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Abstract. The present paper is devoted to the boundary contour method for plane problems
in the dual system of elasticity. It has been shown that the integrals on the right side of the
corresponding boundary integral equations are divergence free in the dual system provided
that the unknown functions satisfy the field equations. Consequently these integrals can
be given in closed form if appropriate shape functions have been chosen to approximate
the unknown functions on the contour. Numerical examples prove the efficiency of this
technique.

1. Introduction

It has been proved in the article [1] by A. Nagarajan, E. Lutz and S. Mukherjee
that the integrand of the direct boundary element method is divergence free in the
primal system of the two and three-dimensional elasticity theory. The authors of
[1] have come to the conclusion that the numerical solution of three-dimensional
problems require the calculation of line integrals instead of surface integrals, while for
planar problems evaluation of functions should be performed instead of calculating
line integrals. Article [1] supposes linear approximation. The accuracy is greatly
increased if one uses quadratic elements [2]. This method can also be employed for
rewriting hypersingular integral equations into boundary contour equations. With
this technique one can compute stresses and can solve shape optimization problems
in two dimensions [3].

The boundary integral equations of the direct method in the dual system of elas-
ticity and for plane problems can be found in a thesis [4]. In view of the formulation
presented in [4] there arises the question if it is possible to repeat the line of thought
leading to the boundary contour method in a dual formulation as well. The reply to
this question is yes and the main result of the present paper is a dual formulation
similar, as regard its main features, to that given in paper [1].

The paper is organized into seven sections. Section 2 is devoted to some prelim-
inaries. It is proved in Section 3 that the integrand of the direct boundary element
method is divergence free in the dual system of elasticity. In addition we have deter-
mined the corresponding shape functions provided that the approximation is linear.
Discretized equations are set up in Section 4. The aim is to prepare an algorithm for
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our computations. Section 5 is devoted to the question of how to compute stresses at
internal points. Section 6 presents some simple numerical examples. The last Section
is a summary of the conclusions. The paper is also supplemented with an Appendix
in which the shape functions and some manipulations are presented.

2. Fundamental solutions and integral equations of the direct method

Cartesian coordinates and indicial notations are used throughout this paper. {Greek}
[Latin] subscripts have the range {1, 2}, [1, 2, 3], summation over repeated indices is
implied. In accordance with the notations introduced δκλ is the Kronecker symbol,
∂κ stands for the derivatives with respect to xκ and ε3κλ is the permutation tensor.
Fλ stands for the stress functions of order one. In plane components of stresses and
strains are denoted by tκλ and eκλ. If there are body forces, the particular solution

of the equilibrium equations is
o
tκλ. The shear modulus of elasticity and the Poisson

number are denoted by µ and ν, respectively. The rigid body rotation is denoted by
ϕ3.

In the dual system of elasticity plane strain problems are governed by the dual
kinematic equations

tκλ = εκρ3Fλ ∂ρ +
o
tκλ , (2.1)

the inverse of Hook’s law

eκλ =
1

2µ
(tκλ − νtψψδκλ) , (2.2)

the dual balance equations
�κρ3eλκ∂ρ + ϕ3∂λ = 0 (2.3)

(equations of compatibility for a simply connected region) and the symmetry condition

�3λκtλκ = 0 . (2.4)

For simplicity first we shall consider a simply connected inner region Ai. The contour
Lo of the region Ai can be divided into two parts denoted by Lt and Lu. We shall
assume that [Lt] {Lu} is the union of those arcs on which [stress functions (loaded
arcs)] {displacements} are imposed. These arcs are denoted by Lt2, Lt4 and Lu1, Lu3,
respectively. The corresponding boundary conditions are of the form

Fλ (s) = F̂λ + Cλ(Pti) s ∈ Lti i = 2, 4 (2.5)

and
dûλ
ds

= nρ [�ρκ3eκλ − ϕ3δρλ] s ∈ Lu , (2.6)

where F̂λ (s) and ûλ (s) are known functions, while Cλ is an integration constant, the
number of which equals the number of loaded arcs. Here and in the sequel we shall
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assume that there are no body forces. In the absence of body forces

F̂λ(s) =

Z
t̂λ(s)ds , (2.7)

where t̂λ(s) is the stress vector on Lt.
Substituting the dual kinematic equation (2.1) into Hook’s law (2.2) and the result

into the compatibility equations (2.3) we get two scalar equations. These equations
are associated with the symmetry condition, i.e., we have three equations for the
unknowns F1,F2 and ϕ3 a∆− b∂1∂1 −b∂2∂1 −∂1

−b∂2∂1 a∆− b∂2∂2 −∂2
−∂1 −∂2 0

 F1
F2
−ϕ3

 =
 0
0
0

 (2.8)

where
a =

1

2µ
(1− υ) b =

1

2µ
(
1

2
− υ) . (2.9)

Let Dik (i, k = 1, 2, 3) be the differential operator in equation (2.8). Further let uk =
(F1 | F2 | −ϕ3) be the vector of unknowns (or state vector). With these notations
equation (2.8) can be rewritten as

Dikuk = 0 . (2.10)

Let Q(η1, η2) and M(x1, x2) be the source point and the point of effect. The position
vector of M(x1, x2) relative to Q(η1, η2) is rλ = xλ − ηλ. The distance between Q
and M is R = R (M,Q) = |r|. For a two point function f(R) it holds that

∂

∂xλ
f(R) = − ∂

∂ηλ
f(R) . (2.11)
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Let ei(Q) be a unit vector at Q. Solution to the differential equation

M
Dikuk + δ (M −Q) ei(Q) = 0 (2.12)

is referred to as fundamental solution. Here the letter M over Dik denotes that the
derivation is taken with respect to the point M. It can be shown that

uk = Ukl(M,Q)el(Q) , (2.13)

where

[Ukl(M,Q)] =
µ

4π(1− ν)
×

×


−2 lnR− 3− 2r2r2

R2
2
r1r2
R2

2

µ
(1− ν)

r1
R2

2
r2r1
R2

−2 lnR− 3− 2r1r1
R2

2

µ
(1− ν)

r2
R2

2

µ
(1− ν)

r1
R2

2

µ
(1− ν)

r2
R2

0


(2.14)

For our later considerations we shall introduce the notation

tλ = −duλ
ds

. (2.15)

The vector tλ is opposite to the derivative of the displacement vector with respect to
the arc coordinate s measured on the contour Lo. Omitting the long formal transfor-
mations for the vector tλ calculated from the fundamental solution we get [4]

tλ(
o

M) = el(Q)Tlλ(
o

M,Q) (2.16)

where

Tlλ(
o
M,Q) =

1

8π(1− ν)R2
×

×



n1r1

µ
4
r22
R2
− 2(3− 2v)

¶
+n2r2

µ
4
r22
R2
− 2(3− 2v)

¶ −n2r1
µ
4
r22
R2

+ 2(1− 2v)
¶

−n1r2
µ
4
r21
R2
− 2(1− 2v)

¶

−n1r2
µ
4
r21
R2

+ 2(1− 2v)
¶

−n2r1
µ
4
r22
R2
− 2(1− 2v)

¶ n2r2

µ
4
r21
R2
− 2(3− 2v)

¶
+n1r1

µ
4
r21
R2
− 2(3− 2v)

¶

−n1 2
µ
(1− ν)

r21 − r22
R2

−n2 4
µ
(1− ν)

r1r2
R2

−n1 4
µ
(1− ν)

r1r2
R2

+n2
2

µ
(1− ν)

r21 − r22
R2



(2.17)
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Here and in the sequel the small circle over the letters Q and M shows that the
corresponding point is located on the contour. The normal nλ is taken at the point
o

M .

If we take two elastic states of the region Ai — the second state is denoted by asterisk
which is placed over the corresponding letters — then the so-called dual Somigliana
identity can be written asZ

Ai

h
uk(Dkl

∗
ul)− ∗uk (Dklul)

i
dA =

I
Lo
[uλ
∗
tλ − ∗uλtλ] ds . (2.18)

If the quantities denoted by asterisks are from the fundamental solution and Q ∈ Ai,
then exploiting the above, we have the first dual Somigliana formula

uk(Q) =

I
Lo
Ukλ(

o
M,Q)tλ(

o
M) ds o

M
−
I
Lo
Tkλ(

o
M,Q)uλ(

o
M) ds o

M
. (2.19)

If Q =
o

Q ∈ ∂Ai = Lo, then equation (2.18) yields the second dual Somigliana formula

cκλ(
o
Q)uλ(

o
Q) =

I
Lo
Ukλ(

o
M,

o
Q)tλ(

o
M) ds o

M
−
I
Lo
Tkλ(

o
M,

o
Q)uλ(

o
M) ds o

M
, (2.20)

where cκλ(
o

Q) depends on the angle formed by the tangents to the contour at
o

Q. The
above integral equation is that of the direct method in the dual system of elasticity.
Finally if Q /∈ (Ai ∪ Lo), then the left side of the identity (2.18) is identically equal
to zero and the third dual Somigliana formula can immediately be set up

0 =

I
Lo
Ukλ(

o

M,Q)tλ(
o

M) ds o
M
−
I
Lo
Tkλ(

o

M,Q)uλ(
o

M) ds o
M
. (2.21)

3. Fundamental relations for linear approximation

We shall assume that the stress functions uλ fulfill the basic equations and tλ is calcu-
lated from uλ. Under this condition the opposite to the derivative of the displacement
vector can be obtained from (2.6):

tλ(
o
M) = −nρ(

o
M)

µ
�ρπ3eπλ

o

(M)− δρλϕ3
o

(M)

¶
. (3.1)

We denote again the quantities derived from the fundamental solution by asterisks.

Let
∗
ekπλ(

o

M,Q) be the strain tensor that follows from the stress function vec-

tor
∗
uλ(

o

M) = Ukλ(
o

M,Q). It is also clear that the corresponding rotation
∗
ϕ3(

o

M) is

Uk3(
o
M,Q). Making use of these notations and the relation (3.1) we can write

∗
tλ(

o

M,Q) = Tkλ(
o

M,Q) = −nρ(
o

M)

µ
�ρπ3

∗
ekπλ(

o

M,Q)− δρλUk3(
o

M,Q)

¶
(3.2)
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for the derivative −d∗uλ/ds. Upon substitution of ∗uλ(
o

M) for uλ and
∗
tλ(

o

M,Q) for tλ
in (2.19) we have, after renaming some dummy indices, that

Iκ(Q) =

I
Lo

nρ(
o
M)

µ
−Uκλ(

o
M,Q)

µ
�ρπ3eπλ

o

(M)− δρλϕ3
o

(M)

¶
+

+

µ
�ρπ3

∗
eκπλ(

o
M,Q)− δρλUκ3(

o
M,Q)

¶
uλ(

o
M)

¶
ds o

M
. (3.3)

Since those terms for which k = 3 in (2.19) will play no role in the further transfor-
mation we have dropped them by writing κ for k.

Let Pκρ be the coefficient of nρ(
o

M) in (3.3):

Pκρ(
o
M) = Pκρ(

o
M,Q) = −Uκλ(

o
M,Q)

µ
�ρπ3eπλ

o

(M)− δρλϕ3
o

(M)

¶
+

+

µ
�ρπ3

∗
eκπλ(

o
M,Q)− δρλUκ3(

o
M,Q)

¶
uλ(

o
M) . (3.4)

By using Gauss’s theorem the line integral Iκ(Q) can be transformed into a surface
integral:

Iκ(Q) =

I
Lo

Pκρ(
o

M,Q)nρ(
o

M)ds o
M
=

Z
Ai

Pκρ(M,Q)
M

∂ ρdAM , (3.5)

where, as can be seen after some hand-made calculations — see the Appendix for
details — it holds

Pκρ(M,Q)
M

∂ ρ = 0 , (3.6)

that is, there exists a function φκ (M,Q) such that

Pκ1 =
∂φκ (M,Q)

∂x2
and Pκ2 = −∂φκ (M,Q)

∂x1
. (3.7)

This means that the integrand Pκρ is divergence free.

Taking now the line integral between the contour points
o

M1 and
o

M2 and using the
above results we get the desired solution

Z o
M2

o
M1

Pκρ(
o

M,Q)nρ
o

(M)ds o
M
=

Z o
M2

o
M1

τπ
o

(M)φκ(
o

M,Q)
M

∂πds o
M
= φκ(

o

M2, Q)−φκ(
o

M1, Q) .

(3.8)
When deriving the above relations we have not taken the position of Q relative to the
region Ai into account. In other words the above results remain valid for the second
and third dual Somigliana formulae as well.

Assume that the contour is divided into nbe boundary elements. The extremities of
the elements are locally denoted byM1 andM2. (Here and in the sequel for simplicity



Boundary contour method for plane problems in dual system 211

we have omitted the zero standing over the letter M .) Then integrating element by
element we have

Iκ(Q) =

nbeX
e=1

[φeκ(M2, Q)− φeκ(M1,Q)] (3.9)

where the upper index e shows that φκ is taken on the e-th element.

Let K be the middle point of the element e. Over the element and its neighbor-
hood we shall approximate the unknown vector uk by linear functions for the stress
functions, and by a constant for the rigid body rotation, i.e., F1

F2
−ϕ3

e =
 a1 + a2x1 + a3x2

a4 + a5x1 − a2x2
a6

 . (3.10)

The constants
(ae)

T
=
£
a1 a2 a3 a4 a5 a6

¤
(3.11)

in (3.10) are related to the six physical quantities

(pe)T =
£ F M1

1 FM1
2 tK1 tK2 F M2

1 F M2
2

¤
(3.12)

taken on the element e via the equation

Teae = pe , (3.13)

where the transformation matrix Te depends only on the nodal coordinates and the
outward unit normal at K. After some hand-made calculations we have

Te =



1 xM1
1 xM1

2 0 0 0

0 −xM1
2 0 1 xM1

1 0

0
1

2µ
nK1

1

2µ
(1− ν)nK2 0

1

2µ
νnK2 nK1

0 − 1

2µ
nK2

1

2µ
νnK1 0

1

2µ
(1− ν)nK1 nK2

1 xM2
1 xM2

2 0 0 0

0 −xM2
2 0 1 xM2

1 0


. (3.14)

Since M1, M2 and K are different, the matrix Te is invertible.

For our later considerations a new local coordinate system (η1, η2), centered at the
point M1(x1, x2) is introduced. The axes η1 and η2 are parallel to the axes x1 and x2
of the global coordinate system. For the shape functions in the local system we get
from (3.10) that F1

F2
−ϕ3

e =
 (a1 + a2x1 + a3x2) + a2η1 + a3η2
(a4 + a5x1 − a2x2) + a5η1 − a2η2

a6

 =
 â1 + a2η1 + a3η2

â4 + a5η1 − a2η2
a6

 .

(3.15)
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The vector of constants in the local system is denoted by

(âe)T =
£
â1 a2 a3 â4 a5 a6

¤
. (3.16)

It can be shown with ease that the following relation holds

âe = Bae , (3.17)

where the transformation matrix B depends only on the coordinates x1 and x2 of the
point M1:

B =


1 xM1

1 xM1
2 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0

0 −xM1
2 0 1 xM1

1 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (3.18)

Relation (3.15) is a linear combination of those linearly independent state vectors
which satisfy the fundamental equation:

uT1 =
£
1 0 0

¤
, uT2 =

£
η1 −η2 0

¤
,

uT3 =
£
η2 0 0

¤
, uT4 =

£
0 1 0

¤
, (3.19)

uT5 =
£
0 η1 0

¤
, uT6 =

£
0 0 1

¤
.

The functions φκi that follow from the vectors ui (i = 1, . . . , 6) have been calculated
by making use of equation (3.7). These functions are given in the Appendix. In what
follows we shall assume that the origin of the local coordinate system is located at
the collocation point Qj .

4. Discretized equations

The contour Lo of the region Ai is discretized into nbe boundary elements — see Figure
2. The boundary element method equations are enforced only at the end points M1

and M2 of the elements. Turning to global numbering we denote these points by Qj

where j = 1, . . . , nbe. Let uTj = [u1(Qj) | u2(Qj)] be the matrix of stress functions.
The matrix C is defined by the equation

C(Qj) =

·
c11(Qj) c12(Qj)
c21(Qj) c22(Qj)

¸
. (4.1)

Exploiting equations (3.13) and (3.17) the boundary integral equation (2.19) can be
manipulated into the form

C(Qj)uj =

nbeX
e=1

ΦjeBj (Te)−1 pe j = 1, . . . , nbe , (4.2)
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where

Φje =

·
φje11 (M2)− φje11 (M1) φje12 (M2)− φje12 (M1) ... φje16 (M2)− φje16 (M1)

φje21 (M2)− φje21 (M1) φje22 (M2)− φje22 (M1) ... φje26 (M2)− φje26 (M1)

¸
.

(4.3)
With the notation

Mje = ΦjeBj (Te)−1 (4.4)

equation system (4.2) can be cast into the form
M11 M12 . . . M1nbe

M21 M22 . . . M2nbe

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mnbe1 M22 . . . Mnbenbe


| {z }

2nbe×6nbe


p1

p2

. . .
pnbe


| {z }
2nbe×1

=


C (Q1)u1
C (Q2)u2

· · ·
C (Qnbe)unbe


| {z }

2nbe×1

, (4.5)

where ¡
p1
¢T
=
£ F1M1

1 F1M1
2 t1K1 t1K2 F1M2

1 F1M2
2

¤¡
p2
¢T
=
£ F2M1

1 F2M1
2 t2K1 t2K2 F2M2

1 F2M2
2

¤ (4.6a)

and

(pnbe)
T
=
£ FnbeM1

1 FnbeM1
2 tnbeK1 tnbeK2 FnbeM2

1 FnbeM2
2

¤
. (4.6b)

With regard to the assumed continuity of the stress functions at the points Qj we
have

FnbeM2

λ = F1M1

λ , FeM2

λ = F (e+1)M1

λ e = 1, . . . , nbe − 1 . (4.7)
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Introducing the notation

Me =


M1e

M2e

· · ·
Mnbee

 e = 1, . . . , nbe (4.8)

and taking equation (4.7) into account one can see that the last two columns of the
matrixMe and the first two columns of the next matrixMe+1 are multiplied, due to
the continuity, by the same Fλ. Accordingly, the corresponding columns can be added
to each other. It is also obvious that the last two columns of the matrixMnbe should
be added to the first two columns of the matrixM1. After these transformations the
size of the equation system (4.5) has been decreased. Finally we have

Hf = q , (4.9)

where H is a matrix with size (2nbe ∗ 4nbe),

f =
h
F1M1
1 F1M1

2 t1K11 t1K12 F2M2
1 F2M2

2 . . . FnbeMnbe
1 FnbeMnbe

1

i
(4.10)

is the vector of physical quantities and q is the right side of equation system (4.5).

It should be noted that the functions φ11, φ21, φ14 and φ24 which have been
obtained from the constant shape functions, are singular when the point of effect M
approaches the source point Qj because the distance between the two points tends to
zero. In order to avoid strongly singular integrals we should take into account that

tλ(
o

M) = 0 if uλ(
o

Q) = uλ(
o

M) = constant. Under this condition equation (2.20) yields

cκλ(
o
Q)uλ(

o
Q) =

nbeX
e=1

Z
Le

nρ(
o
M)

µ
�ρπ3

∗
eκπλ(

o
M,

o
Q)− δρλ

∗
Uκ3(

o
M,

o
Q)

¶
uλ(

o
Q) ds o

M
.

(4.11)
Subtracting now equation (4.11) from (2.20) we obtain

0 =

nbeX
e=1

Z
Le

−nρ(
o
M)Uκλ(

o
M,

o
Q)

µ
�ρπ3eπλ(

o
M)− δρλϕ3(

o
M)

¶
+ (4.12)

+nρ(
o

M)

µ
�ρπ3

∗
eκπλ(

o

M,
o

Q)− δρλ
∗
Uκ3(

o

M,
o

Q)

¶µ
uλ(

o

M)− uλ(
o

Q)

¶
ds o

M
.

After this transformation cκλ(
o

Q) has also been eliminated from the equation. Equa-
tion (4.12) differs from equation (2.20) in the extra term

nρ(
o
M)

µ
�ρπ3

∗
eκπλ(

o
M,

o
Q)− δρλ

∗
Uκ3(

o
M,

o
Q)

¶
uλ(

o
Q) . (4.13)

This term is divergence free, therefore the new coefficient of nρ(
o
M) on the right side

is also divergence free. Thus, for this purpose, uλ(
o

Q) can be regarded as a constant.
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If we consider the j-th element which involves the source point
o

Q at its first nodal

point M1, then these constants are denoted by u1(
o

Q) = âj1 and u2(
o

Q) = âj4 in the
local coordinate system. With these notations for the e-th element we getµ

uλ
o

(M)− uλ
o

(Q)

¶e
= Ue (η1, η2) ã

e (4.14)

where the columns of Ue (η1, η2) are formed by the vectors ui (i = 1, . . . , 6). The
vector of constants ãe can now be rewritten as

(ãe)T =
h ³

âe1 − âj1

´
ae2 ae3

³
âe4 − âj4

´
ae5 ae6

i
. (4.15)

φ11, φ21, φ14 and φ24 are singular when the point of effect approaches the source
point, but in this case âe1 = âj1 and âe4 = âj4, therefore we can avoid the evaluation
of these potential functions. Consequently the line of thought presented in Section
3 can be repeated word by word and it turns out that the functions φκi will remain
unchanged. Finally the discretized equation corresponding to the equation (4.12)
assumes the form

0 =

nbeX
e=1

Φje ãe j = 1, . . . , nbe (4.16)

where the elements of the matrix Φje are those integrals obtained from the shape
functions. The structure of the matrix Φje has already been presented — see equation
(4.3).

The next transformation becomes clearer, if the equation (4.16) is written out in
full: 

Φ11 Φ12 . . . Φ1nbe

Φ21 Φ22 . . . Φ2nbe

. . . . . . . . . . . . . . . . . . . . . . . . . .
Φnbe1 Φ22 . . . Φnbenbe


| {z }

Φ


c̃1

c̃2

. . .
c̃nbe

 =

0
0
· · ·
0

 . (4.17)

Clearly, if the j-th element (j is the equation counter or, which is the same, the block
row counter) coincides with the e-th element (e is the element counter or which is
the same the block column counter), then we are in the main diagonal, i.e., the j-th
element involves the source point, consequently âe1− âj1 = 0 and âe4− âj4 = 0. Thus the
singular terms φjjκ1(M1), φ

jj
κ4(M1) of the matrix φ

jj
κi(M1) drop out and the other terms

in matrix φjjκi(M1) have already been zero. With regard to the assumed continuity
of the stress functions at the nodal points, the previous establishment is true for the
matrix φjj−1κi (M2).

Decompose ãe into two parts. The first part is the vector âe, the part left is denoted
by

(de)
T
=
£ −âj1 0 0 −âj4 0 0

¤
. (4.18)
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The point M2 of the element e coincides with the point M1 of the element e + 1.
Assuming continuity it follows that φeκi(M2) = φe+1κi (M1), therefore we can write

0 =

nbeX
e=1

Φje de j = 1, . . . , nbe . (4.19)

With regard to equation (4.19), the following relations hold for the diagonal blocks
of the matrix Φ :

Φkk =

·
φkk11 (M2) φkk12 (M2) ... φkk16 (M2)
φkk21 (M2) φkk22 (M2) ... φkk26 (M2)

¸
k = 1, . . . , nbe . (4.20a)

In the same way we have

Φk,k−1 =
· −φk,k−111 (M1) −φk,k−112 (M1) ... −φk,k−116 (M1)

−φk,k−121 (M1) −φk,k−122 (M1) ... −φk,k−126 (M1)

¸
k = 2, . . . , nbe

(4.20b)
and

Φ1,nbe−1 =
· −φ1,nbe−111 (M1) −φ1,nbe−112 (M1) ... −φ1,nbe−116 (M1)

−φ1,nbe−121 (M1) −φ1,nbe−122 (M1) ... −φ1,nbe−126 (M1)

¸
. (4.20c)

Making use of equations (4.20a,b,c), (3.13) and (3.17), equation system (4.17) can be
manipulated into the form

0 =

nbeX
e=1

Φje âe =

nbeX
e=1

ΦjeBj
¡
T−1

¢e
pe j = 1, . . . , nbe . (4.21)

We remark that this equation is originated from the second dual Somiglina formula
(2.20). Introducing the notation

Nje = ΦjeBj (Te)
−1 (4.22)

the equation system (4.21) can be written as

nbeX
e=1

Njepe = 0e j = 1, . . . , nbe . (4.23)

It has not been taken into account so far that the matrices pe should meet the
continuity condition (4.7). Under this condition the line of thought leading to (4.9)
can be repeated word by word. Finally we get

Kf = 0 , (4.24)

where K is a matrix with size (2nbe ∗ 4nbe) and f denotes the vector of physical
quantities — see (4.10) for details.
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5. Stresses at internal points

If the physical quantities at the nodal points are known, then for computing the vec-
tors of constants we should apply the equation

ae = [Te]
−1
pe . (5.1)

With the knowledge of the vector ae we can compute the stress functions at an
arbitrary point. Making use of the equation (2.19) and applying the notations we
have introduced, equation (2.19) can be manipulated into the form

u(Q) =

nbeX
e=1

ΦQeBQ ae (5.2)

where BQ is the transformation matrix corresponding to the internal source point Q.
Recalling equation (2.1) for the stress components at Q we can write

σ11 =
∂u1(Q)

∂x2
, τ12 =

∂u2(Q)

∂x2
,

τ21 = −∂u1(Q)
∂x1

, σ22 = −∂u2(Q)
∂x1

.

(5.3)

Derivatives of the stress functions are obtained from equation (5.2)

u(Q)∂xα =

nbeX
e=1

£
(ΦQe∂xα)B

Q +ΦQe (BQ∂xα)
¤
ae . (5.4)

Using equation (2.11) the above equation (5.4) can be rewritten as

u(Q)∂xα =

nbeX
e=1

£
ΦQe (BQ∂xα)− (ΦQe∂ηα)B

Q
¤
ae . (5.5)

6. Examples

The main step of the numerical computations consists in solving the equation sys-
tem (4.24). It is worthy of repeating that the matrix K is not a square one and the
vector f involves the physical quantities. The total number of physical quantities is
4nbe on the contour Lo. Some of them are known from the boundary conditions.
(Three physical quantities can be prescribed from the six possible physical quantities
on each element. The total number of the physical quantities that can be prescribed
is, however, less than 3 × 2nbe since continuity must hold at the extremities.) The
columns of the matrix K that are multiplied by the prescribed quantities should be
grouped on the right side of the equation to get the right side of the equation system
to be solved. We should know at least 2nbe physical quantities from the boundary
conditions to get a solvable linear equation system.
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In case of mixed boundary value problems we have more equations than the number
of unknowns. If we regard some of the prescribed quantities as unknowns, then we
can obtain a solvable linear equation system.

Two simple numerical examples are presented. The material properties (µ = 8 ·
104MPa, ν = 0.3) are the same for each example.

Problem 1. First we shall consider a circular region with radius r0 = 10mm.
On the arc BC of the contour for which the polar angle ϕ ∈ [0, π] the normal
stress is σo = 100MPa and there is no shear stress. On the arc CB of the con-
tour uo = (1− 2ν)σoro/2µ is the radial displacement and there is no displacement in
the circumferential direction — see Figure 3. In this case

F1 = σox2 = σor sinϕ , F2 = −σox1 = −σor cosϕ ,

σ11 = σ22 = σo = 100MPa , τ12 = 0 ,

u1 =
1− 2ν
2µ

σor sinϕ , u2 =
1− 2ν
2µ

σor cosϕ .

The exact solutions for this problem are given by the equations

u1 = F1 = σoro sinϕ , u2 = F2 = −σoro cosϕ ,

t1 =
1− 2ν
2µ

σo sinϕ , t2 = −1− 2ν
2µ

σo cosϕ .

where r and ϕ are polar coordinates. One can check with ease that these solutions
determine a homogenous state of stress. At the internal points the exact solutions for
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the stresses are as follows:

σ11 = σ22 = σo = 100 [MPa], τ12 = 0 .

Table 1 below represents numerical results at various internal points.

Table 1: Solutions for stress components

x1 [mm] x2 [mm] σ11 [MPa] τ12 [MPa] σ22 [MPa]

-8.00 0.00 100.00 1.69·10−15 100.00

-6.00 0.00 100.00 7.61·10−15 100.00

-4.00 0.00 100.00 1.07·10−14 100.00

-2.00 0.00 100.00 1.12·10−14 100.00

0.00 0.00 99.99 0.08 100.00

2.00 0.00 100.00 1.69·10−13 100.00

4.00 0.00 100.00 0 100.00

5.00 5.00 100.00 5.73·10−15 100.00

5.00 7.00 100.00 1.73·10−14 100.00

Problem 2. The width and length of the rectangle ABCD in plane strain are
20mm and 100mm, respectively. The rectangle is subjected to a horizontal and
uniform load σo = 200MPa on the line BC. The upper and lower sides are, however,
unloaded. The right end of the region is supported as shown in Figure 3. In this case
the solutions computed are comparable with the solutions σ11 = 200MPa, τ12 = 0
and σ22 = 0 valid for a bar in tension. Table 2 below contains numerical results for
the stresses at some internal points located on the line n− n (x1 = 50mm).

Table 2: Solutions for stress components

x1 [mm] x2 [mm] σ11 [MPa] τ12 [MPa] σ22 [MPa]

50.00 2.00 200.00 7.42·10−17 -3.46·10−15
50.00 4.00 200.00 -1.38·10−17 2.53·10−15
50.00 6.00 200.00 -7.63·10−17 -4.73·10−15
50.00 8.00 199.99 8.60·10−16 3.88·10−16
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7. Conclusion

The boundary contour method for plane problems of elasticity in a dual formulation
(regarding the stress functions of order one and the rigid body rotation as unknowns)
is presented in this paper. After having shown what form the Somigliana formulae
have in the dual system of elasticity we proved that the integrand of the direct method
is divergence free like the case of primal system [1,2]. Making use of this property an
implementation is carried out with linear approximation and the idea that there are
no stresses due to constant stress functions has also been taken into account. The
corresponding shape functions φki are also given. It is an advantage of the resulting
system of linear equations that there is no need to perform numerical integration when
one computes the coefficient matrix and the right side. It is a further advantage that
computation of stresses on the boundary elements requires derivations, that is, on the
contrary to conventional BEM, one can avoid computation of singular integrals. Two
simple examples are given to illustrate the applicability of the method.

It is the aim of our further investigations to apply quadratic approximation and to
clarify how to use the method for outer regions if there is a constant stress state at
infinity. This work is in progress.

8. Appendix

The compatibility equation and the symmetry conditions for the elastic state
∗
uλ

are of the form ·
�ρπ3

∗
eκπλ(

o

M,Q)− δρλUκ3(
o

M,Q)

¸
M

∂ ρ = 0 (8.1)

and
�λπ3

∗
tκπλ = 0 (8.2)

Since
∗
tκπλ and eκλ are ’elastic states’ we can write

∗
tκπλeπλ = tπλ

∗
eκπλ (8.3)

With regard to (2.3), (2.4), (8.1), (8.2) and (8.3) it follows from (3.6) that

Pκρ(M,Q)
M

∂ ρ = −
µ
Uκλ(

o

M,Q)
M

∂ ρ

¶µ
�ρπ3eπλ

o

(M)− δρλϕ3
o

(M)

¶
−

−Uκλ(
o

M,Q)

µ·
�ρπ3eπλ

o

(M)− δρλϕ3
o

(M)

¸
M

∂ ρ

¶
+

+

µ·
�ρπ3

∗
eκπλ(

o
M,Q)− δρλUκ3(

o
M,Q)

¸
M

∂ ρ

¶
uλ(

o
M)+

+

µ
�ρπ3

∗
eκπλ(

o

M,Q)− δρλUκ3(
o

M,Q)

¶µ
uλ(

o

M)
M

∂ ρ

¶
=
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= −
µ
Uκλ(

o

M,Q)
M

∂ ρ

¶
�ρπ3eπλ

o

(M) + �ρπ3
∗
eκπλ(

o

M,Q)

µ
uλ(

o

M)
M

∂ ρ

¶
+

+

µ
Uκλ(

o

M,Q)
M

∂ ρ�ρπ3

¶
�λπ3ϕ3(

o

M)−
µ
uλ(

o

M)
M

∂ ρ�ρπ3

¶
�λπ3Uκ3(

o

M,Q) =

= −∗tκπλeπλ + tπλ∗eκπλ + �λπ3
∗
tκπλϕ3(

o

M)− �λπ3tκπ
∗
ϕ3(

o

M) = 0

In other words Pκρ is divergence free.

Without entering into details, below we list the shape functions:

φ11 =
1

2π
arctan

η2
η1
+

1

4π (1− ν)

η1η2
η21 + η22

φ12 =
−1

4π (1− ν)
η2

µ
ln
p
η21 + η22 +

4ν − 3
2

+
2η22

η21 + η22

¶

φ13 =
1

4π (1− ν)
η1

µ
(1− ν) ln

p
η21 + η22 +

3− ν

2
− η21

η21 + η22

¶

φ14 =
−1

4π (1− ν)

µ
(1− 2ν) ln

p
η21 + η22 +

η21
η21 + η22

¶

φ15 =
1

4π (1− ν)
η1

µ
ν ln

p
η21 + η22 +

5ν

2
− η21

η21 + η22

¶

φ16 =
−µ

4π (1− ν)
η2

³
2 ln

p
η21 + η22 + 3

´

φ21 =
1

4π (1− ν)

µ
(1− 2ν) ln

p
η21 + η22 +

η22
η21 + η22

¶

φ22 =
−1

4π (1− ν)
η1

µ
ln
p
η21 + η22 +

4ν − 3
2

+
2η21

η21 + η22

¶

φ23 =
−1

4π (1− ν)
η2

µ
ν ln

p
η21 + η22 +

5ν

2
− η22

η21 + η22

¶

φ24 = − 1

2π
arctan

η1
η2
− 1

4π (1− ν)

η1η2
η21 + η22

φ25 =
−1

4π (1− ν)
η2

µ
(1− ν) ln

p
η21 + η22 +

3−ν
2 −

η22
η21 + η22

¶

φ26 =
µ

4π (1− ν)
η1

³
2 ln

p
η21 + η22 + 3

´
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