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Abstract. The purpose of the paper is to present an extension of Trefftz’s idea. The essen-
tial of this method is to obtain lower bounds for eigenfrequencies of the elastic continuous
structures. Let us suppose that we have good upper bounds that are sufficient in number
and accuracy as well. This paper also contains a discussion of differential operators and their
inverses or generalized inverses. A new example presents a technique for making generalized
Green matrix.
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1. Introduction

The estimation of natural frequencies for elastic continuous rod structures is possible
in several ways [1, 2]. For certain procedures - we think of the method of Trefftz
or the method of orthogonal invariants - the explicit knowledge of the inverse to
the ordinary differential operators is needed [3]. These procedures essentially lead
to the construction of Green matrices. The present paper has two aims, one is an
extension of Trefftz’s idea [4] to obtain lower bounds for the eigenfreqencies of elastic
continuous structures if we have good upper bounds, the other is to examine some
problems related to the inverses of differential operators. Both will be illustrated by
examples.

2. Differential operator and the Green matrix

By the interval [a, b] we mean the set of all real numbers ¢ such that @ <t < b. Thus
[a,b) ={t e R:a <t <b abeR}is a finite closed set, and R denotes the set
of all real numbers. Let L?(a,b) denote the set of all Lebesgue integrable n-vector
functions with real-valued coordinates. If x,y € L?(a,b) are n-vector functions with
the property that y”x is integrable, then

(x,y) = / y(#)Tx(t) dt (2.1)

is the inner product, where y(t)7 as a row vector is the transpose of the column vector
y(t). Thus L?(a,b) with the inner product (2.1) is a Hilbert space [5]. (A complete
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inner product space is called Hilbert space.) Let A; and Ay denote m X n matrix
functions, A, being absolutely continuous and nonsingular, and Ay being integrable
on the interval [a,b]. Then

Ax = Ag(t)x + A1(t)x . (2.2)

is a linear differential operator with the domain D4 which is the collection of all
absolutely continuous n-dimensional vector functions x. In order to formulate the
boundary conditions as well, let & be a 2n-vector made up of the n components
of x(a) followed by the n components of x(b). Thus

Da = {x € L*(a,b) : Ax = L*(a,b) N ME = 0}, (2.3)

where the boundary conditions are given by the relation M& = 0, M denotes an r X 2n
matrix (r < 2n) and € € R*" is composed of the elements of the vectors x(a) € R,
and x(b) € R™. Since the set of solutions of the differential equation Ax = 0 is n-
dimensional, KerA is a finite-dimensional vector space. If dimKerA = k, it is known
[3, 6], that

max(0,n —r) < k < min(n,2n —r).

Now suppose that the operator A is invertible and its inverse is A~!. Then A is an
injective operator (k = 0) and its range is the set R4 = L*(a,b). If A is invertible
then A1 is an integral operator with the kernel G(t,s). G(t,s) is an n x n matrix
and is called Green’s matrix. The inversion of A is given by the formula

x(t) = (A" 'y) (1) = / G(t, 5)y(s) ds (2.4)

Vy € L?(a,b), and (2.4) is equivalent to Ax = y. Existence, uniqueness and properties
of the Green matrix have been proved by several authors [5, 6]. The existence theorem
for the Green matrix reads as

Theorem 1 If the boundary value problem Ax = 0, M& = 0 has only a trivial solu-
tion, then there is one and only one Green matrix G(t,s) of the differential operator
A generated by the differential expression (2.2). The matriz G(t, s) has the following
properties:
— the elements of G(t,s) are continuous and have continuous first derivatives in t
except att = s; t,s € [a,b];
~ as t increases through s, G(t,s) has a jump discontinuity equal to Ag(s)™!,
namely

G(s+0,5) —G(s—0,5) = Ag(s)"%; (2.5)

— as a function of t, G(t, s) satisfies the boundary value problem AG = 0, M¢ =0
fora<t<s<banda<s<t<hb.

If A is an invertible differential operator and its kernel is the matrix G(t, s), we
find by using (2.4) that

b
(Ax)(t) = / (AG)(t, s)y(s) ds = y () . (2.6)
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According to [3, 6] and (2.6) we have the following equations:
AG =90 4, MG =0, (2.7)

where § 4 = SE, E is a unit matrix and ¢ is Dirac’s distribution [2]. The elements of
the Green matrix can be obtained by integrating the equations (2.7) and the arbitrary
functions consequent upon the integration can be determined by using the properties
in Theorem 1.

3. An extension of Trefftz’s method

Let A~! be a real symmetric positive semidefinite completely continuous integral
operator defined on the interval [a,b] by the equation

b
(A'5)() = / G(t, 5)x(s) ds,

in which G(t,s) = G(s,t) is the kernel. Then A~ is also self-adjoint [6]. According
to the Hilbert - Schmidt theorem [3] for & € N (N is the set of all natural numbers)

b

b
(A1) = / G(t, 5)x(s)ds = / ()T G(t, 5) ds =
b
=>» X x(s)Txx(s) ds) xi(t) =
= (f
b
:/ X(S)T <Z )\kxk(s)xk(t)T> ds.

Since the function x(t) € L?(a,b) is arbitrary we can write

G(t,s) = Z Mexe (£)xn(s)T, (3.1)
k

where {x;} is an orthonormal collection of the eigenvectors for A~! with associated
eigenvalues {\;} and x; € L?(a,b), i € N. If A~! is a positive compact self-adjoint
operator, then the eigenvalues \; of A~! are all real and nonnegative. Moreover, we
have

b b
/ Spur G(t,t)dt =y " Ay / xi () %k () dt = A (3.2)
a k a k

For the application of the Trefftz’s method let’s suppose A~! being a symmetric
positive semidefinite completely continuous integral operator and we have the first k
of the lower bounds

By 2 Ho 2o >y (3.3)
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ordered to the first k of the eigenvalues
AL > A > > A (3.4)
of the integral operator. If j < k according to Trefftz [4] and (3.2) we get
b k
Aj <y +/ Spur G(t,t) dt — Z'“i =y, (3.5)
@ i=1

which is an estimation for the j'* eigenvalue. (3.5) is a new extension of the method
of Trefftz. Thus, with the knowledge of the lower bounds (3.3) and the Green matrix
G (t, s) one can use the inequality (3.5) to find upper bounds for the first k eigenvalues
from the set of eigenvalues {\;} that belong to the integral operator A~1.

4. Numerical example

Suppose that A is the differential operator

.AX = Ao(t)x’ =+ Al(t)X, (41)
00 0 -1 23 (t)
00 -1 0 5(T
AO(t): 0 1 0 0 ’ X’(t): i;gt; )
10 0 0 2, (t)
00 0 0 21 (t)
0 0 0 —1 t
a0={ g o0 0 | x) = [ 20|,
0 -1 0 0 24 (t)

on L?(0,1), with the domain D4 C L?(0,1); and p(t) > 0, V¢ € [0,1]. The boundary
conditions are

.7,‘1(0) = 332(0) = xg(l) = l‘4(1) =0.
We note that the operator A is self-adjoint, namely
(Ax,y) = (x,Ay),  Vx,y € L*(0,1).

It should be noted that

b
(Ax,y) = / (4y} + T3Y5 + T2Yy — T1Yy — TaYo — P twsys — voys) dt +
a

+ [—24y1 — 23y2 + 22y3 + x1y4](1) .
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The integral operator A~ is self-adjoint as well, and G(t, s) = G(s,t). It can be seen
easily from [2] and (2.7), that for instance

Gra(t,s) = H(t— s) /: /u 1;(_7])3 dsdu+/0t /Ou Sp(_v;’ dvdu (4.2)

where H is Heaviside’s distribution. Now consider the transverse vibration of a beam
[2]. The equation of motion is of the form

2 2 2
0 (EI 0 u> _ —an u

022\ 922 o2

where E = 2.1-107 [Pa], p = 7.86 - 10® [kg/m?], Q(z) = 3(—10"2z + 4 - 107%)? [m?],
IL(z) = Z(-1072z +4-107%)* [m*], and = € [0,1] for our example. If we assume
that u(z,t) = v(z) sin(at) we obtain

d? < d%v

[}

dz? 7P da?

) =a?pQu (4.3)

in which « stands for the angular eigenfrequency. By assumption equation (4.3) is
associated with the boundary conditions (beam fixed at the left end and free at the
right end):

By introducing the functions
p(x) = EIz(m)a Q(m) = pQ(fﬂ),

we can easily see that the 4*"-order differential operator in (4.3) can be reduced by
elementary transforms to the differential operator (4.1). Now to obtain lower bounds
for eigenfrequencies of the beam we can use the inequality (3.5). By introducing the
function

K(t,s) = Va(t)vq(s)Gu(t, s),

the inequality (3.5) becomes in our case (on basis of [2])

1 1 b 1 1
— < —&—/Kus dt — = <k 44
o7 S+, KO 4= o= oy (44)

where «; is the angular eigenfrequency, aé is the lower bound and «af is the upper
bound (5 € N). It is also easy to see from (4.3), if the inequality (3.5) is formulated
for the squares of the angular eigenfrequencies as the eigenvalues, that the lower and
upper designations exchange their roles. The table shows the numerical results of the
calculations:

7=1 j=2 J=3 J = 4 7j=5
2.06152 | 10.8457 | 28.8438 | 55.7227 | 91.5596
2.03926 | 8.5541 | 12.5324 | 13.4998 | 13.7565

fo .
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The first line of the table contains upper bounds calculated by the method of interval-
matrices. In the second line lower bounds calculated by the aid of the estimation
(4.4) can be found. The numerical investigations show that the estimation is good
only for the first eigenfrequency and is not satisfactory in the other cases. A little
improvement can be achieved by taking more eigenfrequencies into account. The
problem is of theoretical importance and our aim was to show a practical application
of the inequality (3.5). Obviously, the estimation becomes a useful tool in the case of
complicated structures.

5. Appendix. The generalized Green matrix

The aim of this section is to give a summary - on the basis of [6,7,8,9] - for the case
when the differential operator A is noninvertible. If r»  n or r = n but k # 0, neither
the operator A, nor A* is invertible. (The adjoint of A is denoted by A*.) There are
various ways to define a generalized inverse for A [6]. In this section we shall use an
analogue to the Moore Penrose generalized inverse, often called pseudoinverse [6], for
differential operators:

Definition 2 Let P and Q denote the projections whose ranges are Rp =KerA and
Ro =KerA*. Let E=7 —P and F =71 — Q be two projections where I is the unit
operator. The generalized inverse of A denoted by Af, is given by

Al = EAF, (5.1)

where A 1is such a generalized inverse of A that if z €ER 4 and'y = Az, theny € Dy
and Ay =z, and R4 C Dy.

AT as defined above is unique. The generalized inverse as defined is an integral
operator with a uniquely defined kernel, which will be denoted by G'(t,s). GT(t,s) is
referred to as the generalized Green matrix for the operator A. There are several ways
of constructing G (t,s), based on the various properties of the generalized inverse.
In this paper we shall give two ways for constructing G¥(¢, s). We shall need explicit
expressions for the projections P and Q.

Let ui(t),--- ,ui(t) be linearly independent solutions to the equation Ax = 0.
This set is a basis for the vector space Ker.A where dimKerA = k. Let U(t) denote
an n X n matrix with k& columns denoted by u;(t),--- ,ug(t). Due to the linear
independence of the columns u; (¢),-- -, ug(t), the k x k matrix

Wp = / U(w)TU(w) dw (5.2)

is a nonsingular, positive definite symmetric one. Let the kernel Gp(t, s) be defined
by

Gp(t,s) = U(w)W5,'U(w)’. (5.3)
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Clearly, Gp(t,s) is also an n x n matrix. The projection P onto KerA is then the
integral operator

b
(Px)(t) = / G (t, 5)x(s) ds. (5.4)

The operator P as defined by (5.4) is clearly Hermitian and idempotent. Similarly
if KerA* (dimKerA* = k') is spanned by the linearly independent set of solutions
vi(t), -+ ,vi(t) to the equation A*x = 0, we can form the matrix V(¢) with &’
columns

b
WQ:/ V(w)'V(w)dw, (5.5)

and the kernel is
Gol(t,s) = V(w)Wg5'V(w)". (5.6)

The projection Q onto KerA* is given by

(0x)(t) = / Golt, s)x(s) ds. (5.7)

Note, that if the vectors u and the vectors v are chosen to be orthonormal, then
Wp = Wy = E. Now we require a kernel for the operator A. Let us solve the
differential equation

Ax =z zZ ER 4 (5.8)

by variation of parameters. The solution to this problem can always be made to
satisfy the boundary conditions M& = 0 of A. In fact, there will always remain k
undetermined constants after integration because an arbitrary element of KerA can
always be added to the solution. The formula for x in terms of z is the integral

b
x(t) = / G(t, 5)2(s) ds (5.9)

a
where G(t,s) can be chosen as simply as possible. As a function of ¢, G(t, s) will
satisfy the boundary conditions for A and will have, as ¢ increases through s, the
same continuity properties as the Green matrix for an invertible operator. Therefore

the kernels Gp (¢, ), G(t,s) and Gg(t, s) are available.

Theorem 3 The kernel of At, i.e., the generalized Green matriz, assumes the form

6]:
b b
Gl(ts) = g(t,s)—/ G (t, u)G (1, 5) du—/ G(t,0)Golv, s) dv +

b b
+/a /a Gp(t,u)G(u,v)Gg(v,s) dv du. (5.10)
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In the noninvertible case a similar calculation is possible as in the invertible case.
The kernels G and Gt have the same discontinuity at t = s as the ordinary Green
matrix. When the operator A is applied to

b
e(t) = / G(t, 0)f(v) dv, (5.11)

the result is f(t) = (Ag)(t), whereas it is AG = 0 for a« < ¢t < s < b and for
a <s<t<b. Since AGp = 0, we find from (5.10) that

AGl = -Gg a<t<s<b a<s<t<b, (5.12)
We can recover G (¢, s) by determining the solution of the differential equation (5.12),
so as to satisfy, as a function of ¢, the known properties of G'(, s), namely
1. Gf(t,s) should have the appropriate discontinuity at t = s,
2. Gf(t, s) should satisfy the boundary conditions M& = 0 of the operator A and

3. GT(t, s) should be orthogonal to KerA.
It can also be proved that these properties uniquely determine G (¢, s).

6. A new example for the generalized Green matrix

As a brief example, consider the differential equation of the simple harmonic motion
7" 4+ a’x = 0. (6.1)
We obtain a system of first order equations by the elementary transforms

1+ x5 =0,
, 2,0
—xj + oz = 0.

Now consider the differential operator from (6.2)

_ T+ T4
Ax = < —z} + a’zo >

with the boundary conditions z1(0) = z1(7) and 22(0) = xo(w). For simplicity we
shall assume that a = 2m, m € N. Under these conditions the fundamental matrix
®(t) for the equation Ax = 0 is:

asinat —acosat
o(t) = < cos at sin ot > ’

The orthonormal base vectors are given by

2

U = () w)) =1/ oy

o(1).
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On the basis of (5.6) we have

GQ(LS)_#( o? cos(aft — s)) asm(a(t—s)))

T w(l+a2?) \ —asin(a(t—s))  cos(a(t —s))

For example one of the solutions of the differential equation AGT = —Gg is:

; Ch1(s) cos at + Ca1(s) sinat — i cos(a(t — s)) t<s
Gy (t,s) =

Ch2(s) cos at + Caa(s) sinat — — cos(a(t — s)) t>s
T

Since

_ 0 -1
A01—<1 5 )

the elements of the matrix G satisfy the discontinuity conditions:

Gl (s+0,5)— Gl (s—0,5) =0,
GJ{Q(S + Ov 5) - G11‘2(8 - 07 S) - _1a
Gl (s+0,8)—Gl(s—0,5) =1,
Gla(s +0,8) = Gly(s = 0,5) =
Hence
Ch1(s) cosat + Ca1(s) sinat — i cos(a(t — s)) t<s
G;l (t,S) = m t
Ci1(s) cosat + Ca(s)sinat — (1 — =) cos(a(t — s)) t>s
7r

It can be seen easily that if

and
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then the elements of the generalized Green’s matrix G (¢, s) are

; v1(s) cos(a(s —t)) + Qg(w —2(s —t))sin(a(s — t)) t<s
Gia(t,s) = o ;
v1(8) cos(a(t — s)) + %(Tf‘ —2(t — s))sin(a(t — )) t>s
. 1
Gl (1, 5) = vo(8) sin(a(s —t)) — 2—71(77—2(3—15))(:05(&(3—15)) t<s ’
—5(s) sin(a(t — s)) + %(ﬂ' —2(t — s5)) cos(a(t — s)) t>s
. 1
Gl (tos) = —v5(s) sin(a(s — t)) + 12—7T(7r —2(s —1t)) cos(a(s —t)) t<s |
Yo (s) sin(a(t — s)) — %(ﬂ' —2(t—s))cos(a(t —s)) t>s
; v3(s) cos(a(s —t)) + QL(’/T —2(s —t))sin(a(s — t)) t<s
Ga(t,s) = qr
v3(8) cos(a(t — s)) + E(ﬂ' —2(t — s))sin(a(t — )) t>s

where 7;, 75, and 75 are constants depending on o? [8].

7. Conclusions

The method outlined in Section 3 will produce lower bounds for eigenfrequencies
of the elastic continuous structures by using (3.5) if we have good upper bounds
calculated by some kind of a simple method. Since the solution of our problem
requires the invertation of differential operators we expatiated on the constructions of
Green matrices by solving the matrix equation (2.7). In the first part of the Appendix
we give a short summary of the results connected to the generalized Green matrix
on the basis of [6]. In Section 6 with the help of the example, not published yet, we
present a technique for making a generalized Green matrix.
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