πM2
ν + γdyn

0 (ν)ν3 ,

Re[γdyn
0 (ν)] =

1

4π2
P

∫

∞

ν0

σ1/2(ν
′)− σ3/2(ν

′)

ν ′(ν ′2 − ν2)
dν ′ , (11)

Im[γdyn
0 (ν)] =

σ1/2(ν)− σ3/2(ν)

8πν2
.

For ν < ν0 the imaginary part vanishes, and the “dynamic” FSP has the following LEX:

γdyn
0 (ν) = γ0 + γ̄0 ν

2 +O(ν4). (12)

In comparing with the literature, we note that the expression “dynamic polarizability” in

Refs. [7] and [19] refers to the energy dependence of the polarizability due to individual
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electromagnetic multipole radiation or combinations thereof. On the other hand, the FSP

γdyn
0 (ν) of Eq. (11) describes the nucleon’s forward spin response to the full electromagnetic

field, including the contributions of all the multipoles and their retardation.

The general theory of Compton scattering involves 6 crossing-even amplitudes Ai(ν, t)

describing the dispersive part of the scattering matrix [18, 19]. In particular, the forward

scattering amplitude g is related to A4 as follows:

A4(ν, t = 0) =
2πM

ν3

(

g(ν)− νg′(0)

)

. (13)

Using Eqs. (11) - (13) we may cast the polarizabilities into the form

γ0 =
a4

2πM
, γ̄0 =

a4,ν
2πM

, (14)

with

a4 = A4(0, 0) , a4,ν =
∂

∂ν2
A4(ν, 0)|ν=0 . (15)

If the invariant ν is expressed by the c.m. energy ω according to Eq. (4), the LEX of Eq. (8)

takes the form

g(ω) = −
e2κ2

N

8πM2
ω(1 +

ω

M
+

ω2

2M2
−

ω4

8M4
)

+ γ0ω
3(1 +

3ω

M
+

9ω2

2M2
) + γ̄0ω

5 +O(ω6). (16)

We observe that the nucleon Born term, proportional to κ2
N , contributes a series of recoil

terms in ω/M . The remaining dispersive terms contain the spin polarizabilities related to

the excited states of the nucleon. As for the ν expansion, the spin polarizability γ0 appears

as coefficient of the third order term, now in ω3. In addition, however, γ0 appears also with

recoil terms of order ω4 and ω5. Combining all the ω5 dispersive terms to γ̃0 ω
5, we find the

relation

γ̃0 = γ̄0 +
9

2M2
γ0. (17)

According to Ref. [20], the O(ω3) and O(ω5) FSPs have the following multipole decomposi-

tion:

γ0 = −(γE1E1 + γM1M1 + γM1E2 + γE1M2), (18)

γ̃0 = −(γE1E1ν + γM1M1ν + γM1E2ν + γE1M2ν

+ γE2E2 + γM2M2 +
8

5
γE2M3 +

8

5
γM2E3). (19)
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In Eq. (19), the first row contains retardation corrections related to the leading FSP, whereas

the second row shows higher multipole structures probing the quadrupole and octupole

excitation of the system. We note that the above multipole notation of Ref. [19] is related

to the nomenclature of Ref. [20] as follows:

γE1E1 = γE1, γM1M1 = γM1,

γM1E2 = γE2, γE1M2 = γM2,

γE2E2 = γET , γM2M2 = γMT ,

γE2M3 = γM3, γM2E3 = γE3. (20)

III. RESULTS FOR THE GDH SUM RULE AND THE FORWARD SPIN

POLARIZABILITIES

A. Evaluation of the dispersion integrals

The dispersion integrals defined in Eqs. (9) and (10) were evaluated using the data ob-

tained by the GDH collaboration at the MAMI (Mainz) and ELSA (Bonn) tagged photon

facilities. The contributions of kinematical regions not covered by the data were deter-

mined on the basis of various multipole analyses for pion photoproduction, with systematic

errors estimated by comparison of different model predictions. In particular, we used the

work of Hanstein et al. (HDT) based on dispersion relations [21], the recent version of the

SAID09 multipole analysis [22], the unitary isobar model MAID07 [23], the dynamical DMT

model [24], and the predictions of heavy baryon chiral perturbation theory (HBChPT) ac-

cording to Ref. [20].

The experimental data base includes:

• the helicity-dependent differential cross section [(dσ/dΩ)3/2− (dσ/dΩ)1/2] data for the

nπ+ channel measured at Eγ = (0.18 ± 0.005) GeV and Eγ = (0.19 ± 0.005) GeV in

the angular range 45◦ ≤ θ∗ ≤ 109◦, where θ∗ is the pion emission angle in the c.m.

frame [25],

• the helicity-dependent data for the total inclusive cross section, ∆σ = σ1/2 − σ3/2,

starting at Eγ = (0.204 ± 0.009) GeV and extending to Eγ = (2.82± 0.09) GeV [26–

28].
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FIG. 1: The experimental running integrals I(Eγ) of Eq. (21) as obtained from the data of the

GDH Collaboration [25] compared to the HDT [21], SAID09 [22], MAID07 [23], and DMT [24]

predictions. The top and bottom panels display the contributions of the nπ+ and pπ0 channels,

respectively. For both the experimental and the theoretical values, the integration starts at the

lowest measured photon energy Eγ,min, that is, 0.175 GeV fo nπ+ and 0.158 GeV for pπ0. Only

the statistical errors are shown.

As a first step to evaluate the dispersion integrals, the data at Eγ = (0.18± 0.005) GeV

and Eγ = (0.19 ± 0.005) GeV were used to obtain the nπ+ contribution to ∆σ at these

energies and in the measured angular range. The extrapolation into the unmeasured region

of θ∗ was performed with the HDT analysis which reproduces the experimental data for

Eγ ≤ 0.3 GeV quite well, see for example Fig. 7 of Ref. [25]. The error associated with this

extrapolation was estimated by comparison with the SAID09, MAID07, and DMT multipole

analyses. As a result we found an absolute systematic error of about ±5% for the calculated

total cross section value. In order to check the validity of this estimation, we evaluated the

experimental “running integral” I for the FSP γ̄0,

I(Eγ) =
1

4π2

∫ Eγ

Eγ,min

σ1/2(ν)− σ3/2(ν)

ν5
dν , (21)

where the lower integration limit Eγ,min corresponds to the lowest measured photon-energy

bin and the upper integration limit is taken as the running variable.
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Figure 1a) shows the data points based on (i) our evaluation of the helicity dependent nπ+

total cross section data in the energy range 0.175 GeV ≤ Eγ ≤ 0.195 GeV [25] and (ii) the

published helicity-dependent nπ+ total cross section data in the energy range 0.195 GeV ≤

Eγ ≤ 0.450 GeV [25]. The data are compared with the predictions of four multipole analyses

as indicated in the figure. The good agreement between the experimental data and the

results of the HDT and DMT models for Eγ < 250 MeV gives reasonable confidence in

our extrapolation to the lower energies. However, the 1/ν5 weight in the integrand of

Eq. (21) clearly enhances the contribution of the unmeasured threshold region relative to

the high energy region. In performing the integrals, it is also important to consider the

isospin breaking effects, at least via the pion mass splitting. The pion masses used in our

extrapolation to threshold are mπ0 = 134.98 MeV and mπ± = 139.57 MeV for the neutral

and charged pions, respectively. The results for the γp → pπ0 channel are shown in Fig. 1b)

by comparison of the multipole predictions with the helicity-dependent data in the range

from Eγ = (0.172 ± 0.014) GeV to Eγ = 0.45 GeV [25]. Because the measured pπ0 data

point below 0.2 GeV gives only a very small contribution to the integrals but have a large

statistical error, we choose to evaluate the pπ0 contribution of this energy range with the

HDT analysis. This choice minimizes the overall (statistical+systematic) error related to

the integral evaluation.

Concerning the unmeasured contribution of the γp → nπ+ channel below 0.175 GeV,

we observe that the S-wave multipole E0+ plays an overwhelming role in the threshold

region. An accurate knowledge of this multipole is mandatory in order to obtain a reliable

estimate of this low-energy contribution. Fortunately, the value of E0+ at threshold is known

rather precisely through the low-energy theorem for charged pion photoproduction. However,

current predictions differ with respect to the slope of E0+ in the threshold region. Figure 2

displays the contribution of the E0+ multipole for the nπ+ channel to the helicity-dependent

cross section ∆σ in the threshold region. The results according to HDT, SAID09, MAID07,

and DMT are compared to the analysis of Ref. [29]. The latter work extends the results of

low-energy theorems for threshold pion photoproduction within the framework of HBChPT

by fitting the unknown low-energy constants appearing at O(p3) to data on radiative pion

capture [30] and pion photoproduction [31].

Figure 2 shows that the predictions are in good agreement for Eγ ≤ 0.175 GeV except for

the MAID results. The different behavior of MAID is due to the fact that the unitarization
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FIG. 2: The contribution of the E0+ multipole for the charged-pion channel to ∆σ = (σ1/2 −σ3/2)

obtained from the HDT [21], SAID09 [22], MAID07 [23], and DMT [24] analyses as well as the

predictions of HBChPT [29].

involving the S11(1535) resonance underestimates the size of pion rescattering near threshold.

We have therefore evaluated the contribution of the nπ+ channel below Eγ = 175 MeV using

the HDT multipoles. The associated systematic error has been estimated by comparison

with the predictions of the other models excluding MAID.

B. Discussion of the results

Table I summarizes the measured and evaluated contributions of the different energy

regions to the GDH sum rule, the leading FSP, and the subleading FSP as well as the sta-

tistical and systematic errors. Statistical errors are given in standard deviation (sd) units

while systematic ones are given in half interval (∆/2) units. For the GDH sum rule and

the leading FSP γ0, the contributions above 2.91 GeV are taken from the estimates given in

Ref. [32], whereas such high-energy contributions can be safely neglected for γ̄0.

In Table II we compare our results for the FSPs γ0 and γ̄0 to (i) predictions obtained in

HBChPT at O(p3) and at O(ǫ3) in the small scale expansion (SSE) including the ∆(1232)
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channel energy GDH stat. syst. γ0 stat. syst. γ̄0 stat. syst.

(GeV) (µb) (sd) (∆/2) (10−4 fm4) (sd) (∆/2) (10−4 fm6) (sd) (∆/2)

nπ+ ≤ 0.175 −16 ±1 +0.56 ±0.01 +0.83 ±0.02

pπ0 ≤ 0.195 1 ±0.1 −0.03 ±0.05 −0.04 ±0.01

nπ+ 0.175 − 0.195 −14 ±1 ±1 +0.40 ±0.02 ±0.02 +0.46 ±0.02 ±0.02

γp → X 0.195 − 2.91 253 ±6 ±13 −1.85 ±0.07 ±0.05 −0.65 ±0.07 ±0.05

γp → X > 2.91 −14 ±2 0.01

total 210 ±6 ±14 −0.90 ±0.08 ±0.11 +0.60 ±0.07 ±0.07

TABLE I: Contributions from different photon energy regions to the GDH integral IGDH, the

leading FSP γ0, and the subleading FSP γ̄0 defined by Eqs. (9) and (10) as well as the associ-

ated statistical and systematic errors. The GDH sum rule predicts 204 µb. See text for further

information.

γ0 γ̄0 γ̃0 recoil

(10−4 fm4) (10−4 fm6) (10−4 fm6) (10−4 fm6)

O(p3) [20] 4.6 4.23 5.15 0.92

O(ǫ3) [20] 2.9 3.65 4.23 0.58

dispersion [21] −0.69 0.69 0.56 −0.14

our evaluation −0.90± 0.08 ±0.11 0.60± 0.07 ± 0.07 0.42± 0.09 ± 0.09 0.18 ± 0.02± 0.02

TABLE II: The FSPs of the proton. The leading FSP γ0 appears as coefficient of the amplitude

at third order in both the lab energy ν and the c.m. energy ω. The next-to-leading FSP, γ̄0 in

the lab system and γ̃0 in the c.m. system, appear at fifth order in the respective energies. They

differ by the recoil term given in the last column of the table. The predictions are obtained from

HBChPT at O(p3) and O(ǫ3) [20] as well as dispersion theory based on the HDT multipoles of the

one-pion channels.

as an explicit degree of freedom [20] as well as (ii) results based on dispersion relations using

the pion photoproduction multipoles of HDT up to 500 MeV and extended by the SAID

multipoles to the higher energies. The FSPs found from our analysis are in good agree-

ment with the results obtained by dispersion relations. However, the FSPs are considerably

overestimated by lowest order HBChPT. Further works on the leading spin polarizability γ0
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resulted in the following values (all in units of 10−4 fm4): −3.9 to O(p4) in HBChPT [33],

2.0 to O(ǫ3) in SSE [6], and −0.9 at NNLO in manifestly Lorentz-covariant ChPT [34]. The

dependence of the dispersive predictions on the one-pion photoproduction multipoles is illus-

trated in Table III. The solution labeled HDT corresponds to the HDT multipoles as given

over the energy range ν0 < Eγ < 0.5 GeV, supplemented by the SAID parametrization for

0.5 GeV < Eγ < 3 GeV. The MAID07 and SAID09 predictions are obtained from the most

recent parameterizations of these models for ν0 < Eγ < 3 GeV. Finally, the solution labeled

DMT is based on the DMT multipoles in the range ν0 < Eγ < 1.7 GeV, supplemented by

the SAID09 parametrization in the range 1.7 GeV < Eγ < 3 GeV.

Beyond the one-pion channel, we estimated the contribution from multi-pion intermediate

states by inelastic decay of πN resonances as detailed in Ref. [35]. The inelastic contributions

are assumed to have the same helicity structure as the one-pion channels. In this approx-

imation, we first calculate the resonant part of the pion photoproduction multipoles using

the Breit-Wigner parametrization of Ref. [36] and then scale this contribution by a suitable

factor to include the inelastic decay of the resonances. As shown in Table III, this procedure

yields a multi-pion contribution of (20±2)µb to the GDH sum rule. On the other hand, we

have evaluated this contribution on the basis of recently published data for the helicity de-

pendence of the γp → Nππ channels in the energy range 325 MeV < Eγ < 800 MeV [37–39].

¿From the data in the limited energy range covered by the experiments, we have obtained

a two-pion contribution of (39± 1 ± 3)µb, about twice the value of the model predictions.

The difference between the data and the predictions has its origin in the strong two-pion

contribution observed in the energy range 500 < Eγ < 700 MeV, which can not be described

by the resonance model. In view of this discrepancy, an improved theoretical description of

the multi-pion continuum states is prerequisite to describe the GDH sum rule in a quanti-

tative way. As may be expected from the energy-weight factors in the respective integrals,

Table III shows only small multi-pion effects for the FSPs.

Figures 3-5 display the running integrals for the GDH integral IGDH, the leading FSP γ0

and the subleading FSP γ̄0. These integrals are defined as in Eq. (21), with the appropriate

weight factors in the denominator. Figure 3 compares our result with the predictions of

several multipole analyses. The shaded bands represent the statistical and systematic errors

associated with our analysis, which includes both the experimental errors and the model

errors of the extrapolation into the unmeasured regions. The model predictions lie within
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GDH γ0 γ̄0

(µb) (10−4 fm4) (10−4 fm6)

HDT 177 (196) −0.67(−0.69) 0.69 (0.69)

MAID 163 (182) −0.65(−0.67) 0.65 (0.64)

SAID 191 (208) −0.86(−0.88) 0.57 (0.57)

DMT 185 (205) −0.76(−0.78) 0.64 (0.64)

TABLE III: Results for the GDH sum rule, the leading FSP γ0, and the subleading FSP γ̄0 as

obtained from the pion photoproduction multipoles of HDT, MAID, SAID, and DMT. The values

in bracket include the multi-pion contributions.

the error bars of our analysis, except for the running GDH integral above 0.5 GeV. In the

latter case the model predictions stay below the data by about 30µb, mostly because of the

missing multi-pion strength.

The multipole decompositions of the nπ+ and pπ0 channels are shown in Figs. 4 and 5,

respectively. The nπ+ channel is characterized by a strong competition between the E0+

multipole above threshold and the M1+ near the ∆(1232) resonance, whereas the neutral

pion channel is almost completely described by ∆(1232) resonance effects.

The real and imaginary parts of the dynamic FSP γdyn
0 , as defined by Eq. (11), are displayed

in Fig. 6. Up to the lowest threshold at Eγ = ν0, the real part can be expanded in a power

series according to the LEX, Eq. (12). Of course, the convergence of the series deteriorates

with increasing energy. Up to Eγ = 50 MeV, the forward scattering amplitude is described

by the leading polarizability γ0 within an accuracy of 10%. In order to obtain the same

precision at 80 MeV, also γ̄0 must be included, and already four terms of the series are

necessary at 100 MeV. As shown in Fig. 6, the onset of S-wave pion production at Eγ = ν0

leads to a strong cusp effect in the real part. The rapid increase of the dynamic FSP from its

static value −0.90 · 10−4 fm4 at Eγ = 0 to about 6 · 10−4 fm4 at pion threshold clearly shows

the necessity to analyze Compton scattering within the framework of dispersion analysis. In

particular, such an approach is prerequisite in order to determine the spin polarizabilities,

which yield significant contributions to the cross section only for photon energies above

80 MeV. Near Eγ ≈ 300 MeV, the dynamic FSP is dominated by the resonance structure

of the ∆(1232). Except for the minimum of Re[γdyn
0 ] near Eγ = 0.23 GeV, our analysis is
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FIG. 3: (Color online) The running integrals for the GDH sum rule, IGDH (top panel), the leading

FSP γ0 (center), and the next-to-leading FSP γ̄0 (bottom) as function of the upper limit of integra-

tion. The light grey (yellow) and dark grey (green) bands show the statistical (± sd) and systematic

(±∆/2) uncertainties, respectively, which include both the experimental errors and the estimated

model dependence of the pion photoproduction multipoles. The lines show the predictions based

on the pion photoproduction multipoles of HDT (solid), SAID (dotted), MAID (dashed), and DMT

(dash-dotted).
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FIG. 4: The multipole decomposition of the running integrals for the nπ+ channel as obtained

from the HDT model. The lines show the contributions of S waves (dashed), P waves (dotted),

and higher partial waves (dashed-dotted) as well as the total result (solid).

in very good agreement with the predictions of the shown models. The deviation in the

minimum is not too surprising, because this comes about by a delicate balance between the

S-wave background and the low-energy tail of the ∆(1232) resonance.
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FIG. 5: The multipole decomposition of the running integrals for the pπ0 channel as obtained from

the HDT model. The lines show the contributions of S waves (dashed) and P waves (dotted) as

well as the total result (solid).

IV. CONCLUSIONS

The polarizabilities of the nucleon are elementary properties providing stringent tests for

theoretical approaches to hadron physics, such as chiral perturbation and lattice gauge the-

ories. The (scalar) electric and magnetic dipole polarizabilities have been determined quite
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FIG. 6: (Color online) The real (left panel) and imaginary (right panel) parts of the dynamic

FSP γdyn0 as function of the photon lab energy Eγ . The light grey (yellow) and dark grey (green)

bands show the statistical (± sd) and systematic (±∆/2) uncertainties, respectively, which include

both the experimental errors and the estimated model dependence of the pion photoproduction

multipoles. The lines show the predictions based on the pion photoproduction multipoles of HDT

(solid), SAID (dotted), MAID (dashed), and DMT (dash-dotted).
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precisely by comparing Compton scattering data to the model-independent low-energy ex-

pansion at sufficiently low photon energies. However, this procedure fails for the “missing”

four spin polarizabilities because of their suppression in the cross sections at low photon

energies. In order to extract these polarizabilities from the data, it is prerequisite to (i)

measure polarized Compton scattering in the energy range of about 150-300 MeV and (ii)

analyze the data within a theoretical framework that describes the physics in this range

sufficiently well. Such a theoretical basis is provided by dispersion relations with data on

pion photoproduction as input. The critical question is, of course, the model-dependence of

such an analysis, in particular with regard to multi-pion and heavier meson production as

well as unknown high-energy tails. In order to study these questions, we have constructed

the spin-dependent part of the forward Compton amplitude using the recently measured

helicity-dependent photoabsorption cross sections. Although this “experimental” forward

spin amplitude needs some theoretical input for the unmeasured region near pion produc-

tion threshold, the associated systematic errors are small because of the (model-independent)

low-energy theorem for charged pion photoproduction at threshold. We have compared our

findings to predictions based on pion photoproduction multipoles given by chiral perturba-

tion theory as well as phenomenological models. This comparison includes the Born term

given by the GDH integral and the dispersive contributions related to the nucleon’s ex-

citation spectrum, as expressed by the leading and higher order FSPs as well as the full

(dispersive) forward spin amplitude or “dynamic” FSP. As demonstrated by the “running”

integrals for these observables, the theoretical predictions and the results based on the ex-

perimental data agree quite well for photon energies below 300 MeV. At the higher energies

we find deviations up to 10-20%, mostly due to the modeling of the helicity structure of

multi-pion production. Because of the suppression by energy-dependent weight factors, the

high-energy contribution to the next-to-leading and higher order spin polarizabilities is much

reduced. It is therefore a viable strategy to analyze future polarization experiments by (i)

treating the leading polarizabilities as free parameters and (ii) fixing the higher order polar-

izabilities by subtracted dispersion integrals based on the pion photoproduction multipoles.

We are confident that such experiments will advance our understanding of a basic property

of the nucleon: the response of its spin structure to an applied electromagnetic field.
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