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Abstract. The optimum condition for the unloaded shape of prestressed tents is met by
minimum surfaces. The simplest type of such structures is a rotationally symmetric catenary
surface. In this paper, the authors present an analysis which shows that catenary surfaces
cannot fit arbitrarily chosen boundary circles of the tent, and also that if a solution of the
problem exists, also a dual solution can be found.
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1. Introduction

The problem about the existence and uniqueness of minimum surfaces under certain
geometric constraints arose in connection with the optimum shapes of prestressed
tents. The shape of a tent is considered optimum, if the fabric can be brought into a
uniform stress state by prestressing.

In a previous paper [5] the mathematical background for the analysis of optimum
shapes of tents with fixed boundaries has been published. It was shown that surfaces
which meet the statical optimum condition are minimum surfaces as well. Also an
iterative solution of the non-linear partial differential equation for the shape-function
of membranes developing a self-stress state of uniform membrane forces has been
presented. In certain cases the iteration proved divergent, which led to the analysis
of conditions for the existence of the solution.

For the sake of simplicity, axisymmetric membranes will be dealt with. However,
the nature of conditions for the existence of optimum shapes shows that they may
also apply to other surfaces.



158 D. H. Pálfalvi and I. Hegedűs

2. The shape of the meridian

In the case of axisymmetric membranes the problem of optimum shapes can be math-
ematically reduced to the analysis of the meridian. This analysis can be made ana-
lytically.

For an unloaded membrane of axisymmetric shape the following connection of the
membrane forces and principal radii (principal curvatures) holds [1]:

Nα

Rα
+

Nϑ

Rϑ
= 0, (2.1)

where Nα, Nϑ are the membrane forces in meridian and annular directions, and
Rα, Rϑ are the radii of curvatures in the same directions. These curvatures are the
principal curvatures.

As the membrane of optimum shape develops a uniform tension self-stress state

N = Nα = Nϑ .

Equation (2.1) leads to the geometric condition

1

Rα
= − 1

Rϑ
. (2.2)

If the meridian of the surface is given as a function of z, i.e., in the form r = r(z)
then the principal curvatures can be expressed as
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, (2.3)

where the differentiation with respect to z is denoted by ()0.
r
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Figure 1. The meridian of the surface

Substituting equations (2.3) into equation (2.2), a non-linear second-order differential
equation can be formed for r:

r00r − (r0)2 − 1 = 0 . (2.4)

The general solution of this differential equation is given in [3] as

r (z) = a cosh

µ
z − b

a

¶
, (2.5)
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where a and b are parameters of the solution. It follows from equation (2.5) that the
meridians of rotationally symmetric membranes are chain-curves. The parameter ‘a’
can be interpreted as the radius of the throat circle of the catenoid surface (Figure 1)
(or the height of the deep point of the chain-curve) while ‘b’ is its distance from the
z = 0 co-ordinate plane.

If the levels zB1, zB2 and the radii rB1, rB2 of the boundary circles are given
values (Figure 1), the real parameters a and b have to be calculated by solving the
conditional equation system:

rB1 = a cosh

µ
zB1 − b

a

¶
, rB2 = a cosh

µ
zB2 − b

a

¶
. (2.6)

We have found, on the one hand, that the above equation system does not always
have a real solution for the parameters a and b, and, on the other hand, if there exist
a pair of real numbers for a and b which fulfill the equation system, then another pair
of a and b can be found. These facts give rise to two questions: one, which conditions
decide that the mechanical problem has or does not have any solution, and another,
which of the multiple mathematical solutions is the real solution for the mechanical
problem.

In the subsequent sections, first, conditions for the existence of the solution will
be dealt with, then the minimum property of the surfaces obtained by the multiple
mathematical solutions will be checked.

3. The envelope of chain-curves intersecting at a common point

On the basis of the general solution of equation (2.5) a transformed form can be
derived which makes analyzing our problem easier. First, let r/a be replaced by ρ,
z/a by ζ, b/a by β, then let a common multiplier coshβ of ρ and ζ be introduced into
the general solution. In this way we can arrive at the equation

ρ (ζ, β) =
1

coshβ
cosh (ζ coshβ − β) . (3.1)

This form makes analyzing our problem easier because one of the boundary points
of the meridian always gets to the point ζ = 0, ρ = 1. Setting parameter β to
different values, equation (3.1) generates a set of chain-curves passing through that
common point — see Figure 2. The problem of fitting a chain-curve to the points
with co-ordinates (zB1, rB1) and (zB2, rB2) can be transformed to that of selecting
chain-curves from the set generated by equation (3.1), which passes through the point
of the co-ordinates

ζB =
zB2 − zB1

rB1
, ρB =

rB2
rB1

. (3.2)

A glance at the diagram of the series of chain-curves generated by equation (3.1)
(see Figure 2) makes it obvious that there is an envelope which divides the co-
ordinate plane (ζ, ρ) into a part where points cannot be reached by chain-curves
passing through the point (0,1), and another part, where it is possible. Figure 2
also shows the shape of the envelope resembles a shifted chain-curve ρ = cosh ζ − 1,
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however, it must differ from that curve because the envelope has to get closer to the
diagram of ρ = cosh ζ if ζ has a larger absolute value.

ζ

ρ

Figure 2. Chain-curves passing through the point (0, 1)

The equation of the envelope of the series of curves generated by a parametric equation
is determined by the conditions that points of the envelope are also points of those
curves touching the envelope, and the first order variation of the parametric equation
with respect to its parameter must vanish at the touching points. These two conditions
can be expressed as

F (ρ, ζ, β) = 0 , (3.3)

∂F (ρ, ζ, β)

∂β
= 0 (3.4)

where equation (3.3) is the equation of the curves with parameter β. The equation
of the envelope can be obtained by eliminating β from equations (3.3) and (3.4) [4].

In our case F (ρ, ζ, β) is the same as equation (3.1) arranged to zero, conditions
(3.3) and (3.4) yield a system of transcendent equations as follows:

ρ coshβ − cosh (ζ coshβ − β) = 0 , (3.5)

ρ sinhβ − sinh (ζ coshβ − β) (ζ sinhβ − 1) = 0 . (3.6)

Though β cannot be analytically eliminated from the above equation system, the
envelope can be plotted point by point using numerical solutions of equations (3.5)
and (3.6) for different values of β.

The plot of the envelope is the continuous line in Figure 3. For small values of ζ
its shape seems to osculate the curve of the function ρ = cosh ζ − 1, which is shown
with dashed line in Figure 3.

However, for large values of β, the numerical solutions of equations (3.5) and (3.6)
are getting more and more inaccurate and they do not permit us even to settle the
question whether the envelope starts with a zero or nonzero slope at the origin.
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This question can be answered by analyzing the curve of the deep points of the
chain-curves in Figure 2. Co-ordinates of the deep points of chain-curves passing

envelope

Figure 3. The envelope curve

through the point (0, 1) are

ρ0 =
1

coshβ
ζ0 =

β

coshβ
.

These expressions permit us to eliminate parameter β and to express the equation of
the curve of the deep points as

ζ0 = ρ0 · arccosh
1

ρ0
. (3.7)

Though equation (3.7) cannot be made explicit for ρ0, it enables us to answer whether
the curve of the deep points starts with a zero or with nonzero slope from the origin.
Producing the first derivative of equation (3.7) as

d ζ0
d ρ0

= arccosh
1

ρ0
− 1

ρ0 ·
p
1− ρ20

,

then performing the limit transition for its reciprocal at ρ0 = 0, we find

lim
ρ0→0

µ
d ζ0
d ρ0

¶−1
= 0,

which means that the curve starts with a zero slope.

Since the deep points of the chain-curves are above the envelope curve, if the curve
of the deep points starts with a zero slope at the origin, the envelope does the same.

Again the diagram of the chain-curves generated by equation (3.1) shows that each
point (ζB , ρB) of the domain of possible solutions is a point of intersection of two
curves of the series, that is, if we have a solution of our problem, we always have a
dual solution as well. If the point (ζB, ρB) is exactly on the envelope curve, then the
two meridians coincide.
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The domain of the possible solutions can be divided into a part (A), where the
deep points of the intersecting chain-curves lie on different sides of the co-ordinate
plane split by axis ρ, and another part (B), where the deep points lie on the same
side

envelope

(A)

(B)

Figure 4. Two regions of the domain of solutions

The two regions are separated by the chain-curve the deep point of which lies on axis
ρ (Figure 4). Since we could not derive a closed formula for the envelope, its shape
can be analyzed only numerically. The approximate formula

Envζ ≈ cosh ζ − 1

yields fairly good first estimates both for small values of ρ and for larger values as well.
For values of ζ larger than about 0.7 we find a more accurate envelope by assuming
that the condition

dEnv(ζe)

dζe
=
dF (ρe, ζe, β)

dζe

holds for the first estimate, where the index e refers to the place of the envelope. In
this way we can write

sinh ζe ≈ sinh(ζe coshβ − β) ,

which permits us to approximate ζe in the form

ζe ≈
β

coshβ − 1 , (3.8)

and then the corresponding ρe as

ρe =
1

coshβ
cosh

µ
1

coshβ − 1
¶
. (3.9)

In Figure 5 the plots of the first estimate (dashed line) and the refined envelope
calculated using equations (3.8) and (3.9) are shown
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Figure 5. Approximate envelopes

The envelope gives an answer to our first question: the data of the boundaries
determine that in the given geometrical case a membrane with optimum shape does
or does not exist. For any pairs of the radii of the boundary rings there exists a
maximum value of height of the surface that permits us to connect the rings with a
surface of optimal shape. If the height is less than this value, we can find two surfaces
which meet the optimum condition, if the height is chosen bigger than this value, we
cannot find solutions.

4. The minimum surface

It was shown in [5] that the surface of the optimum shape of unloaded membranes
is minimum. However, in the last section two solutions were found for the optimum
shape. This result raises the problem: which curve specifies the minimum-surface and
what extreme property the other curve exhibits.

To answer this question two types of numerical investigation were performed.

First we shall consider a combination of the two solutions.

Let the functions of the curves passing through an arbitrarily chosen point within
the envelope be called ρ1(ζ) and ρ2(ζ). Let ρ1(ζ) belong to the curve which runs
higher between the points of intersection than the other curve.

The curves representing the function

ρα(α, ζ) = α ρ1 + (1− α ) ρ2

also pass through the end points of the curves belonging to ρ1(ζ) and ρ2(ζ). If α = 1,
then ρα(ζ) = ρ1(ζ), if α = 0, then ρα(ζ) = ρ2(ζ), if 0 < α < 1, then the curve of
ρα(ζ) lies between that of ρ1(ζ) and ρ2(ζ).

The area A(α) of the surface assigned by ρα(α, ζ) can be analytically expressed as
a fairly complicated definite integral. Instead of using this integral, we numerically
calculated the surface area for some values of α, and then plotted the results.

Figure 6 shows a typical plot of A(α). In this case co-ordinates ζ of the deep points
of the curves have the same sign, however, plots belonging meridians with deep points
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that lie at values of ζ with different signs show the same characteristics. The plots
clearly show that meridians at α = 1 result in local minima of surface areas, and at
α = 0 in their local maxima. Hence, meridians ρ1(ζ) can be stable solutions, but
ρ2(ζ) are always unstable ones.

It may cause difficulties to explain that at certain negative values of α the com-
puted surface area gets lower than the minimum at α = 1. The reason may be that
the combined meridians do not always characterize surfaces with a physically realistic
surface. If the meridian intersects the axis of rotation, between the points of intersec-
tion the integral takes into account a negative surface area. However, the plots of the
meridians show that in some cases the area of the combined surface can get smaller

A(  )

A1

A2

-0.5 0.0 0.5 1.0 1.5

α

α

Figure 6. The plot of A(α)

than the local minimum before this intersection happens. To clarify this unexpected
result, an individual analysis of the extreme properties of the surfaces was performed.

Secondly, we consider a variation of different functions.

The extreme property of the meridians ρ1(ζ) and ρ2(ζ) can be individually in-
vestigated by a numerical variational analysis. For that purpose we have to choose
functions which take zero values at the boundaries like

δρ = ζ (ζB − ζ) ,

δρ = sin

µ
π ζ

ζB

¶
,

δρ = cosh

µ
ζ − ζB

2

¶
− cosh

µ
ζB
2

¶
,

and to use them to vary the meridians and the surfaces. By adding ε δρ to functions
ρ1(ζ) and ρ2(ζ) we can numerically calculate the surface area

A(ρ1) + δA(ρ1) = A(ρ1 + ε δρ),

A(ρ2) + δA(ρ2) = A(ρ2 + ε δρ)

for different values of ε, then plot the results in a common co-ordinate system.

Figure 7 shows some characteristic results of the analysis made in this way. On
the left hand-side of Figure 7 the variation of the surface area is shown for a pair of
meridians fitting the same boundary points. Plots A1 and A2 clearly show that both
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A(ρ1) and A(ρ2) have local extreme values at ε = 0. That is, both A(ρ1) and A(ρ2)
are extremals of the numeric variational problem, because their first order variation
is zero. On the other hand, A(ρ1) has a local minimum and A(ρ2) also has a local
maximum at ε = 0, which means, their second order variations are differently signed.
This difference indicates different extreme properties: the surface which belongs to ρ1
is a stable minimum surface, while the other is unstable.

A(  )

A1

1 2=2

ε A(  )ε

ε ε

A AA

Figure 7. Variation of surface areas

On the right-hand side of Figure 7 the variation of the surface area is shown which
belongs to coinciding meridians ρ1 = ρ2. In this case both the first and second order
variations are zero and the surface assigned by the meridians is at the limit of the
stability.

The plots again show that the condition stated by equation (2.4) for axisymmetric
minimum surfaces is not a global minimum condition. It can be met by surfaces which
are locally minimum surfaces and also by surfaces which are not minimum surfaces
at all. Moreover, it may happen that the area of the varied surface is smaller than
that of the minimum surface.

5. Connection with the areas of the boundary rings

If we neglect the small effect of gravity, the shape of soap films stretched between
concentric circular boundary rings is an annular plate, which turns into a catenoid
shaped minimum surface if the planes of the boundary rings get separated. Exper-
iments with such soap films can be used to check the results of the above analysis.
Sometimes they show an interesting phenomenon: by increasing the distance of the
rings, the catenoid gets more and more laced, and at a certain distance it snaps into
two separate circular plates stretched on the two boundary rings.

This snapping is usually explained by the reasoning that the catenoid snaps into
separate circles when its area gets equal to the sum of the area of the two circles.
However, the existence of axisymmetric surfaces with a smaller area than the stable
minimum surface and also the local nature of the minimum property of minimum
surfaces give rise to serious doubts about the tenability of that reasoning.
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Our results can also be used to settle this problem. The area of the catenoid
surfaces generated by equation (3.1) can be analytically expressed as

A (ζB, β) =
2π

cosh2 β

ζBZ
0

cosh2 (ζ · coshβ − β) dζ coshβ =

=
π

cosh2 β

·
sinh 2 (ζB · coshβ − β)

2
+ (ζB · coshβ − β)

¸
and A(ζB, β) can be matched with the sum of the area of the boundary rings

AR(ζB, β) = π

·
cosh2 (ζB · coshβ − β)

cosh2 β
+ 1

¸
Parameters, when A(ζB, β) = AR(ζB , β), specify pairs of coordinates ζB and ρB of
boundary circles of our interest
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Figure 8. The envelope of global minima

In Figure 8 a continuous line represents the boundary points of those meridians for
which the area of the stable minimum surface is equal to the sum of the areas of their
boundary circles. The first (and everywhere conservative) estimate of the envelope is
also plotted (dashed line). The figure shows that the two curves permit solutions of
the rotationally symmetric minimum surface problem, where the area of the minimum
surface is larger than the sum of area of the boundary circles.

The continuous line can also be considered as an envelope. If the points within the
continuous line are connected to the point (0,1) by chain-curves we obtain minimum
surfaces with globally minimum surface area.

6. Conclusions

The analysis has shown that the differential equation for the meridian of axisymmet-
ric minimum surfaces cannot be solved for arbitrary values of the boundary radii and
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if a solution can be found, also a dual solution exists, unless the two solutions coin-
cide. It means that in typical cases, besides the minimum surface, another surface
of revolution exists, which also develops uniform self-stress state. Both surfaces are
catenary surfaces, but the area of the minimum surface behaves as a minimum, while
that of the dual solution behaves as a maximum against small variations. In case of
coinciding solutions only stationarity can be found.

Both minimum and maximum properties are of local nature. It is quite obvious for
the surface maximum, but more or less unexpected for the minimum surface, because
in case of appropriate values of radii and distance of boundary circles, the area of
the minimum surface is larger than that of properly chosen surfaces fitting the same
boundaries. The analysis has also clarified under what conditions the area of the
minimum surface is the global minimum of the problem.

These results make it clear why does the stability of our iterative method depend
both on the geometrical data, and on the mesh of the discretizing net and why does
it also exhibit the same sensibility in any minimum surface problems characterized
by two or more boundary curves. Similarly to the catenary surface problem, the
existence of these surfaces is also conditioned by the data of the boundaries and the
solutions are multiple solutions as well. The closer the multiple solutions are to each
other the poorer the stability of the iterative solution is. Refinement of the mesh does
not only improves the solution but also makes the iteration more stable because it
decreases the chance to drop from a convergent path into a closely divergent one.
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