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Abstract

The flavor asymmetry of the nucleon sea, i.e., the excess of dd̄ quark-antiquark pairs

over uū ones in the proton, can be explained by several different models; therefore,

it is a challenge to discriminate these models from each other. We examine in this

Letter three models: the balance model, the meson cloud model, and the chiral

quark model, and we show that these models give quite different predictions on the

sea quark contents of other octet baryons. New experiments aimed at measuring the

flavor contents of other octet baryons are needed for a more profound understanding

of the non-perturbative properties of quantum chromodynamics (QCD).
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1 Introduction

The composition of hadrons is one of the central issues of hadronic physics and

can be handled in two languages, i.e., in terms of quark-gluon degrees of free-

dom and/or meson-baryon degrees of freedom. Practically, hadron structures

are found to be nontrivial and more complicated than naive expectations from

constitute quark models. The complications are mainly due to the important

contributions from the non-perturbative behaviors of quantum chromodynam-

ics (QCD). For instance, as quark-antiquark pairs are created perturbatively,

the sea quarks generated by leading twist evolution, i.e., from gluon split-

ting, are necessarily flavor-symmetric and CP-invariant. Nevertheless, various

experiments discovered a notable flavor asymmetry between uū and dd̄ quark-

antiquark pairs of the proton [1,2,3,4,5,6,7]. This flavor asymmetry of the

nucleon sea is attributed to the non-perturbative properties of QCD, and cur-

rently, it is still a big challenge to perform calculations from the first principle

of QCD.

From experimental aspects, the uū and dd̄ asymmetry was observed from the

violation of the Gottfried sum rule, i.e., SG =
∫ 1
0 [(F

p
2 − F n

2 )/x]dx = 1/3 [8],

where F p
2 and F n

2 are the structure functions of the proton and neutron, re-

spectively, and x is the Bjorken variable, which measures the fraction of mo-

mentum carried by the parton compared to that of the hadron in the infinite

momentum frame (or on the light-cone). In 1991, the New Muon Collabora-

tion (NMC) utilized muon-induced deep-inelastic scattering (DIS), and found

that SG = 0.240 ± 0.016 [1] (re-evaluated as 0.235 ± 0.026 [2]). The result

is significantly below the prediction of 1/3 from naive constitute quark con-

siderations. This was attributed to the flavor asymmetry between d̄ and ū

sea quarks [9]. While the DIS process detects the difference between d̄ and ū

quarks, the Drell-Yan process can measure their ratios [10,11]. Later, the de-

viation was confirmed by the NA51 Collaboration (ū/d̄ = 0.51±0.04±0.05 at

x = 0.18 [3]) from muon pair production through the Drell-Yan process in p+p

and p + d reactions. More accurate ratios of x-dependent ū/d̄ were obtained

by the Fermilab E866/NuSea Collaboration [4,5,6], using the 800 GeV pro-

tons interacting with liquid hydrogen and deuterium targets. The HERMES

Collaboration at DESY used an independent method, through semi-inclusive

DIS [7], and obtained results consistent with that of the NMC, NA51, and

E866/NuSea experiments. Thus, the flavor asymmetry of light quarks is well

established (for reviews, see Refs. [12,13]).

From theoretical aspects, the violation of the Gottfried sum rule could be

alternatively accounted for, at least partially, by isospin symmetry breaking

between the proton and the neutron at the parton level [14,15]. To disentangle
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two possible scenarios, W± creation, which is free of the p-n isospin symmetry

breaking effect, is suggested [16,17,18]. Moreover, it has the opportunity to

extract d̄/ū ratios at large x and very high Q2, through the measurements of

ratios of W+, W− production cross-sections in p + p collisions at RHIC and

LHC [19]. In this Letter, we assume that the isospin symmetry between the

proton and the neutron holds.

To describe partons inside hadrons, the light-cone presentation is a natural

language [20]. In the light-cone Fock-state language of bound states [21,22,23],

the hadronic eigenstate of QCD Hamiltonian is expanded on the complete set

of color-singlet quark-gluon eigenstates,

|h〉 =
∑

i,j,k,l

ci,j,k,l|{q}, {i, j, k}, {l}〉 , (1)

where {q} represents the valence quarks of the hadron |h〉; i is the number

of quark-antiquark uū pairs; j is the number of dd̄ pairs; k is the number of

gluons; and {l} denotes other heavier flavors (s, c, b, and t).

It is worthy to mention that the quarks and gluons in the Fock states are

the “intrinsic” partons of hadrons, since they are non-perturbatively multi-

connected to valence quarks [24,25]. They are different from the “extrinsic”

partons generated from QCD hard bremsstrahlung or gluon splitting as part of

the lepton scattering interaction. The “extrinsic” sea quarks and gluons only

exist for a short time, ∼ 1/Q; in contrast, the “intrinsic” sea quarks and gluons

exist over a relatively long lifetime within hadronic bound states. Partons

measured at certain Q2 include both “intrinsic” and “extrinsic” contents. Since

“extrinsic” partons are generated without association with flavor structure, the

light flavor sea quark asymmetry mainly originates from “intrinsic” partons

and is practically Q2-independent or slightly Q2-dependent [12,13].

The initial distributions of nucleon sea flavors are not required to be symmetric

because the nucleon state itself is not CP-invariant. It is crucial to understand

the role of the “intrinsic” parton distributions of hadrons, since they set the

boundary conditions for QCD evolution. Theoretically, there are many phe-

nomenological models that can account for the flavor asymmetry of the nucleon

sea, e.g., meson cloud models [26,27,28,29,30,31,32,33,34,35,36], chiral quark

models [37,38,39,40,41,42,43,44], and statistical models [45,46,47,48,49]. Be-

sides the u and d flavors, the strange flavor of the nucleon sea has been also

extensively studied [25,42,43,44,50,51,52,53,54].

While different models give fairly good descriptions of the current data, mea-

surable differences exist among their predictions, especially when other mem-

bers of octet baryons other than nucleons are considered [55]. The quark flavor
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and spin distributions, as well as the probabilities to probe them experimen-

tally, are discussed for Λ0 [56,57] and Σ± [58,59,60,61]. Since Λ0 is charge-

neutral and its lifetime is short, it is hard to accelerate it as an incident beam

or use it as a target. Fortunately, various Λ0 fragmentation processes can be

used to uncover quark distributions [55,56,57]. As for Σ, Drell-Yan experi-

ments with Σ beam on protons and deuterium can be carried out to detect

quark distributions [55,58,59,61].

To examine model-dependent predictions explicitly, in this Letter, we calcu-

late the sea contents of octet baryons in each of the different frameworks of

the balance model, meson cloud model, and chiral quark model. We present

the different predictions of these models numerically, for convenience, when

comparing the experiments. We expect new experiments to discriminate the

models from each other and to provide a deeper and more profound under-

standing of the flavor structure of hadrons as well as the non-perturbative

behaviors of QCD.

2 The balance model

The detailed balance model [45,46,48] and the balance model [47], which are

free from any parameters, were proposed to look into the statistical effects

of the nucleon and to search for the origin of dd̄ and uū asymmetry. It was

found that the detailed balance model generates d̄ − ū ≃ 0.124, while the

balance model gives d̄ − ū ≃ 0.133. It is a big surprise that both models

provide a remarkable agreement of their predictions of dd̄ over uū with the

E866/NuSea result of 0.118±0.012 [4,5,6], without any parameters. Assuming

equal probability for every energy configuration of each n-parton Fock state,

one can get x-dependent parton distribution functions as well [46]. The method

was also extended to pions [62] and the nucleon spin structure [63].

The main idea of the balance model is rather simple and intuitive. It takes

the proton as a bag of quark-gluon gas in dynamical balance, where partons

keep combining and splitting through processes such as q(q̄)⇔ q(q̄)g, g ⇔ qq̄,

and g ⇔ gg. The model starts from the valance quark structure of the proton

without any parameters, even the QCD color coupling constant of αs. In this

picture, while dd̄ and uū sea quark-antiquark pairs are produced by gluon

splitting with equal probability, the reverse process, i.e., the annihilation of

antiquarks with their quark partners into gluons, is not flavor symmetric due

to the net excess of u quarks over d quarks in the proton. As a consequence, ū

quarks have a larger probability to annihilate than d̄ quarks, hence bringing

an excess of d̄ over ū.
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Table 1

Sea contents of octet baryons in the balance model.

Valance quark Hadron ū d̄ d̄− ū g

uud p 0.337 0.470 0.133 1.099

uds Λ0 0.469 0.469 0.000 1.095

uds Σ0 0.469 0.469 0.000 1.095

uus Σ+ 0.334 0.744 0.410 1.090

uss Ξ0 0.466 0.742 0.276 1.087

From Eq. (1), it is easy to see that the probability of finding a hadron in the

Fock state |{q}, {i, j, k}, {l}〉 equals to ρi,j,k,l = |ci,j,k,l|2, which satisfies the

normalization condition
∑

i,j,k,l

ρi,j,k,l = 1 . (2)

In principle, we reasonably assume that the basic property of the ensemble of

the proton does not change with time. As for the detailed balance model, it

is presumed that any two nearby quark-gluon Fock states should be balanced

with each other [45,48]. We ignore heavier quarks at first. The channels from

|{uud}, {i, j, k}〉 to |{uud}, {i, j, k−1}〉 are ug (2+i)×k−−−−→ u, ūg
i×k−−→ ū, dg

(1+j)×k−−−−−→
d, d̄g

j×k−−→ d̄, and gg
C2

k−→ g; thus,

|{uud}, {i, j, k}〉 (3+2i+2j)×k+C2
k−−−−−−−−−−→ |{uud}, {i, j, k − 1}〉 , (3)

where C2
k = k(k−1)/2 and the number above the arrow is the possible number

of the channel. Inversely, we have

|{uud}, {i, j, k}〉 3+2i+2j+k−1←−−−−−−−− |{uud}, {i, j, k − 1}〉 . (4)

The detailed balance condition requires

ρi,j,k × [(3 + 2i+ 2j)× k + C2
k ] = ρi,j,k−1 × (3 + 2i+ 2j + k − 1) . (5)

Similarly,

ρi,j,0 × [i× (i+ 2)] = ρi−1,j,1, ρi,j,0 × [j × (j + 1)] = ρi,j−1,1 . (6)

Eqs. (2, 5, 6) provide a complete set to solve the “intrinsic” structure of the

proton [45].

However, there exist some inconsistent points, which are attacked when a more

general principle, named the balance principle, is adopted [47]. The balance
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principle demands that each Fock state should be balanced with all of its

nearby Fock states, not only one Fock state. It induces a set of linear equa-

tions. After including Eq. (2), we can determine the parton contents of the

proton uniquely as well. For more details, see Ref. [47], which also introduced

a method to include heavier quarks.

The procedure used for the proton is also workable for other hadrons, and the

results for all members of octet baryons, derived from the balance principle, are

listed in Table 1. The u-d isospin symmetry among octet baryons is preserved

in our balance model. Thus, for the neutron n and hyperons Σ− and Ξ− (not

listed in the table), we can immediately obtain their parton contents through

u-d isospin symmetry, e.g., ūn = d̄p, uΣ−

= dΣ
+

.

3 The meson cloud model

Sullivan [26] displayed that virtual meson-baryon states directly contribute to

the nucleon structure. Later, Thomas [27] demonstrated the relevance of the

pion cloud for sea quark distributions, treating SU(3) symmetry as breaking in

the nucleon sea. Further, several authors included ω meson [35], σ meson [36],

as well as pions and kaons [26,27,28,29,30,31,32,33,34]. We now refer to these

models as meson cloud models. However, in our calculation, only pions, which

contribute to structure functions most significantly due to their lightest mass,

are considered. For the same reason, only baryons in the octet and decuplet

states are taken into account in this Letter.

The proton has virtual states such as πN and π∆. Here we write its wave-

function as follows [13],

|p〉 →
√
1− a− b |p0〉+

√
a



−
√

1

3
|p0π0〉+

√

2

3
|n0π

+〉




+
√
b





√

1

2
|∆++

0 π−〉 −
√

1

3
|∆+

0 π
0〉+

√

1

6
|∆0

0π
+〉



 ,

where the subscript “0” denotes the bare part, or equivalently speaking, where

only valence quarks are involved; the coefficients inside the brackets are from

isospin couplings [64]; a and b are weight factors for states from the baryon

octet and decuplet states, respectively, satisfying

a > 0, b > 0, a + b < 1 . (7)
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Table 2

Expressions of sea contents of octet baryons in the meson cloud model. The numbers

inside the brackets are typical values when a commonly used relation, a = 2b [13],

is adopted.

Hadron ū d̄ d̄− ū

p 1/6a + 2/3b (0.130) 5/6a + 1/3b (0.260) 2/3a − 1/3b (0.130)

Λ0 1/2a + 1/2b (0.195) 1/2a + 1/2b (0.195) 0 (0.000)

Σ0 a+ 1/2b (0.325) a+ 1/2b (0.325) 0 (0.000)

Σ+ 1/4a + 1/4b (0.098) 7/4a + 3/4b (0.553) 3/2a + 1/2b (0.455)

Ξ0 1/6a + 1/6b (0.065) 5/6a + 5/6b (0.325) 2/3a + 2/3b (0.260)

We impose another constraint,

a > b , (8)

considering the fact that baryons in the decuplet state are heavier than those

in the octet state; thus, they are suppressed.

From the wavefunction of the proton, we get the d̄ and ū contents directly,

d̄ =
5

6
a+

1

3
b , (9)

ū =
1

6
a+

2

3
b . (10)

As for d̄-ū asymmetry, the NMC experiment gave d̄− ū = 0.148± 0.039 [1,2],

while the E866/NuSea Collaboration reported d̄ − ū = 0.118 ± 0.012 [4,5,6]

and the HERMES Collaboration obtained d̄ − ū = 0.16 ± 0.03 [7]. They are

illustrated in Fig. 1 in the shaded area, light colored area, and dark colored

area, respectively. For convenience, we adopt d̄ − ū = 0.130 in our follow-

ing calculations,; thus, the three experimental results are all satisfied with

errors considered. Thereafter, by substituting Eq. (9) and Eq. (10), we reach

a relation of a and b, as

d̄− ū =
1

3
(2a− b) = 0.130 , (11)

which will later be used extensively as an experimental constraint.

After combining the constraints, i.e., Eqs. (7, 8, 11), we can set down the

relation between a and b, as well as the boundary, as

b = 2a− 0.39, a ∈ (0.195, 0.390) , (12)

which is shown in Fig. 1 as the segment CE.

7



0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

 

 

b

a

a+b=1

2a+b=1

a=b

C
D

E

F

O
G

H

K

E866/NuSea

HERMES

NMC
Adopted

Fig. 1. Determinations of parameters a and b in the meson cloud model. The dash–

dotted lines limit a and b to the bottom triangle according to Eqs. (7,8,13): △OFG

for nucleons, Λ, Ξ, and △OHK for Σ. The shaded area, light colored area, and dark

colored area are results from NMC [1,2], E866/NuSea [4,5,6], and HERMES [7],

respectively. The heavy line represents the scope of parameters we ultimately adopt

in our calculations: the segment CE for nucleons, Λ, Ξ, and the segment DE for Σ.

Further, within the same framework, we also explicitly write down the wave-

functions for Λ0, Σ0, Σ+, and Ξ0 ,

|Λ0〉 →
√
1− a− b |Λ0

0〉+
√
a





√

1

3
|Σ+

0 π
−〉 −

√

1

3
|Σ0

0π
0〉+

√

1

3
|Σ−

0 π
+〉





+
√
b





√

1

3
|Σ∗+

0 π−〉 −
√

1

3
|Σ∗0

0 π0〉+
√

1

3
|Σ∗−

0 π+〉


 ,

|Σ0〉 →
√
1− 2a− b |Σ0

0〉+
√
a





√

1

2
|Σ+

0 π
−〉 −

√

1

2
|Σ−

0 π
+〉



+
√
a |Λ0

0π
0〉

+
√
b





√

1

2
|Σ∗+

0 π−〉 −
√

1

2
|Σ∗−

0 π+〉


 ,
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Table 3

Numerical results of sea contents of octet baryons in the meson cloud model.

Hadron ū d̄ d̄− ū

p (0.033, 0.325) (0.163, 0.455) 0.130

Λ0 (0.098, 0.390) (0.098, 0.390) 0.000

Σ0 (0.195, 0.501) (0.195, 0.501) 0.000

Σ+ (0.049, 0.164) (0.341, 0.839) (0.293, 0.675)

Ξ0 (0.033, 0.130) (0.163, 0.650) (0.130, 0.520)

|Σ+〉 →
√
1− 2a− b |Σ+

0 〉+
√
a





√

1

2
|Σ+

0 π
0〉 −

√

1

2
|Σ0

0π
+〉



+
√
a |Λ0

0π
+〉

+
√
b





√

1

2
|Σ∗+

0 π0〉 −
√

1

2
|Σ∗0

0 π+〉


 ,

|Ξ0〉 →
√
1− a− b |Ξ0

0〉+
√
a



−
√

1

3
|Ξ0

0π
0〉+

√

2

3
|Ξ−

0 π
+〉





+
√
b



−
√

1

3
|Ξ∗0

0 π0〉+
√

2

3
|Ξ∗−

0 π+〉


 .

Through the same procedure, we derive the d̄ and ū contents inside the above

baryons. The expressions of these results in terms of a and b are listed in

Table 2.

One should caution that a new constraint,

a > 0, b > 0, 2a+ b < 1 (13)

should replace Eq. (7) for Σ. Thereafter, the former constraint, the segment

CE in Fig. 1, is replaced by the segment DE for Σ. Equivalently, Eq. (12)

changes into

b = 2a− 0.39, a ∈ (0.195, 0.348) . (14)

From Table 2 and the corresponding constraints, Eq. (12) for nucleons, Λ, Ξ,

and Eq. (14) for Σ, we finally arrive at numerical results for the d̄ and ū sea

quarks, as shown in Table 3.
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Table 4

Sea contents of octet baryons in the chiral quark model.

Hadron ū d̄ d̄− ū

p 7/6w = 0.228 11/6w = 0.358 2/3w = 0.130

Λ0 w = 0.195 w = 0.195 0.000

Σ0 w = 0.195 w = 0.195 0.000

Σ+ 1/3w = 0.065 5/3w = 0.325 4/3w = 0.260

Ξ0 1/6w = 0.033 5/6w = 0.163 2/3w = 0.130

4 The chiral quark model

In the chiral quark model, the mesons are emitted by valence quarks [37,38,39,40,41,42,43,44]

instead of baryons in the meson cloud model. The u and d flavors of hadrons

can be read as

|u〉 →
√
1− w |u0〉+

√
w



−
√

1

3
|u0π

0〉+
√

2

3
|d0π+〉



 ,

|d〉 →
√
1− w |d0〉+

√
w



−
√

2

3
|u0π

−〉+
√

1

3
|d0π0〉



 ,

where w is a weight factor indicating the probability of emitting pions. At a

first approximation, the strange quarks are assumed to be highly suppressed

(i.e., no emissions) because of their heavier mass. The above expressions are

equivalent to

u→
(

1 +
w

6

)

u+
5w

6
d+

w

6
ū+

5w

6
d̄ , (15)

d→
(

1 +
w

6

)

d+
5w

6
u+

w

6
d̄+

5w

6
ū . (16)

For the proton |uud〉, we have

d̄− ū =
11

6
w − 7

6
w =

2

3
w . (17)

Again, we adopt the experimental constraint of d̄ − ū = 0.130, as discussed

previously, thereby making w = 0.195. The analytical results together with

the numerical results for octet baryons are listed in Table 4.
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5 Discussion

In order to get a physical understanding of hadron structure, and to explain

experimental data, people have suggested many phenomenological models for

hadrons in terms of quark-gluon degrees of freedom and meson-baryon degrees

of freedom. Here we considered three candidate models in their simple versions,

and accomplished an extensive study of the sea contents for octet baryons. The

results are listed in Tables 1, 2, 3, and 4.

The meson cloud model of simple version only presents wide ranges for its pa-

rameters, due to our simple consideration of obvious constraints. However, to

compare between models more conveniently, we introduce another commonly

used relation between parameters a and b [13],

a = 2b . (18)

Using this relation, together with Eq. (11), we can determine a and b straightly,

as

a = 0.26 , b = 0.13 . (19)

The results for this special case are listed in Table 2 within the brackets.

Therefore, the fluctuations of octet baryons into meson-baryon states con-

tribute a + b ∼ 39% for nucleons, Λ, Ξ, and 2a + b ∼ 65% for Σ, which are

rather significant.

The predicted results of the three models, together with the above typical

case, are illustrated in Fig. 2. The horizontal axis is the integrated number of

d̄ and ū contents. The dark marks and lines stand for the d̄ quarks, while the

light marks and lines represent the ū quarks. The horizontal lines stand for the

ranges predicted by the meson cloud model. The squares, crosses, and circles

are predictions of the balance model, a typical case of meson cloud model with

a = 2b, and the chiral quark model, respectively.

In Fig. 2, we see many differences among the models. The balance model, for

most of the time, gives the maximum sea contents for the d̄ and ū quarks,

especially for d̄ inside the proton, Λ0, Ξ0, and ū inside the proton, Λ0, Σ0,

Ξ0. As for Σ+ and Ξ0, the balance model presents a remarkably large ū sea,

compared to other models. Also worthy of mentioning, the balance model can

predict gluons as well, as shown in Table 1. If we just consider the a = 2b

case to stand for the meson cloud model, it is found that with the number of

strange quarks increasing, the sea contents predicted from the meson cloud

model become larger related to the chiral quark model, albeit always smaller

than the balance model. For Λ0 and Σ0, three models all give a symmetric sea,

and no d̄ and ū asymmetry is predicted; this can be used to experimentally
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Fig. 2. Sea contents predicted by three models for five baryons. The horizontal

axis is the integrated number of the d̄ and ū contents. The dark marks and lines

stand for the d̄ quarks, while the light marks and lines represent the ū quarks.

The horizontal lines stand for the ranges predicted by the meson cloud model. The

squares, crosses, and circles are predictions for the balance model, a typical case of

meson cloud model with a = 2b, and the chiral quark model, respectively.

test the robustness of all three models. Very tiny ū sea quarks are predicted

for Σ+ and Ξ0, except by the balance model; thus, this also provides a window

to discriminate models from each other.

6 Summary

Flavor structure, in terms of quark-gluon degrees of freedom or meson-baryon

degrees of freedom, is of great interest among the hadronic society, mainly

due to the nontrivial and complicated contents of sea quarks, e.g., dd̄ and

uū asymmetry, originating from multi-connected, non-perturbative quantum

chromodynamics (QCD). Because there calculations still remain difficult when

the perturbative assumption falls down, many phenomenological models are

raised to account for the experimental results. However, their predictive powers

appear successful at some places while not so satisfactory at other places;

hence, it is hard to decide which one is better at describing the flavor content

of hadrons.

As suggested, new domains of Λ physics and Σ physics could provide plentiful

opportunities to discriminate models from each other and to search for the
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more profound nature of hadronic physics. While nucleons have been studied

extensively both experimentally and theoretically, other hadrons still need

more investigation.

In this Letter, we present an extensive study on the sea contents of octet

baryons based on the balance model, meson cloud model, and chiral quark

model. Numerical results are given explicitly, and these results can be used to

distinguish models from each other once relevant experiments become avail-

able. The difference between models is significant; hence, new experiments

aimed at determining the sea content of other members of octet baryons can

open windows to test different scenarios of the sea content of baryons.
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