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Abstract

In this article, we propose an identification scheme which is based on the two combi-
natorial problems Multivariate Quadratic equations (MQ) and Isomorphism of Polyno-
mials (IP). We show that this scheme is statistical zero-knowledge. Using a trapdoor for
the MQ-problem, it is possible to make it also identity-based, i.e., there is no need for
distributing public keys or for certificates within this scheme.

The size of the public keys and the communication complexity are within the range of
other non-number-theoretic identification schemes. In contrast to MQ*-IP, these schemes
do usually no permit identity-based public keys.

1 Introduction

In an identification scheme, there are two conflicting goals: On the one hand, a prover
wants to convince a verifier of its identity. On the other hand, he does not want to give
the verifier the ability to impersonate as himself. This means especially that the prover
cannot reuse the same information several times. If this were allowed, the verifier V
could record this information, e.g., a password, and reply it against another verifier V.
One solution for this problem are identification schemes which offer the “zero-knowledge”
property. This idea has been introduced by Goldwasser, Micali and Rackoff [GMRS5].
In a nutshell, a zero-knowledge protocol does not reveal more information than the fact
that a prover knows a specific information. In particular, the information itself is not
revealed.

In addition, Shamir introduced the idea of “identity based” cryptosystems [Sha84].
The overall idea is to have public key systems without the need of certified public keys.
Instead, each user knows a common parameter with some hidden internal structure. This
hidden trapdoor makes it possible for a central authority CA to compute private keys for
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all users. In this setting, the public key is based on some publicly available information,
e.g., the eMail-address of each user.

As we will see below, it is possible to combine both ideas, i.e., to obtain a public
key identification scheme where the public keys are based on some publicly available
information. One possible application is access control to a building: all users are issued
smart-cards. The unique number of each card serves as the public identity of the user.
Each access-point only stores the common system parameter. The private key is computed
by the department which provides the users with cards. This way, there is no need for
certificates as the validity of the public key is guaranteed by the construction of the
scheme.

1.1 Related Work

There has been much work in the area of identification schemes. A special stress has
been laid on schemes which use number-theoretic assumption, e.g., factorisation or elliptic
curves. See [PBOT03, Sec. 8] for a state-of-the-art overview. In particular, the security
requirements for such schemes are identified as 289 for the security of the whole scheme
and 2732 for the impersonation probability for one run of the protocol. We will use both
bounds in this paper.

The focus in this paper are schemes which use others than number-theoretic assump-
tions. Possible (and also practical) schemes from this class are the “Permuted Kernel
Problem” (PKP) from Shamir [Sha89], “Constrained Linear Equations” (CLE) [Ste94]
and “Syndrome Decoding” [Ste93, Ste96], both from Stern, and the “Permuted Percep-
tron Problem” (PPP) by Pointcheval [Poi95, PP03]. They are all based on N'P-complete
problems.

1.2 Achievement

In this article, we propose an identification scheme which combines the two combinato-
rial problems Multivariate Quadratic equations (M Q) and Isomorphism of Polynomials
(IP). The hardness of both problems is well-established (cf Sec. 3). In fact, the M Q-
problem is N'P-complete [GJ79, p. 251]. The problem of finding the isomorphism of
polynomials equations (IP) has been shown to be as hard as the graph isomorphism
problem [PGC98b].

To the knowledge of the authors, there is only one other identification scheme, not
based on number-theoretic assumptions, which can derive the public keys from the users’
identities, namely the syndrome decoding scheme (SD) from Stern.

The scheme proposed in this paper is practical, i.e., both its computation and its com-
munication complexity is comparable with other schemes known so far (see Section 5.3).
In addition, we prove its security by showing that it is zero-knowledge (Section 2.2).

1.3 Outline of this Paper

The remainder of the paper is organised as follows: after clarifying the notation, we will
move on to a description of the protocol, both in its original version and in its identity-
based form. For both, we show zero-knowledge and its security related to the M Q- and
the IP-problem. Section 3 contains a cryptanalysis of the schemes proposed and gives



lower bounds of security. The next section concentrates on optimisations of the protocol
presented in Section 2. In Section 5, we use the results of the previous sections to obtain
instances of the protocol and compare them with the protocols described in Section 1.1.
The paper concludes with Section 6.

1.4 Notation

Within the next sections, we will use the following notation: let F be a finite field with
q := |F| elements. Let E be an extension field over the ground field F. This extension
field E is generated by the irreducible polynomial i(t) of degree n := 9i(i). The degree
of the extension field E over the ground field F is also n. Moreover, let S € AGL,,(F) be
an affine transformation. The transformation S can be written as S(x) = Mgz + vy for
an invertible matrix Mg € F"*™ and a vector vy € F™. Finally, let A be a system of m
polynomial-equations in n variables, i.e., A consists of m polynomials of the form

ai(z1,. .., Tn) = VijetiTr + Bijr; + oy

for 1 <i <m,1 < j,k <nand ;B 7%,k € F. Moreover, we denote the set of all
quadratic polynomials in n variables by Q(F[x; . ,]), i.e.,

OF[z1,.n]) = {ai(z1,....2n)}

where the polynomials a; are defined as above with all possible values for a;, 3; j,7i jr € F
(constant, linear, and quadratic terms, respectively).

2 The Basic Schemes
2.1 The original IP scheme

In this section, we give a concise overview of the original isomorphism of polynomials
(IP) scheme of Patarin [Pat96, Sec. 18]. It uses the difficulty of finding a transformation
S € AGL,(F) such that two given vectors of polynomials A, B € [Q(F[x1,. ,])]" satisfy
the equation B= A0 S.

The private key k of the prover P consists of the affine transformation S, i.e., k := S.
The public key K consists of two vectors of polynomials A and B, i.e., K = (A, B).

The corresponding protocol works as follows: in a precomputation step, the prover P
chooses a transformation S’ €p AGL,(F) and computes the vector C := Ao S’. After
this, there are three interactions between the prover and the verifier:

1. The prover P sends the verifier V the vector C.
2. The verifier V tosses a coin ¢ € {0, 1} and sends the result to the prover P.
3. The prover P sends the transformation S € AGL,(F).

b = 0: the prover sends S := 5.
b = 1: the prover sends S := S~ 10 5.



First, the verifier tests if the transformation S is affine. Then, depending on c, the verifier
V checks whether one of the following equations is satisfied:

b = 0: C;Aog.
b=1: C;Bog.

The verifier V accepts if this check is successful. A dishonest prover P’ can trick a verifier
V with probability % See [Pat96, PGCI8b] for this fact and a more detailed description
of the original IP scheme. In both papers, there is also a version called “IP with two
secrets”. See Section 3.1 for a comparison of these two schemes.

The IP scheme has three major drawbacks. First, the size of the public key is rather
large as it consists of vectors of quadratic polynomials. Second, there is no way known for
this scheme to use identity-based public keys K. Finally, the communication complexity
is quite bad, too, as we need to transfer vectors consisting of quadratic equations plus
affine transformations. The first two issues will be addressed in sections 2.2 and 2.3, the
last in Section 4.2.

2.2 MQ-IP: Extending IP with MQ

In the previous section, we used the IP-problem to obtain an identification scheme. In this
section, we combine it with the problem of finding a solution for a multivariate quadratic
system of equations, i.e., the MQ-problem. In fact, the M Q-problem is NP-complete
(cf [GJT9, p. 251] and [PGI7, Appendix]| for a detailed proof). In addition, there is strong
empirical and theoretical evidence [Pat96, CKPS00, FJ03], that it is also hard on average
— even with an embedded trapdoor — and hence can be used as basis for a secure public
key crypto system.

Using the definition of Q(F[z;,.. »]) from Section 1.4 we can define a whole system of
polynomial equations as

ai(z1,...,x,) = 0,
ng(F[-rl,,n]) =

am(xlv" . 7xn) =0

with quadratic polynomials a; € Q(F[z1,. ,]). For given A € Q& (F[z1,. »]), we are
interested in a vector X € F" such that the equation a;(X) = 0 holds for all polynomials
a; € A. In fact, for randomly chosen polynomials a;, this is exactly an instance of the
MQO-problem with m equations in n variables.

Under the assumption that P # NP, this problem is one-way: for a given vector
X € F™, we can construct m polynomials a; (see below) satisfying the corresponding
equations. However, the reverse process, i.e., to obtain the vector X for a given system of
equations A is difficult. To construct a system A for given for given X, the prover picks
a vector X €p F" and a system of equations A €p Q& (Flx1,. n]). After evaluating
the quadratic and linear terms (i.e., v; j xxjz; and B; ;x; resp.), he chooses the constant
terms «; such that a;(X) = 0 is satisfied. As a randomly chosen system of equations A
behaves like a random function, and the vector X has been chosen at random as well,



the distribution of the constants «; is the same as if they had been chosen at random in
the first place.

After this observation, we move on to the corresponding protocol. Let the private
key k of the prover P be the vector X € F", i.e., k := X. The public key K consists of
three components: two systems of equations A, A € Q& (F[z1,.. »]) such that A(X) =0,
A= AoS for some S € AGL,(F) and a solution of the second system X € F™, i.e.,
A(X) =0, and hence, K = (A, A, X).

In a precomputation step, the prover P selects at random a transformation S €pg
AGL,,(F). He computes B := Ao S. After this, the interactive scheme works as follows:

1. The prover P sends the verifier V the system B.
2. The verifier V tosses a coin ¢ € {0,1} and sends the result to the prover P.
3. Depending on the coin ¢, the prover P sends

b = 0: the transformations S.
b = 1: a solution X’ := S71(X) of the system B .

Depending on ¢, the verifier V checks if one of the following equations is satisfied:

?
b=0: 8= AoS. Moreover, the verifier tests S € AGL,(F), ie., if S is an affine
transformation.

2

b = 1: B(X')=0.
As in the original IP-scheme, the success-probability for a dishonest prover is %
We now show that the following scheme is in fact “complete”, “sound” and “zero-

knowledge” (cf [MvOV96, Sec. 10.4] and [Gol02]).

2.2.1 Completeness

Here we prove that the protocol above is in fact complete, i.e., given an honest prover
P and an honest verifier V, the prover is able to persuade the verifier that he knows the
secret X € F™. In case ¢ = 0, the prover sends the transformation S and the verifier

checks if B = Ao S. This equation is true due to the construction of the system of
equations B. In the case ¢ = 1, the prover sends X’ and the verifier checks if

B(X')=(A0S)o(STHX))=A(X)=0
Hence, the above protocol is complete.

2.2.2 Soundness

Next we show that the protocol is sound, i.e., the existence of an adversary which can
succeed with probability > (%)T implies the existence of a knowledge-extractor. Here, the



constant r denotes the number of rounds the above protocol is repeated. The following
proof is inspired by [Ste94].

Assume that there exists a probabilistic polynomial-time adversary which is accepted
with probability > (%)T + € by an honest verifier V. This implies that there exists a
probabilistic polynomial-time machine M which extracts with overwhelming probability
the secret X from this adversary.

To prove this statement, we consider the tree Y (w) of all 2" possible questions of the

verifier V. The adversary’s random tape w is fixed. Denote
d := Pr(Y(w) has a node with two children)

Consider the case § < e. Then, the probability of the adversary’s success is lower than
()" + e the term (3)" comes from the case where Y (w) has no node with two children
and e from the other cases. Thus § > €. Resetting the adversary a total of 1/§ times, we
find an execution tree with a vertex having two children with probability 1 — (1 — §)/?,
i.e., basically 1 if the process is repeated a few times with different random tapes. In this
context, a node with two children means that we know for a pair (A, B) € Q& (Fz1,... »])
both the transformation S € AGL,(F) and a solution X’ € F" such that B(X’) = 0 and
B = AoS. Hence we can compute Ao (S(X')) = (BoS™ 10 S)(X') = B(X') =0, i.e., we
found a solution X := S(X’) for the MQ-problem A(X) = 0.

Therefore, using M, we extracted the secret X from the adversary. But the existence
of such a machine M violates our intractability assumption about the M Q-problem.
Thus, the above protocol is sound.

2.2.3 Zero-Knowledge

Finally, we show that the MQ-IP protocol is zero-knowledge, i.e., the prover does not
release information during the run of the protocol. We prove statistical zero-knowledge
[Gol02, Sec. 3.3.3|, i.e., the output of a simulator is not distinguishable from the output
of a prover, even if the observer has unlimited computational power.

To construct this simulator, we need to produce different kind of objects. First, sys-
tems of equations B affine to A and second systems of equations B’ which have a solution
X' (usually, X # X'). The systems B can be produced by the simulator statistical
zero-knowledge: he picks at random an affine transformation S €p AGL,(F) and de-
rives a system B by computing B = A o S. This is exactly the same as for the prover,
i.e., a sequence of systems of equations (Bj,...,B)) for some A € N produced by the
prover has the same statistical properties as both the simulator and the prover choose
the corresponding affine transformations S in the same way.

The same is true if the simulator want to produce an equation B'(X’) = 0, i.e., with
a known solution. In this case, the simulator picks at random an affine transformation
S’ €p AGL,(F) and computes B’ = AoS’. Affine transformations form a group, therefore,
they are closed under composition. As A = Ao S for some affine transformation S, the
output distribution of the simulator is the same as for the prover. In addition, we have
AX) =0, 1ie., B(X') =0 for X' = X 0 §'~!, hence, the simulator knows a solution X’
of the system B'.



After these preliminaries, we can construct the simulator, i.e., a probabilistic poly-
nomial Turing machine which builds communication tapes with a distribution indistin-
guishable from the real ones.

The simulator chooses an affine transformation S € AGL,(F) at random. Indepen-
dently, it flips a coin ¢ €r {0,1}. Depending on ¢ it computes

b=0: B=Ao0S. It outputs (B,0,S5) on the communication tape.

b=1: B= A0S and X' = S~(X). It outputs (B,1, X’) on the communication tape.

These communication tapes follow the same statistical distribution as the tapes of the
communication between the prover and the verifier (see above). Therefore, the M Q-IP
protocol is statistical zero knowledge.

2.3 Identity Based Schemes M Q*-IP

To make our identification scheme identity based, we need another observation: to obtain
a vector a € F™, the user chooses the quadratic and linear terms «; j x, 3;; € IF, a vector
X € F™ and compute the corresponding « (cf Sec. 2.2). However, it is also possible to
keep the 7; j x, 3;,; fixed for all users and pick only X € F" at random to obtain a vector
a € F™ as a public key for each user. The security of the scheme does not change as
we see with the following reduction: given an MQ-problem A(X) = 0 for unknown X,
we pick a vector X’ € F" at random and compute the corresponding o/ € F™ such that
A'(X") = 0. Now assume that this knowledge gives an advantage in finding the original
X € F". If such an algorithm existed, it would solve all M Q-problems — which is clearly
a violation of the intractability assumption of the M O-problem. Therefore, it is save
for us to keep the quadratic and linear terms -; ;x, 3; ; fixed and change only the vector
X € F* — and hence the vector a € F™.

As the system of equations A is now a system parameter, it is possible to embed a
trapdoor into it. A central authority CA knowing this trapdoor is able to compute the
secrets X € F™ for given vectors a € F™ i.e., especially for such « that depend on the
identity of the prover P. This way, we obtain an identity-based identification-scheme.
The rest of the scheme is as described in Section 2.2. Moreover, the security prove for
MQ*-IP is the same as for M Q-IP. We only have to replace our intractability assumption
for M@ by the intractability assumption of the corresponding trapdoor.

One possible trapdoor is the C*~~-system [PGC98a]. We call the corresponding
scheme C-IP. Its security is investigated in Section 3.4. Concrete schemes built on this
trapdoors can be found in Section 5.

Generally speaking, any M Q-trapdoor which permits a signature scheme can be used
for the M Q*-IP identification scheme. However, due to space limitations in this paper,
we will only investigate C-IP here.

3 Cryptanalysis

For the cryptanalysis of our scheme, we can dwell on various work done for other purposes,
especially about the difficulty of the IP-problem [PGC98b, GMS02] and the difficulty of
the M Q-problem with a trapdoor [Pat95, FJO03].



In this section, we will first look on the previously known results on the difficulty
of the IP-problem. In particular, we will compare the complexity of algorithms for the
IP-problem with two secrets (IP-2), and with one secret (IP-1). Secondly, we will study a
birthday attack against M Q*-IP and some security implications of provers cooperating to
cheat. Finally, we will identify which parameters for the M Q-problem with a trapdoor,
i.e., for the C*~~-problem, meet the security requirements stated in Section 1.1.

3.1 Comparison between IP-1 and IP-2

In Section 2.1, we have introduced the problem “Isomorphism of Polynomials with One
Secret” (IP-1) where we have two systems of equations A, B € Q&,,(F[z1,. ,]) and A =
B o S for some affine transformation S € AGL,(F). In contrast, the “Isomorphism of
Polynomials with Two Secrets” (IP-2) has two affine transformations S € AGL,,(FF) and
T € AGL,,(F). Here, the transformation S is in effect a change in the variables (as
for IP-1) while the transformation 7" also mixes the resulting equations in an affine way.
So the relation between the two systems of equations becomes A = T o Bo S. As in
IP-1, the public key is K := (A, B). However, the private key is different as it is now
k := (S,T). An identification scheme based on IP-2 has to be adapted accordingly. See
[Pat96, PGCI8b] for a more detailed description of IP-1 and IP-2.

In [PGC98b], Patarin, Goubin, and Courtois present various algorithms for the crypt-
analysis of the IP-problem with one or two secrets. For IP-2 and S, T not affine but linear,
the most powerful attack described in [PGC98Db] is the so-called “combined power attack”.
It exploits the birthday paradox. Using n®1©(¢™?) memory and n®MO(¢"/?) compu-
tations, the attack is able to solve IP-2. If we have S € AGL,(F) and T' € AGL,,,(F) being
affine transformations, we have to find the corresponding vectors vs € F" and v; € F™
first. This costs O(¢™*™). Setting m = n, the overall attack will require n%(1)O(¢?*")
computations in total.

For IP-1, i.e., “Isomorphism of Polynomials with One Secret”, the most powerful at-
tacks known so far have been presented by Geiselmann, Meier, and Steinwandt [GMS02].
The complexity of the normal attack is O(¢*"). They also present some heuristic im-
provements — which can cut down the total computation time of the system. Although
ground fields with ¢ > 2 are to be more vulnerable than ¢ = 2, these heuristic improve-
ments seem to contribute only a constant factor and are hence with only limited impact
compared with ¢?®. We therefore identify the workload of the attack as O(g*").

To determine if we should use IP-1 or IP-2 for our scheme, we need to be careful
about the question if the transformations S,T are affine or linear. In the first case,
IP-2 is more secure, in the latter, IP-1. However, at least the transformation T must
be linear as otherwise a dishonest prover P’ would be able to cheat using the following
strategy: denote A € Q& (F[z1,. ,]) the public key of the honest prover P. First, his
dishonest counterpart P’ picks a vector X' €g F™ at random, an affine transformation
S €r AGL,(F) and the linear part of the transformation 7', i.e., an invertible matrix
Myp €r F™*™. He then computes the vector v; = —(Mp o Ao S)(X'). With the
corresponding triple (X', S, T), the cheater P’ can successfully fool a verifier V. However,
having T linear instead of affine, this attack is no longer possible. On the other hand,
the “combined power attack” has now a workload of O(q!®") and is therefore faster than



the attack of Geiselmann, Meier, and Steinwandt.

As the problem “Isomorphism with Two Secrets” (IP-2) is more vulnerable against
the attacks known so far than “Isomorphism with One Secret” (IP-1), we concentrated on
the latter while developing our scheme. However, if the need arises, it is straightforward
to change it from IP-1 to IP-2.

3.2 Birthday attack against an ID-based scheme

Any ID-based identification scheme will suffer from the following attack using the birthday
paradox: the attacker compiles a list of 1/¢™ possible public keys, i.e., vectors from F™.
After that, he evaluates the common vector of polynomials [Q(F[x; . ,])]™ by a solution-
vector X € F™ a total of /¢ times. By the birthday paradox, he will obtain approx.
one solution X; which matches one identity id;. The memory-requirements of this attack
are O(¢™/?) and the time-requirements are O(¢"™/?), too.

To withstand this attack, we need ¢™/2 to be larger than the security bound of break-
ing the whole scheme, i.e., ¢™/2 > 289,

3.3 Group of Cheating Users

As for the identity-based SD scheme of Stern [Ste96, Sec. 4.3], it is dangerous for MQ*-
IP if many users pool their secret keys. Using (n + 1) pairs (X, X) eF" and X = S’(X),
they are able to compute the affine transformation S. Using the public value Xp of the
prover P, they are now able to recover his secret key Xp.

There are several ways to cope with this problem. First, we may assume that the users
cannot access their private keys k, i.e., the k are stored in a temper-resistant device.
Second, we can pick different S €p AGL,(F) for different users and therefore obtain
different A € Q& (Flz1,..n]). As all transformations S are now different, the above
attack is no longer possible. But this solution contradicts the goal of Section 4.1 to
have small public keys. Finally, we can remove the information X € F” from the public
key of each user. The price to pay: the corresponding scheme is no longer statistical
zero-knowledge.

3.4 Parameters for the C*~~-Trapdoor

This M Q-trapdoor has been used in the two signature schemes Flash [CGP00] and
SFlash [CGP02], both submitted to [NES|. Therefore, it has been studied extensively,
cf [PBOT03, Sec. 7.4.3]. Here, we give a short overview of C*~~, see [PGC98a] for a
detailed description.

The C*~~-scheme uses a finite field F of characteristic 2 and an extension field E
of dimension n, for security reasons a prime. E is also identified with the vector-space
F”. In addition, we define a polynomial P(zx) := z* over E where A := ¢® + 1 such that
ged(¢® +1,¢g" — 1) = 1 and a € N. This way, the polynomial P(x) is a permutation.
In addition, we have two linear transformations s,t € GL,,(F). The corresponding M Q-
problem is constructed as A =t o P o s where r equations of the system of equations A
are removed. As there is an attack in O(q") [PGC98a], the number r has to be chosen
such that ¢" > 280,



In the original scheme, the two transformations s, ¢t have been affine, not linear. How-
ever, [GSBO1] describes an attack which is able to recover the constant parts of s,¢.
Therefore, it is advisable to have these two transformations linear.

Although the C*~~-scheme is a sub-class of the more general HFE-scheme, the recent
attack of Faugere and Joux against HFE [FJ03] does not apply against C*~~-schemes:
the complexity of this attack grows with the degree A\ of the private polynomial. As this
degree A is far higher in C*~~ than in HFE (here, A = 129 or 257), their attack is no
longer effective.

4 Improvements

In this section, we investigate some optimisations of the M Q-IP protocol. In particular,
we want to decrease the size of the public key and also the communication complexity.

4.1 Smaller Public Keys

As we saw in Section 2.2, it is enough to publish a vector a € F™ as a public key for a
given user and to keep the quadratic and linear terms ; ;,53;; € F fixed as a system
parameter. We will now show that this is also true for the second system of equations
A€ 98, (Flx1,..n]): let S € AGL,(IF) be an affine transformation and denote by s, € F
for 0 < k < j < n its coefficients. In this notation, the elements s1,...,s,0 denote
the coefficients of the vector vs € F™ while the other elements come from the matrix
Mg € F™".  Apply this transformation to one quadratic polynomial a;, as defined in
Section 1.4. This yields:
ai(@], ... 7)) 08 = [i112T + %2212 + . Vi + Bin@) + ..+ Binal, + i) 0 S
= via(si121 4. 51T + 81,0)2
+9i,1,2(51,1%1 + ... 81,0Tn + 51,0) (52,171 + . .. S2.0Tn + S20) + ...
+7i,n,n(5n,1xl + .. SpnTn t+ 5n,0)2 + ﬂi,l(sl,lxl + .. 81m%n + 51,0)
+.o.+ ﬁi,n(sn,lﬂfl + .. SpnTn + Sn,O) + o
= %/',1,1$% + Y10t + ..+ V;nnl“i + Bigx1 4 .+ B + o
/ /

o € F. The interesting point is that the values %{j »» B ; only depend

for some vg,j,k, ey
on the affine transformation S but not on the value «;, i.e., the constant term of the
original polynomial. Therefore, it is not only possible to have the system of equations
A € Q& (Flz1,..»]) fixed, but also the second system of equations A. The only part
which does not only depend on the affine transformation S but also on the solution
vector X € F” is the vector of constant terms & € F™. The public key of a prover
will hence consist of the triple (a,d,X ) € F™ x F™ x F™. The systems of equations
A A e Q& (Flx1,.. n]) become system parameters. The same is also true for the affine
transformation S € AGL,(F) which is known to the central authority CA only. The

corresponding scheme has therefore a far smaller public key.
4.2 Less Communication

In addition to the quite large public key size, the IP — and also the M Q*-IP-scheme
— suffer from a rather large communication complexity. In this section, we will discuss

10



possible solutions for this problem. We dwell on ideas from [Ste93, PP03].

First, we notice that for a concrete implementation, the affine transformation S is in
fact not randomly generated but pseudo-randomly generated, i.e., using a random-seed
rs of, say, 80 bits, and “expanded” using a pseudo-random function. We note that it
is not necessary for our purpose to have S generated cryptographic secure (cf [PP03,
Sec. 6.4]). However, the seed ry has to be chosen in a way that it is not possible to
obtain an earlier or later seed 7, — even if the attacker has access to any number of
seeds (75)1,...,(rs)y for some N € N, i.e., the seeds must be either truly random or
generated with a cryptographic secure random-number generator. Having a seed r,, we
can now generate the affine transformation S € AGL, (F) using the LUP-decomposition
of invertible matrices. Here, L € F" is an invertible lower triangular matrix, U € F" an
upper triangular matrix with only 1’s on its diagonal, and P a permutation of n objects.
Identifying Mg := LU P, we make sure that the matrix Mg is invertible and hence the
transformation S is affine. As a side-effect, the computation of the function S~ becomes
easier. All in all, we have replaced the communication of an affine transformation with
(n? + n) log, q bits by 80 bits.

Second, we notice that an equation e := (a = 0) for some a €r Q(F[z1,.. »]), chosen
independently from a specific solution X € F", is satisfied with probability 1/q. Moreover,
we can reduce the communication complexity by a factor of 1/m if we do not transmit the
whole system of equations B but only one of its equations. Let this equation be e. Given e
and a solution X, the verifier can easily check if e(X) = 0 holds. To make sure that prover
cannot cheat by transmitting an equation which is not affine to the original systems of
equations .4, we make use of hash-trees [Mer80]. We describe the whole protocol, which
exploits all ideas described so far, in the next section.

In order to decrease the communication complexity further, we could decrease the
number of rounds on costs of a larger public key (cf [Pat96, Sec. 18]). But as this
contradicts our goal from the previous section and will therefore not be elaborated in this

paper.
5 Actual Scheme

In this section, we describe actual instantiations of the M Q*-IP protocol, using the ideas
described in Section 4 and keeping the cryptanalysis of Section 3 in mind.

5.1 Protocol

For a concrete implementation, we assume that the two systems of equations A,A €
Q& (F[z1,. »]) are system parameters. The public key of a user only consists of the
triple (a, d,X) € F™ x F™ x F™ (cf Sec. 4.1). In addition, we will make use of a hash
function H(-), e.g., RIPEMD-160 or SHA-1 (both output 160 bit, cf [DBP96, FIP95]).
This function H(-) will also be used for bit-commitment. We use 160 bit for this purpose
as smaller values would allow attacks with the birthday paradox [GS94]

In a precomputation step, the prover P picks a random seed rs € {0, 1}8° and derives
an affine transformation S € AGL,(F), using LUP-decomposition (cf Section 4.2). He
computes B := Ao S and its solution X’ := S~1(X). In addition, he computes a hash-
tree Hp of all equations b;. Denote the root of this hash-tree with hg. Moreover, the
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prover commits himself on the solution X', i.e., computes ¢o := H(X’). After this, the
interactive scheme works as follows:

1. The prover P sends the verifier V the values (cg, ho).

2. The verifier V selects a number ¢ € {0,...,m}. The number 0 is chosen with
probability %, the other numbers are chosen with probability ﬁ

3. Depending on the number ¢, the prover P sends

¢ = 0: the seed 7, of the transformation S.

¢ # 0: the solution X', equation b, and the hash chain (h;,, ..., h;,) which authen-
ticates the equation b.

In case ¢ = 0, the verifier checks if ¢g H (rs). If yes, he computes the corresponding
affine transformation S, the system of equations B = Ao S and the corresponding hash-
tree. Finally, he checks if the root of the hash-tree, i.e., hg is the same as transmitted by
P in Step 1.

In case ¢ # 0, the verifier computes the hash of the equation b., tests the integrity of
the hash-tree and checks if b.(X') = 0 is satisfied.

There are a few comments on this scheme. First, it is computational rather than
statistical zero-knowledge: we only work with a seed rs of 80 bits, and hence cannot
generate all affine transformations S € AGL,(F) anymore. Therefore, the output dis-
tribution of B/ = Ao S and B = Ao S will be different. On the other hand, the
corresponding distribution is computational indistinguishable as we choose from a set
of 280 elements for the affine transformations S. Second, the cheating probability is no
longer 1 but rather % (cf Section 4.2). Therefore, we will need one additional round to
obtain the same impersonation probability (2732) as in the original scheme. Third, this
scheme has the additional assumptions about the one-wayness of the hash-function H(-)
and also its collision-resistance. Finally, the communication (in bits) in the worst case is
160(2+ ([logam]))+ [logy m~+ 1]+ sizeEq: the hash bits for ¢g, hg, plus the authentication
chain of the hash-tree, plus the bits for the number ¢, plus the size of one equation b,.
In the best case, we send 80 bits for the random-seed 7 instead of the hash-tree and the
equation b.. Both cases occur with probability %

5.2 16-bit and 8-bit versions

To obtain a concrete scheme, we note that the size of the public key (and also the commu-
nication complexity) profit from a larger ground-field F. In this section, we will present
two different versions of MQ-trapdoors and the corresponding identification schemes.
The first is based on a ground field of 8-bit, the second of 16-bit. All are well suited
for 8-bit microprocessors as they are based on the C*~~ trapdoor (cf Section 3.4). The
actual parameters and their effects can be found in Figure 1.

5.3 Comparison with other schemes

To compare the C-IP-schemes to other schemes, we use [PP03, Fig. 10] to derive Figure 2.
However, we have to take into account that this table assumes an impersonation level of
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| c8IP | Ci6IP

ground-field F || GF(2%) GF(2'°)
extension-field E || GF(2837) | GF(21617)
parameter \ in polynomial P(x) || 2811 41 | 21611 1]
variables n 37 17
equations m 26 12
equations removed r 11 )
public key size | K| [bits] 712 656
private key size |k| [bits] 296 272
rounds 33 33
communication [kBytes] 15.5 8.6
Size of one equation [Bytes] 741 343
Size of the M Q-problem A [kBytes| 19 4

Fig. 1: MQ-trapdoor based on C*~~ for 16 and 8 bits

Scheme PKP CLE SD PPP
3p‘5p 3p‘5p 3p‘ 5p
Matrix size 16 x 34 | 24 x 24 | 256 x 256 | 121 x 137
over the field Fos1 Fos7 o Fy
Number of Rounds 35 20 | 35 ] 20 35 48 | 35
Public key size [bits] 272 96 256 189
Private key size [bits] 141 96 512 137
Communication [kBytes] || 2.2 | 1.6 [ 2.4 | 2.0 3.6 6.3 ] 64

Fig. 2: Comparison of N"P-complete identification schemes

1076 rather than 2732 and that the overall security of the schemes has been set to 264

instead of 280, It is beyond the scope of this paper to provide a full comparison for the
same level of security of all schemes known so far.

As syndrome decoding (SD) is the only NP-scheme in this table which allows identity-
based public keys, we will concentrate on this scheme for a comparison. A description
of the identity-based version of SD can be found in [Ste96, Sec. 4.3]. We adapted
the parameters given in this paper to obtain the same level of security, i.e., 2732 as
impersonation probability and 2% for the overall security of the scheme. Hence, we had
to increase the size of several hash values to 160 and the number of rounds to 55. For the
minimal parameters suggested for the first version of the scheme (i.e., n = 512), we obtain
7.1kB as communication complexity. The second identity based version (here, n = 1024)
has 11.7kB.

If the communication complexity is critical, the first version of the SD scheme performs
slightly better than C-IP. But if the number of rounds is important, C-IP is preferable.
Using larger public keys, the figures for C-IP improve further. And finally, both SD and
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C-IP outperform the other schemes when it comes to key-distribution as both allow the
use of identity based keys.

6 Conclusions

In this paper, we proposed the new identification scheme MQ-IP. The scheme is zero-
knowledge and its security is based on two well-established security assumptions, namely
the M Q-problem and the IP-problem (cf Section 1.2).

Using a trapdoor for the M Q-problem, we were able to make the scheme identity
based. This way, it is no longer necessary to distribute public keys or to issue certificates.
By construction of the public key, the identity of the user is linked to its public key.

Using the C*~~-trapdoor, we derived a practical protocol, based on MO*-IP. The
only other NP-identification scheme known to the authors which allows identity-based
keys is the SD-scheme. Having a security-level of 280 and an impersonation probability
of 2732 in one run, the first SD protocol with trapdoor has a communication complexity
of 7.1kB, and the second 11.7kB. In contrast, C16-IP-scheme has 8.6kB. However, SD
requires a total of 55 rounds while C16-IP needs only 33.

Judging from other results concerning the implementation of the C*~~-trapdoor (cf
[ACDGO03]), we expect C-IP to be very suitable for smart-card implementations.
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