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Abstract. The constitutive equations are formulated in the unrotated reference frame.
Kinematic and isotropic hardening rules are assumed and the radial return mapping algo-
rithm is applied to find the actual yield surface. By assuming large and incompressible plastic
deformations, the total Lagrangian formulation of the finite element method is applied with
p-extension elements making use of the truncated space and the product space.
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1. Introduction

Workstations and the latest PC-s make the numerical solution of plastic problems
with large strains possible. A great number of conferences have been devoted to the
problems arising during the simulation of plastic processes [1]-[9]. More and more
papers are published with the aim of developing effective procedures for the solution
of plastic problems. Finite rotations of material axes make the treatment of strain-
stress rates and their numerical integration over a load step difficult. As is well known,
there are various objective stress rates, the rules for their systematic constructions
and a couple of new ones are presented in the paper [10] by Kozdk.

The Jauman stress rate has been used in large strain plastic problems over the
past ten years. However, stress oscillations were experienced for large rotations and
during the treatment of a complex material behavior (e.g., viscoplasticity, kinematic
hardening, isotropic hardening).

The oscillatory response can be removed if the Cauchy stress measure and its
objective rate are defined in an unrotated orthogonal reference frame established by
means of the polar decomposition of the deformation gradient at each material point.
Using this concept, it can be shown that the stress response will increase monotonically
in simple shear for incremental linear-elasticity. The same idea was used by Hallquist



236 I. Paczelt, F. Nandori and T. Szabo

[5,6] to work out implicit dynamic codes and by Flangan and Taylor [4] to develop
codes for a transient dynamic analysis with explicit time integration. With the strains,
stresses and their objective rates, each defined in the unrotated frame, the structure
of small-strain plasticity is fully retained, which is advantageous to develop a finite
element code. This concept firstly used by Hallquist was further developed by Healy
and Dodds [7].

In this paper first we will summarize the kinematics of finite deformations, then
present the strain-stress rates and the elastoplastic constitutive equations by assuming
that the kinematic and isotropic hardening rules are valid. Finally, we will apply
the finite element method to axisymmetric problem with p-extension elements. The
approximation of the p-extension elements can be constructed either by the truncated
space or the product space [18]. The two approaches are different in the number of the
bubble functions. The approximations of the displacement field and the volumetric
change will also be investigated. Numerical examples demonstrate the effectiveness
of the applied elastoplastic theory.

2. State variables

A number of textbooks are devoted to the formulation of nonlinear solid mechanics —
see for instance [2, 12]. Here we summarize the most important basic relations that
are required for a finite element formulation.

In our analysis we consider the motion of a body in a fixed Cartesian coordinate
system (X7, X3, X3). The position vector of a generic material point is denoted by
X at time O (in the reference or undeformed configuration), and by x at time ¢ (in
the deformed or current configuration). The reference and deformed configurations
are denoted by By and B, respectively.

The displacement vector is given by
u=x-X. (2.1)

The fundamental measure of deformation is the deformation gradient

ax
F=—. 2.2
X (2.2)
If the mapping X = x(X, t) is one-to-one, then
J=detF >0. (2.3)

As is well known, the deformation gradient F' can be decomposed into a product of
two matrices

F=V-R=R-U (2.4)

where R is the orthogonal rotation tensor, while V and U are the symmetric left and
right stretch tensors. The principal values A; of V and U are equal.
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The velocity field, which is the material time derivative of the displacements, is
written as P
X .
=5 =% (2.5)
The velocity gradient L (velocity strain tensor) is defined as the gradient of the
velocity field with respect to the current configuration. Making use of the chain rule
and (2.2), we can write

A%

0x  0Xdx
We denote the symmetric and skew parts of the velocity gradient by D (the rate of

the deformation tensor) and W (the spin rate of the velocity gradient). According to
the decomposition theorem

OvoX g, (2.6)

L=D+W  where D=2 (L+L") and W:%(L—LT).(QJ)

1
2
The tensors D and W are both instantaneous rates, i.e., are not associated with the
load history. When integrated over the load history, the principal values of D are
the logarithmic strains of the line elements oriented in the principal directions if the
principal directions do not rotate.

Applying the polar decomposition theorem to F, we have
L=(R-U)-F'!=R.U.F +R-U.F =
~R.-U.U 'R'4R.U.U 'R!,

since

(R-U)'=U ' R'=U"'R?”, and Q=R-R .

In view of the fact that R is an orthogonal tensor (R? = R~!) we obtain
L=RR +R-U.U'RT=Q+R.U.U 'RT. (2.8)

Furthermore, we have

d(RTR
RT - R=1 and d(R'R) =0
dt
in which 1 is the unit tensor. It is obvious that
R’ R=-RT.R. (2.9)
With (2.8), (2.7)2 yields
Lre Loyl T T
D:R~§(U~U +U'.U)-R" =R d-R (2.10a)

where d is the unrotated deformation rate:

1 /e .
d=3 (U~U 1+U*1-U) —R’DR. (2.10b)
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The double scalar product of the Cauchy stress tensor T and the rate of deformation
tensor D gives the stress power per unit volume

T:D. (2.11)
Introducing the unrotated Cauchy stress tensor
t=R".-T-R, (2.12)
the double scalar product (2.11) can be written as
T:D=R” - T-R:R"-D-R=t:d. (2.13)
The right and left Cauchy-Green tensors C and D are defined by
C=F' ' F=U? and B=F-F'=V? (2.14)

respectively. We remark that the eigenvalues of the two tensors are identical but the
eigenvectors are different.

We adopt the total Lagrangian formulation of the problem. This means that all
quantities are taken in the reference configuration. As is well known, the deformation
measure, i.e., the Green-Lagrange strain tensor is defined by

1 1
E=-(U?-1)==(FT.F-1) . 2.15
S (U7 1) =5 ( ) (215)
Furthermore, we have
. 1 /. .
E— (FT.F+FT-F) ~FI'D.F, (2.16)

which, as can be seen by using (2.6) and (2.7), includes the velocity gradient

_Llp.p! )T ET)
D—;(F-F +(FY E).

Substituting the polar decomposition F = R - U into equation (2.16), we obtain
E=U".R".D-R-U (2.17)
from which, with regard to equation (2.10b), it follows
. T
E=U .d.-U. (2.18)
Since U = U7 is a symmetric tensor, the unrotated deformation rate d can be ex-
pressed from (2.18):

d=U"1.E.U . (2.19)

The work-conjugate of the Green-Lagrange strain tensor E is the second Piola-Kirchhoff
stress tensor P!, which can be given in terms of the Cauchy stress tensor T as follows

Pl=JgFtT.F7T. (2.20)
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Substituting the polar decomposition F = R - U into (2.20) and using (2.12), we have
Pl =JUut.t. U, (2.21)

Deriving this equation with respect to time ¢, we obtain a formula for the rate of the
stress tensor

Pl =JjU U 4+J (U ¢ U +JU U +JU ¢ (UT) (222)
where
J = Jtr (D) (2.23)

in which tr (D) is the trace of the tensor D. In order to determine (U~!)" we consider
the equation
UuUlu=1 (2.24)

as our point of departure. Taking its derivative with respect to time ¢, we have
(U . u+u't.U=0 (2.25)

from which )
(Uly=-ut.u.u . (2.26)

Substituting (2.23) and (2.26) into (2.22) and making use of (2.21), we obtain the
relation

Pl JU ..U rer@P! Ut U.P PO U (227)

for the stress rate.

3. Large strain elastoplasticity

3.1. An objective time derivative of the Cauchy stress tensor. The consti-
tutive law for an elastoplastic material determines the relation between a materially
objective stress rate and a work conjugate deformation rate.

Let us consider the equation relating the unrotated stress tensor t to the Cauchy
stress tensor T
t=R".-T -R. (3.1)

After taking the time derivative of the above equation, we get
. . T T . T .
t=R -T-R+R"-T-R+R ‘T-R. (3.2)

Utilizing the expression 2 = R-RT in (2.8), we can express the rate of the orthogonal
rotation tensor and its transpose:

R-Q-R, R =RT. Q" = _R”.Q (3.3)
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by which equation (3.2) gives
t=R".TV.R, T'=T-9 T+T-Q (3.4)

where TV is the Green-Naghdi objective stress rate tensor [2, 10].

With the tensor of material constants C°P the constitutive equation takes the form
TV=C?:D. (3.5)

Let us reformulate the constitutive law in the unrotated but deformed configuration.
Making use of equations (3.4), (3.5) and (2.10b), we have

t=R".(c”.D).R=C”:(RT -D-R)=C?:d. (3.6)
One can see from equation (3.6) that the integration of the rate of the rotation tensor
over the load history is avoided. However, all quantities should be transformed into the
unrotated deformed configuration. Constitutive law (3.6) was first used by Hallquist
[5]. When this method is chosen it is essential to perform the polar decomposition of
the deformation gradient as accurately as possible.

3.2. Determination of the elastoplastic state. We shall assume that the
material is isotropic and the undeformed configuration is stress free. The Mises yield
surface is applied together with the associated flow rule. The hardening rule, which
specifies how the yield function is modified during a plastic flow, can be kinematic,
isotropic or a combination of the previous two. The yield surface is given as

f (&) =€l - \/g (@) <0 (3.7)

where
— (eP) is the hardening rule,
— & = s — @, in which the deviatoric stress s = devt =t — %tr (t)1, o is the
centre of the yield surface (called back stress),
- lIgl = V&€,

¢
— € is the equivalent plastic strain & = [ \/g |ld? ()] dr,
0

— d=d°+dP is the strain rate decomposed into elastic and plastic parts.
The decomposition of d is based on the decomposition of the deformation gradient

proposed by Lee [11] for ductile metals
F = F° . F” (3.8)

where F¢ represents the elastic deformation, i.e., the distortion of the lattice, while
F? represents the plastic deformation. Substituting (3.8) into (2.6), we have

L=F.F  =F.F" (FPF ) 4F - (FP.F°) =
=FF 4+ FF FPF °“=L+F"L*F ¢ (3.9
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We shall assume in the course of elastoplastic deformations that the elastic strains
are vanishingly smaller than the plastic strains. Furthermore, we shall also assume
for the elastic deformation that F¢ = V¢ in (3.9), i.e., the rigid rotation is added to
plastic term. Hence, we can rewrite the decomposition

F=F°.-F’=V¢VP’.R. (3.10)
Assuming small elastic strains €€, it holds
Fé=1+¢e°~1. (3.11)

Consequently, we can decompose the approximation of the velocity strain tensor and
its symmetric part into the forms

L ~ L°+L?, and D ~ D¢+ D”. (3.12)

Substituting (3.12)5 into (2.10b) the unrotated deformation rate can also be decom-
posed into elastic and plastic parts

d=R7-(D°+DP)-R=d°+d” (3.13)
as is the case for small strain plasticity.

3.3. Determination of the stresses in the unrotated configuration. The
integration of the plastic equations is performed over finite time increments. A good
review can be found in the works of Simo and Taylor [16,17]. The radial return
mapping procedure seems to be very effective for integrating the elastoplastic problem
numerically.

Imposing kinematic and isotropic hardening rules, the yield surface will be both
translated and inflated. The translation is associated with the plastic modulus H,, (e?),
and the inflation with the hardening rule (€”), where e is the equivalent strain.

Points inside the yield surface (3.7) (f < 0) refer to elastic states, and points on
the yield surface (f = 0) refer to plastic states.

As is known from the Prandtl-Reuss equations
s =2G(é—¢&P), (3.14)

where s is the deviatoric stress rate, & is the deviatoric strain rate, &P is the plastic
part of the deviatoric strain rate, G is the elastic shear modulus and

e=¢— %tr (e)1 (3.15)

where € is the strain tensor. According to the associative rule

3G

dP =é&P = ’ya—g =i (3.16a)
where ~y is the plastic coefficient:
1
v=1evl = 52| = 1l - (3.160)
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Here H,, (€”) and ' (e”) are obtained by derivation with respect to @ and # is the
unit normal of the yield surface:

. &
A= —. (3.16¢)
€]l
The translation rate of the centre of the yield surface is given by
2
a = gHa (e) e (3.17)
where H,, (e”) is the plastic modulus.
The pressure rate due to the elastic volume change is calculated as
1 .
p=gtr () = Ktr (¢) (3.18)

where K is the bulk modulus: K = E/ (3 — 6v), E is the Young’s modulus, v is the

Poisson’s ratio.

Regarding equation (3.14) as our point of departure, a standard transformation
leads to the following equation

$=2G[I—yA®n:é (3.19)

in which I is a fourth order unit tensor, ® denotes the tensor product, the element
ijkl of the tensor [ ® 1] is evaluated from the relation n;;74;, and 75 is the element
of the tensor i.

In view of the representation
1

t=s+ §tr (t)1, (3.20)

a rate constitutive equation can be obtained by using (3.15), (3.18) and (3.19):
t=CP(t):& (3.21)

where C*P is the fourth order tensor of the tangent moduli
1

CP?(t) = K1®1+2G [I — 51 ® 1] —2Gyhh@1n . (3.22)
Integration of the nonlinear equation (3.19) with respect to time ¢ is not simple since
the elastoplastic problem depends on the load history. A great number of return

mapping algorithms are available. The radial return mapping seems to be the most
efficient procedure (see Appendix 1).

4. Consistent tangential stiffness matrix

With the knowledge of o, € and €,, at time t", the vector of the strain increments

Ae =€ —¢g, (4.1)
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can be determined by using the nonlinear constitutive law and satisfying the yield
surface as well:
Ae — o(t,eb e,, Ag). (4.2)

The principle of the virtual work can be applied to find a unique value for Ae. The
principle itself assumes the form

G(u,déu) = /pii -oudV + /6’ (tn,en, e, Vu—g,) : ViudV—
% %

—/pk-éudV—/ﬁ-(sudA:O (4.3)

v A,

where du is the variation of u (du =0 if r € A,), pk stands for the body forces and
il is the acceleration.

Equation (4.3) can be written in linearized form and can be solved with the Newton
iteration. This means that one should solve a sequence of linearized problems given
by

n

DG(ul),,6u)- Aul), = / vou: [l 1V (Aul), )] 4V = ~Gl), ou) (4.4)

until the residual G( u, +1, du) vanishes.

In order to achieve fast convergency during the numerical computations we need a
constitutive tensor ng 41 in a consistent form. Simo and Taylor [16] gave this tensor
in the following form

i e 1 e o
Cc¥),=C? ,=K1®1+2G8 [I— §1@1] —2GAA®i (4.5)
where
n+1 + AH,] _ 1
B=1l3 Lol o el and y=——————(1-1).
s T

The matrix version of (4.5), which is applied in the finite element applications, was
given by Dodds [3]. This matrix relates the increments of the unrotated stresses and
strains

At = C*PAd (4.6)

where _
C*? = C — 2GynnT

(At, Ad,n are vectors with six components). The components of the tensor C are
as follows

B _ _ 4 . _ _ _ 9
01120222033:K+§G/3, 02120312032:K—§G/3
Ci=Cs5=Cos =Gp.
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Here
(1) (1) (1)
5 S d1t S F1 - S +1(Vect0r) (i) 2 —p(i)
sl e we waefEn)
n+1* ®n+1 n+1

For the numerical treatment of large plastic deformations we shall apply the total
Lagrangian formulation. The increment of the stress tensor is measured by the second
Piola-Kirchhoff stress tensor P!/, Using the components of stress tensor P! we
construct the vector of stresses S which is related to the vector of the Green-Lagrange
strains e through the matrix of tangent moduli. For the vectors of stresses and strain
increments, we assume that

P AS=C%Aeg. (4.7)
Integrating equation (2.27) in a finite time interval, we have
APH = JU L. At- U +tr (AD)PH — U L. AU - P - P . AU - UL (4.8)

The integration of equation (2.19) gives the increment in terms of the unrotated

deformation rate
Ad=U"1.AE.-U'. (4.9)

In order to obtain a symmetric matrix C¢P for the tangent moduli from the combi-
nation of (4.8), (4.9) and (4.6), we shall assume the followings:
1. Since the plastic deformation is incompressible the larger deformations are the
more negligible the value of tr (AD) is.
2. The term AU is negligible comparing to U~! and P!/, This assumption will

slow down the convergency to some extent.
Based on the preceding assumptions, we can write

AP = JU 1. At- U ! — AS=C®Aeq (4.10)

where
Cr=]QC*?Q" . (4.11)

Making use of the notations
-1 -1 -1 -1 -1 -1
u=Ups ug=Uy, uz=Uy, wi=Usy, us=Usp, us=Usy,

the matrix Q can be given in the form

ui ug ug PATERID 2UoUy ATREIN
ug ug ug 2usug 2uzus 2usus
ug UE UG 2u4us 2usuUg 2Uu4Ug

4.12
U1U2  UU3  UgUS U1U3 + u% UgU3 + U2Us  UTUS5 + UoUyg ( )

UgU4 UIU5 UsUG UoUs + UgU3 Uz Ug + ug U2Ug + U4US5
U1U4  UUF  UgUg ULU5 + U2Ug  U2Ug + U4US U1 Ug + u?l

For axially symmetric and 2D problems, the matrix Q is tailored by deleting the
appropriate rows and columns. The rows and columns of Q are ordered as follows:
x? y? Z’ ‘Z'y3 y’z? xz.
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The fast convergence of the Newton iteration with the tangential matrix C*¢P
proves its efficiency in spite of the two preceding assumptions we made in connection
with the transformation.

5. Solution of the nonlinear elastoplastic problem

5.1. The total Lagrangian formulation. In the course of elastoplastic deforma-
tions, the points of the body assume different elastoplastic states. Some points are in
elastic state and the rest are in plastic state. We treat the elastoplastic problem by
means of the principle of the virtual work. Referring to the book by Bathe [2] but
not entering into details, we write the variational equation

/ 6 (ABY) s c: AEY +6 (AER), ) : PII| aov =
oy

= Wy — /5 (AE@) PV, (51)
oy

which expresses the equilibrium and compatibility requirements over the time period
from ¢,, to ¢t,,+1. The Green-Lagrange strain tensor at the time ¢, is given by

1
E=; [Fl  Foy1—1] (5.2)
where
0 (X +u, Ju,
Fop= % =1+ 3—);1 =1+ (Vu),,, =1+grad(u,41) . (5.3)

E,, 11 can be expressed in terms of the displacement vector as well:

By = % (V)" + (Vu) + (Vo) - (V)] (5.4)

If convergency is achieved in the i*? iteration step by performing a load step from
time ¢, to t,41, then it is expedient to decompose the displacement as follows

i "y (i ~ () i— ~(1)
u51)+1 =u, +1" =u,+a""V+u = U£L+1l)+u ’ (5.5)

where @) denotes the displacement increment corresponding to Au?. Consequently,
equation (5.4) can be rewritten:

E'), =B, + AEY + ARV, , (5.6)
where
ABY = % {(Vﬁ(i))T +(Va®) + (Vu,)" - (Va®) + (Vﬁ@)T : (Vun)] (5.7)
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Af Af
n+1 — n+1
~ L~ 3 K,
n g n K,
u, aen j cu | oaEy o T
T a0 UO=Au®
_ Uneq | - ut -
- i - un+1 -
(a) (b)
Figure 1. Iteration schemes for one load step
and .
AEY, = % [(Vfﬁ”) : (Vﬁ(i)ﬂ . (5.8)

It is more favorable to recalculate the constitutive matrix C? in each iteration step
(see Figure 6.1b) than to follow the iteration scheme shown in Figure 6.1a. Therefore
equation (5.1) is modified as

~ (9) ~ (1) ~(7)

oV
~ (i) .
= Wit — /5 (AEL ) PIED aov, (5.9)

oV
where
POV RO
E,,,=E, " +AE;, +AEy;. (5.10)
~(0) 1 ~@\ T ~ (i) N7 ~ (i) ~@\ T i
AE, =3 <Vu ) +<Vu )+(vu§L+}>) -(Vu >+<Vu > -(vugﬂl))
(5.11)
~() ~\T ~(i)
AENL:§[<Vu > -(Vu > (5.12)
1I(i—1 i—1 i—1 i—1 i—1)\ 1
Pn+(1 )= J7(1+1) (U’EL-‘rl)) 't1(1+1) : (U7(1+1)> (5.13)

5.2. Finite element discretization. For the numerical treatment of (5.9), we per-
form the discretization by the finite element method. The increment in displacement

is approximated as
~(4) ~(1)
u = NX)q (5.14)
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~(1)
where N(X) is the matrix of shape functions, q  is the vector of displacement para-
meters. The matrix of shape functions can be constructed by using either the product
space or the truncated space [18].

Using the approximation (5.14), we can give the vector of the strain increments
corresponding to the Green-Lagrange strain tensor

~ () ~() ()

~(1)
AE :>€L +ENL:B(1 1)(X)

~(0)

+BU Y (X)q (5.15)
~(0) o . . L

where €; and €); are the so-called linear and nonlinear strain increments, respec-

tively.

Making use of equations (5.14) and (5.15), we can discretize the integrals below:

~ (1) ~ (1) ~(0)T (Gi—1)T e (i—1) ~(1)
o AE; ( AEL d°V = éq B C(f 1)BL d°Vq

oy oV
K{™Y
(5.16)
5(aByy ) Prav — g (B 0, B VeV
v | Pl — §q B\, "o, B dovg (5.17)
Ky
~() I1(i—1) ~OT [ G_DT A1
/5 AE, | PNV av — 6g /BL Vv, (5.18)
oy oy
fr(!i—l)

s,y =65 | [NTo (o) . oV — Tog A Tt
n+1 = 0q (Pk), 1y d°V NP, d°4| = 5C1 w1 - (5.19)
% °A,

The load vectors evaluated over the volume °V and the surface °A,, correspond to the
reference configuration. Consequently, the traction p,+1 exerted at time ¢,11 can be
transformed into the reference configuration

“Prt1 =F, 11 Pry1. (5.20)
However, the body force follows the transformation rule
(oK) i1 = (det )™ (oK), - (5.21)

With the integrals (5.16)-(5.19) and the transformations (5.20), (5.21), the incremen-
tal form of the virtual work is discretized as

ST (Gl oy - .
0q {[K( Dk V)g - (fn+1—f§ 1>>} =0 i=12.. (522
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~()T
where dq is arbitrary, consequently the following equation holds

i i—1)=(0) i -
KK = £ —£0D =D (5.23)

in which the sum in brackets is the tangential stiffness matrix:
K ViKY = ki (5.24)

At the beginning of the iteration (i = 1) we use the elastoplastic state obtained at
time t,, to initialize the iteration. The iteration is terminated if the unbalanced load
vector r(Y) vanishes, i.e., if

Hru)

= VrOTr() < TOL |41 ]| (5.25)

where TOL = 0.001 — 0.0001.

5.3. Updating the stress state. The solution of equation (5.23) in the i iteration
gives the vector of displacements q , in this way we can calculate u = from (5.14)
and ufgrl from (5.5). Then we obtain the actual stress state as given subsequently.

The time integration of the velocity is performed by the method proposed by Pin-
sky, Ortiz and Pister [13]. This is a mid-increment scheme, second order accurate and
unconditionally stable. The procedure determines the displacement at the middle of

the time interval 1
ugf)ﬂﬂ =3 (un + uSJ)rl) (5.26)

The steps of the algorithm:
Step 1. Determination of the deformation gradient for the states n+1/2 and n + 1

0 (X + ufﬁrl 9 (X + ugrlm)

() _ ) (0 _ (9) @ _
Fn+1 - a—Xa Jn+1 = det (Fn+1) ) Fn+1/2 = X
(5.27)
Step 2. Polar decomposition with the method described in Appendix II:
by =Ry, UL FEZ)+1/2 = Rff)+1/2 'Uff)ﬂ/z- (5.28)

Step 3. Integration of the tensor L = K- F

Since 9 5
_9V_9V g1
L_Bx 00X F
we can write

0 Ou 0 8u.F_1

ox ot 09X ot ’
from which it follows by an integration with respect to time ¢ that

0 du 0 du __,
axar = axar ¥4
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If the deformation gradient is taken at the middle of the time step we get

9 9 .
/a—xdu:/a—XdU'Fn+1/2.

The deformation gradient is then calculated as follows

0 (Au(i)) 0 (Au(i)) 1

ox oX T ont1/2e

where Au(® is the displacement increment
Au =@l = ugj_l—un.

For the increment of L we now can write

i i -1
ALY = AFY - F 3 o, (5.29)
where the increment of the deformation gradient F' is
.0 (Au)
AFO="_\"_ / .
79X (5.30)
Step 4. Computation of the symmetric part of AL():
. 1 . .
AD® = 2 [AL(” + AL“)T} . (5.31)

Step 5. Transformation of the increment in the rate of deformation tensor to an
increment of the unrotated deformation rate tensor:

AdD =RDT ADO.RY

n+1/2 n+1/2 (5.32)

Step 6. With the knowledge of Ad®) we can perform the calculations detailed in
Appendix I in order to determine the elastoplastic state together with the yield surface
and the Cauchy stress tensor. Using a symbolic notation

t), = RRAS ) @Yl ), Ad®), (5.33)

where RRA denotes the radial return mapping algorithm.
In the course of the time integration we obtain the following quantities:
the equivalent plastic strain
AU (5.34)

the deviatoric stress at the centre of the yielding surface
ol (5.35)

the deviatoric stress tensor .
s, (5.36)
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the total stress tensor
MO)
n+1>

and the elastoplastic consistent matrix C(j (see (4.11) for details).

Applying the p-version of the finite element method the hydrostatic stress field is
smoothed by a low order approximation (p/2).

Step 7. Let us transform the Cauchy stress tgrl obtained in the unrotated config-
uration to the reference coordinate system

) (1)

P=JL W), (U ) (5.37)

5.4. The global algorithm of the nonlinear problem. As is given in the previous
subsection, we perform the seven steps in each Gauss integration point, and we obtain
the point K starting from point K in iteration ¢ = 1, then point K5 from point K7 in
iteration ¢ = 2, and so on (see Figure 6.1b). That is, in each iteration i we determine

the stiffness matrices K(Li_l), K%zl) and the vector of internal forces féi_l) with the
quantities calculated in the seven steps.

The external forces are applied gradually in a sequence of load steps, and in the
course of the equilibrium iteration (i) the elastoplastic condition is always checked.

The scheme of the algorithm:
Loop for the load steps (n =1,2,...,nload).

a. Equilibrium iteration (i =1,2,...).
A/ Generate the system matrices and vectors:

KV KGO0 = 0.

~(1)
B/ Solve for q

i i—1),~(0) i -
[K(L 1)—I—KS\,LI)]q :fnﬂ—ff, D = =1

C/ Update the vector of displacement parameters

i i ~(9)
= ali) a3

D/ Loop for the finite elements (e = 1,...,m) :
a/ Loop for the Gauss integration points:
I/ Determination of the displacement field

u’) = N(X)q\,.

II/ Calculate the displacement of the half step

i 17 i
quil/Q =3 (ug) + uéil) :
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III/ Update the stresses (Step 1-7) in accordance with Section 5.3.
b/ Generate the element stiffness matrices and the vector of internal forces

(x27),

E/ Check for convergence

(), (),

if Hr(i)H < TOL||f,41]| then go to (B) else t =i+ 1 and go to (A) .

(5. Prepare the next load step n=n+1

qdn <— dn+1,

f, — P!l

If n < nload then go to () else STOP.

6. Numerical example

An axisymmetric cylinder with a height of 40 mm and a diameter of 35 mm is com-
pressed between two rough rigid plates (see Figure 2). The material is elastioplastic

with the following hardening rule

(") = 000 — (000 — Oy ) exp (—7E") + o

where o, = 0.343 MPa, oy = 0.243 MPa, ¢° = 0.15 MPa, v = 0.1. The elastic
properties of the material are characterized by Young’s modulus and Poisson’s ratio:

E =70 MPa, v =0.2.

Two meshes were used for the discretization of the quarter of the domain. In the
first mesh denoted by (2 x 2) there are 4 axsisymmetric p-extension elements [18], the

p=00

=00

=

40

Figure 2.

mesh has two elements in the radial
direction and two elements in axial
direction. The second mesh denoted by
(4 x 4) has a double density compared
to the first one, i.e., it has direction
and four elements in the axial direc-
tion. First we will use the product
space for the approximation of the
displacement fields. We note that the
number of bubble functions of the
truncated space is equal to 15 for p = 8,
however we have 49 bubble functions
in the product space for p = 8. This
gives a possibility to investigate differ-
ent ways in which the approximation of
the volumetric change. Symmetry condi-
tions are specified on the axis and in the

middle plane of the cylinder. Sticking conditions and a prescribed compressive dis-
placement are specified at the tool-workpiece interface.
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The total height reduction of 20% is obtained in 10 increments. The polynomial
degree of the approximation is p = 8, the numerical integration is performed on 9 x 9
Gauss points. The volumetric change is evaluated directly from the displacement
fields.

The deformed shapes and the distributions of the plastic strains P are displayed
for the two meshes in Figures 3 and 4. In the gray scale of plastic strains black
corresponds to the maximum value (1.137) and white corresponds to the minimum
value (0). The maximum value (1.137) has been computed at the upper right corner of
the domain. The corresponding von Mises stresses have also been evaluated as shown
in Figures 5 and 6. In the gray scale of the von Mises stresses black corresponds to the
maximum value (0.4015 M Pa) and white corresponds to the minimum value (0). The
results for the different meshes show good agreement. Here we see the effectiveness
of the p-extension as the results are reliable also for a coarse mesh.

Figure 3. Figure 4.

Distribution of plastic strains for Distribution of plastic strains for
the mesh (2 x 2) the mesh (4 x 4)

Figure 5. Figure 6.

Distribution of the von Mises Distribution of the von Mises
stress for the mesh (2 x 2) stress for the mesh (2 x 2)
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The weakening of the volumetric change is not needed for the product space if p = 8
and the order of integration is 9 x 9. In this case, the number of integration points for
one element (81) is smaller than the number of bubble functions (98), therefore the
element has extra degrees of freedom to satisfy the elastoplastic equations.

The truncated space [18] can also be used for the solution of the elastoplastic
problem. We experienced that the volumetric change should be weakened. Therefore
we applied the least square method with a polynomial degree of p/2 to smooth the
volumetric change field. The same layout of the problem has been analyzed with the
following material parameters: oo, = 30 MPa, oy = 20 MPa, ¢° = 2MPa, v = 0.1.
The elastic properties are given by the Young’s modulus £ = 2700 MPa, and the
Poisson’s ratio v = 0.35. The total height reduction, which is 10%, is obtained in 5
increments.

For the second mesh (4 x 4) we performed the computations for different degrees
of approximation by using the truncated space. The computed characteristic stress
components are shown in Table 1. As can be seen, we obtained similar results for
p = 6 and p = 8§, i.e., convergence has been achieved by the p-version of the finite
element method for a large strain elastoplastic problem.

Table 1. Characteristic stress values

p | min/max oy Oy o, Trs

2 min —0.2745 - 102 | —0.2797 - 102 | —0.4076 - 102 | —0.1042 - 102
2 max +0.1604 - 102 | +0.1155-10% | —0.3289 - 10T | +0.5686 - 10T
4 min —0.4093 - 102 | —0.4094 - 102 | —0.6099 - 10% | —0.9211 - 10T
4 max +0.1123-10% | +0.1121-10% | —0.8859 - 10! | +0.6156 - 10!
6 min —0.2970 - 102 | —0.3262-10% | —04746 - 10> | —0.8916 - 10T
6 max +0.6110- 10" | +0.9757- 10! | —0.1119-10% | +0.5541 - 10!
] min —0.3086 - 10T | —0.3204 - 102 | —0.4609 - 107 | —0.8887 - 10T
8 max +0.6110 - 10T | +0.9766 - 102 | —0.1118-10% | 0.6324 - 10!

We note that when the height reduction was increased over 20%, the element in the
upper right corner of the mesh became distorted so the convexity of the element was
destroyed.

7. Conclusion

A finite element code has been developed to solve large strain elastoplastic problems
using p-extension elements. The total Lagrangian formulation of the finite element
method has been implemented. Large and incompressible plastic deformations were
assumed. The constitutive computations have been performed in the unrotated frame.
The radial return mapping algorithm was used for the treatment of the yield surface.
Kinematic and isotropic hardening rules were adopted.

From the numerical experiments we concluded that p-extension of the finite el-
ements can be applied for the analysis of large strain elastoplastic problems. The
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approximation of the displacement fields has been investigated by means of two dif-
ferent polinomial spaces: the product space and the trunceted space.

Making use of the product space and integrating numerically with a (9 x9) integra-
tion order, we obtained smooth solutions for the case when p was equal to 8 both for
the displacement fields and for the volumetric change. The advantageous behavior of
the product space follows from the fact that the number of bubble functions is greater
than the number of integration points.

Applying the truncated space with polynomial degree p for the approximation of
the displacement fields, we obtained smooth solutions if the volumetric change was
weakened. We experienced that smoothing the volumetric change by the least square
method with polynomials of degree p/2 provides a proper choice for the different
values of p (for p = 2,4,6,8).

Since the p-extension of the finite elements are sensitive for stress concentrations,
the deformed elements may be distorted at the vicinity of the singular points. There-
fore remeshing of the domain is required even for relatively small displacements.

8. Appendix I: Radial return mapping

We shall assume that all quantities are known at time ¢,. Increasing the load
gradually we determine all quantities with an elastic prediction. Therefore the point
representing the elastic state we have predicted will be, in all probability, outside the

yield surface. Then due to an orthogonal
mapping the point will be placed on the sur-
face. The elastic prediction gives the stress
deviatoric tensor:

Spi1=Sn +2GAe; 1. (8.1)

The treatment of the plastic problem is prac-
tically an optimization problem. Let f be
an arbitrary but convex yield surface. We
have to find the point of f with the small-
est distance from a point elastically predicted
and located outside f. The unit normal to the
yield surface at the end of the time interval
[tn,tnt1] is denoted by n. It is obvious that

ﬁ 1 _ €n+1
¢ I

fl:

. (8.2)

n+1 Hg—g

Figure 7.

n+1
Making use of equation (3.7) we can write

Of _ 0 m_ &
9 0eVS T e
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where

E =Sp4+1 —Opy1 - (83)
Starting from the elastoplastic state corresponding to t¢,, one can obtain the state at
tn+1 through the following integral

trnt1 tn+t1
/ 2GéPdr = / 2Gyhdr,
tn t“

which is calculated approximately as
2G (yAt) 1,
where At is the time step (At = ¢, 11 — t,,). Therefore
Snt1 = Sy, 1 — 2G (YAt) @1 (8.4)

Since the yield surface is modified due to hardening, we need to calculate the equiv-
alent strain as well

n+1

t
2 2
eh  =éh+ / \/; |&”]] dr = ek + \/;(’yAt) ) (8.5)

tn

Making use of equation (3.17), we can write

tn+1 2
Gt =+ [ THL (&) yidr =+ 3H, (&,,),) (A0 &
tn

— a4 2Bl ) Ha @) () Agy

= ——P
3 €nt1"En

for the translation of the centre of the yield surface. Taking (8.5) into account and
introducing the notation

AH, =H, (e ) — Hq (&)
we have
2
it = 0 + \/;AHQ Y (8.6)

From (8.3), (8.4) and (8.6) the value of £ at time ¢,,11 is written as

. 2 "
€41 =Snt1l — Qg1 =Sy — oy — [2G (YAL) + \/;AHQ n . (8.7)
Substituting the tensor
§ni1 =Sp1 — O, (8.8)
we can determine the normal vector i
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From (3.7), (8.7) and (8.9) a nonlinear equation is obtained

f=Gan ==/} (@) + HSLH - [26 (a0 + /200, | e

= =3 @)+ 6l - 26 0an +5am] o,

2
€y =eh+ \/; (vAt)

and the functions (e”), H, (€P) are also nonlinear. Since all the quantities are known
at time t,,, we can determine (yAt). Introducing the notation A = yAt, the steps of
the Newton iteration are as follows:

2
I e =en+ \/;A(’“’ :

’ (8.10)

where

of oé Ak
II Df(A\R)=_ZL " ntl . _9q |1 a
7 () 9& ., OA g !
/\(k)
111 NG U ( ) )
Df ()\(k))
v If ‘ f (A(k))‘ > TOL then k «— k + 1 and goto(I) else STOP.

Solving the nonlinear equation (8.10), we can calculate &, from (8.5) and o1
from (8.6). The deviatoric stress tensor s,41 is determined in such a way that we
measure the radius of the yield surface, that is the value

2 N
Sni1 = Qni1 + \/; (eh,,)n (8.11)

from the centre of the yield surface in the direction fi. The elastic part of the stress
tensor is calculated from the volume change:

th+1 =Sp41 + Ktr(As) l=s,11+K (det Foy— 1) 1 (812)

where
Ae=€e—¢,. (8.13)

The iteration over the interval [t,,t,11] leads to the elastoplastic state to be sought.
(4)

The quantities in the iteration step i are denoted by (), ;-

9. Appendix II: The polar decomposition of F

The steps of the procedure detailed below were proposed by Hager and Carlson [9],
Healy and Dodds [7]:
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Step 1: Calculate the right Cauchy-Green strain tensor and its second power
c=°r".F, c’=c’.cC. (9.1)
Step 2: Determine the eigenvalues
A1 A3 03 (9.2)

of C using the Jacobi method [2].

Step 3: Determine the scalar invariants of the tensor U
Iy = Ai+Xde+As, Iy =M+ A3+ A3, Iy =Ml ds=detF=J. (9.3)

Step 4: Determine U and U~! in terms of the invariants of C, C?

U=5 (ﬂQl +35C — Cz) ) (9.4)
where L
B = oIl =TT’ By =1Iyllly, fB3=1Ij—1Iy
and
U =7, (721 +73C +7,C?) (9.5)
where
1

o Yo = IylI — 111y (I + I1y)

T Iy (Iplly — 111’
vy =—IIIy — Iy (If +211y), v, =1v.

Step 5: Calculation of the tensor R in the knowledge of F and U~!

R=F . U! (9.6)
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