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Abstract

Baryons of the type Qqqqq̄ (where Q = c, b and q = u, d, s quarks) forming anti-decapenta

(15)-plets with spin-parity 1
2
+

are predicted on simple theoretical considerations. The lightest

members of these multiplets are explicitly exotic doublets cuuds̄, cudds̄ with mass about 2420

MeV, and buuds̄, budds̄ with mass about 5750 MeV, only 130 MeV heavier than Λc and Λb,

respectively, and thus stable against strong decays. Although the production rate is probably very

low, these remarkable pentaquarks can be looked for at LHC, Fermilab, B-factories, RHIC and

elsewhere: their signatures are briefly discussed.
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I. INTRODUCTION

In this paper, arguments are suggested in favor of the existence of exotic pentaquarks

which may well prove to be the second lightest charmed (bottom) baryons, after Λc and Λb.

Since they are light, the new baryons decay only weakly. They may have escaped direct

observation in the past because the production rate is expected to be quite low.

The arguments are based on considering baryons at large number of colors Nc. While

in the real world Nc is only three, we do not expect qualitative difference in the baryon

spectrum with the large-Nc limit. The bonus is that at large Nc baryon physics simplifies

considerably, which enables one to take into full account the important relativistic and

field-theoretic effects that are often ignored.

The relativistic approach to baryons is key to the prediction. In implies that baryons

are not just three (or Nc) quarks but contain additional quark-antiquark pairs, as it is well

known experimentally. Baryon resonances may be formed not only from quark excitations as

in the customary non-relativistic quark models, but also from particle-hole excitations and

“Gamov–Teller” transitions. At large Nc these effects become transparent and tractable.

At Nc=3 it is a mess called “strong interactions”. The hope is that if one develops a clear

picture at large Nc, its imprint will be visible at Nc=3.

The approach can be illustrated by the chiral quark soliton model [1] or by the chiral bag

model [2] but actually the arguments of this paper are much more general. Dynamics is not

considered here, which today would require adopting a model. A concrete model would say

what is the “intrinsic” relativistic quark spectrum in baryons. It may get it approximately

correct, or altogether wrong. Instead of calculating the intrinsic spectrum from a model, I

extract it from the known baryon spectrum by interpreting baryon resonances as collective

excitations about the ground state and about the one-quark and particle-hole transitions.

In Section II the key question what is the symmetry of the ground-state baryon is ad-

dressed. Arguments are presented that it is not the expected maximal possible symmetry. In

particular, SU(3) flavor symmetry is spontaneously broken even in the limit of zero current

quark masses. The two critical consequences are: (i) the intrinsic spectrum of s quarks in a

baryon is totally different from that of u, d quarks, and (ii) the observable baryon spectrum

has characteristic “rotational bands” following from quantizing the rotations of the baryon

as a whole in flavor and ordinary spaces.
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In Sections III, IV the lowest light baryon resonances both with positive and negative par-

ities are interpreted from the above viewpoint. As a byproduct, the light exotic pentaquark

Θ+ is theoretically confirmed at about 1520 MeV and shown to be a consequence of the

existence of three well-known resonances: N(1440, 1/2+), Λ(1405, 1/2−) and N(1535, 1/2−).

In Sections V, VI heavy baryons are discussed using the intrinsic quark spectrum es-

tablished from light baryons – at large Nc the intrinsic spectra are the same in light and

heavy baryons, up to 1/Nc corrections. Numerical checks show that the appropriate relations

between light and heavy baryons are reasonably satisfied even at Nc=3.

Section VII is central as an anti-decapenta (15)-plet of heavy exotic charmed (bottom)

pentaquarks is predicted there. It is explained why the lightest members of that multiplet

are relatively light and hence stable under strong decays. These pentaquarks are distinct

from anti-charmed (bottom) pentaquarks suggested previously, that are about 500 MeV

heavier.

In Sections VIII, IX certain properties of the predicted pentaquarks are discussed, in

particular possibilities to observe them experimentally.

The Appendix deals with the mathematical description of the “rotational bands” about

various intrinsic quark excitations.

II. MEAN FIELD IN BARYONS

Recently a classification of baryon resonances was suggested, according to what they

would look like if the number of colors Nc was large [3, 4]. Long experience tells us that the

large-Nc world does not differ much from the real world with Nc = 3, except for several very

special cases, and in many circumstances the 1/Nc corrections are under control [5].

At large Nc, the Nc quarks constituting a baryon can be considered in a mean (non-

fluctuating) mesonic field which does not change as Nc → ∞. Consequently, all quark levels

in the mean field are stable in Nc. All negative-energy levels should be filled in by Nc quarks

in the antisymmetric state in color, corresponding to the zero baryon number state. Filling

in the lowest positive-energy level makes a baryon. Exciting higher quark levels or making

particle-hole excitations produces baryon resonances. The baryon mass is O(Nc), and the

excitation energy is O(1). When one excites one quark the change of the mean field is

O(1/Nc) that can be neglected to the first approximation.
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The key issue is what is the symmetry of the mean field. In the chiral limit when the

strange quark mass ms is set to zero, u, d, s quarks are on the same footing, and one may

think that the mean field is maximally symmetric, that is flavor symmetric and spherically

symmetric or, in the mathematical language, invariant under SU(3)flav × SO(3)space rota-

tions. Although natural, this assumption is wrong. For unknown dynamical reasons the

maximal possible symmetry of the mean field in baryons is broken spontaneously down to

the SU(2)iso+space symmetry: the mean field is invariant only under simultaneous isospin and

compensating space rotations.

The case is analogous to heavy nuclei: For some reasons many of the large-A nuclei,

although not all, are not spherically-symmetric (as would seem natural) but have an ellipsoid

form. It means that spherical symmetry, or invariance under SO(3)space rotations, is partially

spontaneously broken in the ground state. The mean field in such nuclei is not invariant

under arbitrary rotation but only with respect to rotation about the symmetry axis of the

ellipsoid. In principle, symmetry could be broken completely, e.g. a heavy nucleus could be

a three-axes ellipsoid, or the mean field in baryons could have no symmetries at all. However

in practice this does not happen: the symmetry is broken but not completely.

The question what is the symmetry of the mean field can be answered theoretically if

full dynamics is well understood: one has to try all possible symmetry patterns and check

which of them leads to the lowest energy of the ground state. It is a quantitative question.

In the absence of a reliable dynamical theory one can, however, use phenomenological,

circumstantial evidence in favor of this or that symmetry. For example, if symmetry is

spontaneously broken one expects low-lying excitations, the (pseudo) Goldstone modes,

their number being equal to the number of broken symmetry generators.

If the broken symmetry group is compact (like SU(3)flav and SO(3)space) the energy of

the Goldstone excitations is quantized. One expects then rotation bands about the ground

state and about each one-particle and particle-hole O(1) excitation, split as 1/I where I is

the moment of inertia. For heavy nuclei, I scales as I ∼ mr2 ∼ A
5

3 whereas for the baryon

it scales as I ∼ Nc (since the baryon radius does not rise with Nc). In most of heavy nuclei

(A ≫ 1) one clearly sees rotational excitations whose splitting is much less than the O(1)

one-particle and particle-hole excitations [6]. This is a clear evidence that such nuclei are

not spherically-symmetric, otherwise there would have been no rotational bands at all.

In real-world baryons there is no spectacular separation of scales since Nc = 3 is not
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a very large number. However some SU(3) multiplets have definitely smaller splitting be-

tween themselves than others. This is an indication that certain baryon multiplets can be

interpreted as rotational states whereas others are one-particle or particle-hole excitations.

It implies, then, that the would-be SU(3)flav × SO(3)space symmetry of the mean field is

broken; the question is what is the pattern.

If the mean field is only SU(2)iso+space invariant, the quantization of the rotations needed

to restore the original SU(3)flav × SO(3)space symmetry for a ground-state baryon leads

precisely to the baryon multiplets (8, 1
2

+
) and (10, 3

2

+
) observed in Nature. It is an argument

in favor of this particular pattern of symmetry breaking. To specify the Nc behavior of the

splitting between the centers of these multiplets, one needs to generalize them to certain

prototype SU(3) multiplets at arbitrary Nc, that reduce to the octet and decuplet at Nc =

3 [7, 8]: the splitting turns out to be 3/2I1 = O(1/Nc), see the Appendix. Numerically

this splitting is 1382-1152=230 MeV, such that 1/I1 = 153MeV. The number is indeed

considerably less than the splitting from the center of the next nearest (8, 1
2

+
) multiplet

involving the Roper resonance, 1630-1152=478 MeV. In the present interpretation, the first

splitting is O(1/Nc) as due to the rotation of a baryon as a whole, whereas the second is

O(1) and is due to a one-quark excitation in the mean field [3].

I note in passing that in the non-relativistic quark model the splitting between the lowest

octet and decuplet is interpreted as due to hyperfine interaction [9]. It also behaves as

α2
sNc ∼ 1/Nc, however to fit the splitting numerically one needs to take αs ≈ 2 whereas

fits of deep inelastic scattering data and other phenomena tend to freeze αs in the infrared

at the value about 0.5. Such value would give a tiny hyperfine splitting, hinting that it

may be irrelevant. The collective quantization interpretation is, numerically, more realistic.

Indeed, an estimate of the baryon moment of inertia is I = mr2 ≈ (1GeV)·(0.5 fm)2 yielding

1/I ≈ 160MeV as needed.

Another argument in favor of the SU(2)iso+space symmetry of the mean field comes from

the fact that baryons are strongly coupled to the pseudoscalar mesons (gπNN ≈ 13). It means

that there is a strong pseudoscalar field inside baryons; at large Nc it is a classical mean field.

There is no way of writing down an Ansatz for the pseudoscalar field that would be odd with

respect to space inversion and simultaneously compatible with the SU(3)flav × SO(3)space

symmetry. The minimal extension of spherical symmetry is to write the “hedgehog” Ansatz
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“marrying” the isotopic and space axes [10]:

πa(x) =











na F (r), na = xa

r
, a = 1, 2, 3,

0, a = 4, 5, 6, 7, 8.
(1)

This Ansatz breaks the SU(3)flav symmetry. If ms =mu =md, all flavor axes are equiv-

alent, therefore writing the pseudoscalar field in this form means nothing but naming the

SU(3) axes. Analogously, the spontaneous magnetization in a ferromagnet can assume any

direction, and we can name the direction of magnetization as, say, the z direction. If there

is an external magnetic field, even infinitesimal, it sets a preferred direction such that the

spontaneous magnetization will be along it. A nonzero magnetic field is analogous to the

case of ms > mu =md when the strange direction is privileged. However, the Ansatz (1)

implies a spontaneous (as contrasted to explicit) symmetry breaking, since s quarks are

treated in a totally different way than the u, d ones, even if ms differs infinitesimally from

mu=md.

Moreover, the Ansatz (1) breaks the symmetry under independent space SO(3)space and

isospin SU(2)iso rotations, and only a simultaneous rotation in both spaces leaves (1) in-

variant. Therefore, the Ansatz (1) breaks spontaneously the original SU(3)flav × SO(3)space

symmetry down to the SU(2)iso+space symmetry. This is precisely what is needed to obtain

the correct baryon spectrum, where some excitations are large (O(1)) and some are small

(O(1/Nc)). We note that the splittings inside SU(3) multiplets can be determined as a

perturbation in ms [13].

The full list of other possible mesonic fields in baryons (scalar, vector, axial, tensor),

compatible with the SU(2)iso+space symmetry is given in Ref. [4].

III. BARYONS MADE OF u, d, s QUARKS

Given the SU(2)iso+space symmetry of the mean field, the Dirac Hamiltonian for quarks

actually splits into two: one for s quarks and the other for u, d quarks. It should be stressed

that the energy levels for u, d quarks on the one hand and for s quarks on the other are

completely different, even in the chiral limit ms → 0.

The energy levels for s quarks are classified by half-integer JP where J = L + S is the

angular momentum, and are (2J + 1)-fold degenerate. The energy levels for u, d quarks
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are classified by integer KP where K = T + J is the ‘grand spin’ (T is isospin), and are

(2K + 1)-fold degenerate.

All energy levels, both positive and negative, are probably discrete owing to confinement.

Indeed, a continuous spectrum would correspond to a situation when quarks are free at large

distances from the center, which contradicts confinement. One can model confinement e.g.

by forcing the effective quark masses to grow linearly at infinity.

According to the Dirac theory, all negative-energy levels, both for s and u, d quarks, have

to be fully occupied, corresponding to the vacuum. It means that there must be exactly Nc

quarks antisymmetric in color occupying all degenerate levels with J3 from −J to J , or K3

from −K to K; they form closed shells. Filling in the lowest level with E > 0 by Nc quarks

makes a baryon [1, 3], see Fig. 1. A similar picture arises in the chiral bag model [2].

E=0

u,d s

KP= 0

P=1/2J

... ...

+

+

Ξ
−

Ξ
−

Ξ
0

Ω
−

Ξ

Σ

∆

Σ
−

Σ
0

Σ
+

Λ

n p

Y Y

T3 T3

Y=1

(((( (((()))) ))))8,8,8,8, 10,10,10,10,1/21/21/21/2 3/23/23/23/2
++++ ++++

FIG. 1: Filling u, d and s shells for the ground-state baryon (left), and the two lowest baryon

multiplets that follow from quantizing the rotations of this filling scheme (right).

The mass of a baryon is the aggregate energy of all filled states, and being a functional

of the mesonic field, it is proportional to Nc since all quark levels are degenerate in color.

Therefore quantum fluctuations of mesonic field in baryons are suppressed as 1/Nc so that

the mean field is indeed justified.

Quantum numbers of the lightest baryons are determined from the quantization of the

rotations of the mean field, leading to specific SU(3) multiplets that reduce at Nc=3 to the

octet with spin 1
2
and the decuplet with spin 3

2
, see e.g. [14] and the Appendix. Witten’s

quantization condition Y ′ = Nc

3
[15] follows trivially from the fact that there are Nc u, d

valence quarks each with the hypercharge 1
3
[13]. Therefore, the ground state shown in

Fig. 1 entails in fact 56 rotational states. The splitting between the centers of the multiplets
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(8, 1
2

+
) and (10, 3

2

+
) is O(1/Nc), and the splittings inside multiplets can be determined as a

perturbation in ms [13].

The lowest baryon resonance beyond the rotational excitations of the ground state is the

singlet Λ(1405, 1
2

−
). Apparently, it can be obtained only as an excitation of the s quark,

and its quantum numbers must be JP = 1
2

−
[3], see transition 1 in Fig. 2.

The existence of an 1
2

−
level for s quarks automatically implies that there is a particle-

hole excitation of this level by an s quark from the 1
2

+
level. I identify this transition 2 with

N(1535, 1
2

−
) [3]. At Nc = 3 it is predominantly a pentaquark state u(d)udss̄ (although it

has also a nonzero three-quark Fock component). This explains its large branching ratio in

the ηN decay [16], a long-time mystery. We also see that, since the highest filled level for

s quarks is lower than the highest filled level for u, d quarks, N(1535, 1
2

−
) must be heavier

than Λ(1405, 1
2

−
): the opposite prediction of the non-relativistic quark model has been

always of some concern. Subtracting 1535− 1405 = 130, I find that the 1
2

+
s-quark level is

approximately 130 MeV lower in energy than the valence 0+ level for u, d quarks. This is an

important number which will be used below. The transition entails its own rotational band

discussed in the Appendix.

E=0

u,d s

KP= 0

P=1/2J

... ...

KP=0 JP=1/2
1

2
3

4
+

+

+

--

FIG. 2: The existence of the two lowest excited levels – one for the u, d quarks and another

for the s quarks – implies four resonances shown by arrows. The transitions correspond to: 1:

Λ(1405, 1/2−), 2: N(1535, 1/2−), 3: N(1440, 1/2+), 4: Θ+(1530, 1/2+). Each transition generally

entails its own rotational band of SU(3) multiplets.

The low-lying Roper resonance N(1440, 1
2

+
) requires an excited one-particle u, d state

with KP = 0+ (or 1+) [3], see transition 3. Just as the ground state nucleon, it is part of

the excited (8′, 1
2

+
) and (10′, 3

2

+
) split as 1/Nc. Such identification of the Roper resonance

solves another problem of the non-relativistic model where N(1440, 1
2

+
) must be heavier
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than N(1535, 1
2

−
). In our approach they are unrelated.

Given that there is an excited 0+ level for u, d quarks, one can put there a quark taking

it as well from the s-quark 1
2

+
shell, see transition 4. It is a particle-hole excitation with

the valence u, d level left untouched, its quantum numbers being S = +1, T = 0, JP =

1
2

+
. At Nc = 3 it is a pentaquark state uudds̄, precisely the exotic Θ+ baryon predicted

in Ref. [17] from related but somewhat different considerations. The quantization of its

rotations produces the antidecuplet (10, 1
2

+
). In our original prediction theO(1) gap between

Θ+ and the nucleon was due to the rotational energy only, whereas here the main O(1) part

of that gap is due to the one-particle levels, while the rotational energy is O(1/Nc), see the

Appendix. Methodologically, it is now more satisfactory.

In nuclear physics, excitations generated by the axial current j±µ 5, when a neutron from

the last occupied shell is sent to an unoccupied proton level or v.v. are known as Gamov–

Teller transitions [6]. Thus our interpretation of the Θ+ is that it is a Gamov–Teller-type

resonance long known in nuclear physics.

An unambiguous feature of our picture is that the exotic pentaquark Θ+ is a con-

sequence of the existence of three well-known resonances and must be light.

Indeed, the Θ+ mass can be estimated from the apparent sum rule following from Fig. 2 [3]:

mΘ ≈ 1440 + 1535 − 1405 ≈ 1570MeV. Since the N(1440) and N(1535) resonances are

broad such that their masses are not well defined, there is a numerical uncertainty in this

equation. For example, if one uses the pole positions of the resonances the equation reads

mΘ ≈ 1365 + 1510 − 1405 ≈ 1470MeV. Therefore, it is fair to say that the sum rule

predicts mΘ = 1520 ± 50MeV. This is in remarkable agreement with the claimed masses

of the Θ+ : mΘ = 1524 ± 2 ± 3MeV [18], 1537 ± 2MeV [19], 1523 ± 2 ± 3MeV [20],

1521.5± 1.5± 2.8/1.7MeV [21], 1528± 2.6± 2.1MeV [22]. For a possible explanation why

Θ+ is seen in some experiments while not observed in other see Ref. [23].

To account for higher baryon resonances one has to assume that there are higher one-

particle levels, both in the u, d- and s-quark sectors, to be published elsewhere [4].

IV. BARYON RESONANCES FROM ROTATIONAL BANDS

A filling scheme of one-particle quark levels by itself does not tell us what are the quantum

numbers of the state. The filling scheme treats u, d quarks and s quarks differently and
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therefore violates the SU(3)flav and also SO(3)space symmetries. Only the SU(2)iso+space

symmetry of simultaneous isospin and compensating space rotations is preserved. In the

chiral limit (which I assume for the time being) an arbitrary SU(3)flav rotation of the mean

field and hence of what we call u, d, s quarks does not change the energy of the state. The

same is true for the SO(3)space rotation. However, if SU(3)flav and SO(3)space rotations are

slowly dependent on time, they generate a shift in the energy of the system; it is called the

rotational energy. Being quantized according to the general quantization rules for rotations,

it produces states with definite SU(3)flav quantum numbers and spin.

Thus the original SU(3)flav×SO(3)space symmetry broken spontaneously by a ‘hedgehog’

Ansatz of the mean field, is restored when flavor and space rotations are accounted for. Each

transition in Fig. 2 generally entails “rotational bands” of SU(3) multiplets with definite

spin and parity. The short recipe of getting them is: Find the hypercharge Y ′ of the given

excitation from the number of u, d, s quarks involved; only those multiplets are allowed that

contain this Y ′. Take an allowed multiplet and read off the isospin(s) T ′ of particles at this

value of Y ′. The allowed spin of the multiplet obeys the angular momentum addition law:

J = T′ + J1 + J2 (2)

where J1,2 are the initial and final momenta of the s shells involved in the transition. (If

nonzero K shell is involved in the transition the quantization rule is more complex.) The

mass of the center of an allowed rotational multiplet does not depend on J but only on T′

according to the relation [8]

M = M0 +
C2(p, q)− T ′(T ′ + 1)− 3

4
Y ′2

2I2
+

T ′(T ′ + 1)

2I1
(3)

where C2(p, q) =
1
3
(p2 + q2 + pq) + p + q is the quadratic Casimir eigenvalue of the SU(3)

multiplet characterized by (p, q), I1,2 = O(Nc) are moments of inertia. After the rotational

band for a given transition is constructed, one has to check if the rotational energy of a

particular multiplet is O(1/Nc) and not O(1), and if it is compatible with Fermi statistics

at Nc=3: some a priori possible multiplets drop out. One gets a satisfactory description of

all light baryon resonances up to about 2 GeV, to be published separately [4].
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V. CHARMED AND BOTTOM BARYONS, THE LOWEST MULTIPLETS

If one of the light quarks in a light baryon is replaced by a heavy b or c quark, there are

still Nc−1 light quarks left. At large Nc, they form the same mean field as in light baryons,

with the same sequence of Dirac levels, up to 1/Nc corrections. The heavy quark contributes

to the mean SU(3)flav symmetric field but it is a 1/Nc correction, too. It means that at large

Nc one can predict the spectrum of the Qq . . . q (and Qq . . . qqq̄) baryons from the spectrum

of light baryons. At Nc = 3 one does not expect qualitative difference with the Nc → ∞

limit, although 1/Nc corrections should be kept in mind. I consider the heavy quark as a

non-relativistic particle having spin Jh = 1
2
. SU(4)flav symmetry is badly violated and is of

no guidance.

The filling of Dirac levels for the ground-state c (or b) baryon is shown in Fig. 3, left:

there is a hole in the 0+ shell for u, d quarks as there are only Nc − 1 quarks there, in an

antisymmetric state in color. Adding the heavy quark makes the full state ‘colorless’.

E=0

u,d s

KP=0+

P=1/2+J

... ...

c (b )

KP=1
--

--P=1/2J

?

Λ
c
(228 ) Σ

c
(2455)

Ξ
c
(2468) Ξ

c
(2576)

Ω
c
(2698)

Σ
c
( )

Ξ
c
( )

Ω
c
( )

2520

2645

2770

((((3333,,,, 1111////2222++++)))) ((((6666,,,, 1111////2222++++)))) ((((6666,,,, 3333////2222++++))))
−−−−

Y=2/3
6

FIG. 3: Filling u, d and s shells for the ground-state charmed baryons (left), and SU(3) multiplets

generated by this filling scheme (right): (3̄, 1/2+), (6, 1/2+) and (6, 3/2+).

As in the case of light baryons, the filling scheme by itself does not tell us what are

the quantum numbers of the state: they arise from quantizing the SU(3)flav and SO(3)space

rotations of the given filling scheme. Let us do it for the ground-state baryons.

First of all, we determine the hypercharge of the filling scheme: in this case it is Y ′ =

1
3
(Nc−1) since there are Nc−1 u, d quarks each having hypercharge one third. At Nc = 3

one has Y ′ = 2
3
. There are two SU(3) multiplets containing particles with hypercharge 2

3
:

the anti-triplet 3̄ (p=0, q=1) and the sextet 6 (p=2, q=0), therefore these are the allowed

multiplets, see Fig. 3, right. What are their spins?

In the 3̄ representation, there is one particle with Y ′ = 2
3
hence its isospin T ′ = 0. The

possible spin of the multiplet is found from Eq. (2) which needs to be modified to include
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the spin of the heavy quark Jh:

J = T′ + J1 + J2 + Jh. (4)

In this case J1 = J2 = 0 since s quarks are not involved, T ′ = 0, and Jh = 1
2
. Therefore, the

only possible spin of the anti-triplet is 1
2
, and parity plus. Its rotational energy is, according

to Eq. (3),

E
(3̄)
rot =

1

2I2
. (5)

In the 6 representation, there are three particles with Y ′ = 2
3
hence their isospin T ′ = 1.

From Eq. (4) one finds then that there are two sextets, one with spin 1
2
and another with

spin 3
2
. They are degenerate in the leading order as the rotational energy (3) depends only

on T ′ but not on the spin:

E
(6)
rot =

1

2I2
+

1

I1
. (6)

Thus the filling scheme in Fig. 3, left, implies three SU(3) multiplets: (3̄, 1
2

+
), (6, 1

2

+
)

and (6, 3
2

+
), see Fig. 3, right. The last two are degenerate (but the degeneracy is lifted in

the next 1/N2
c order and also from the 1/mh corrections) whereas the center of the anti-

triplet is separated from the center of the sextets by the rotational energy ∆Erot =
1
I1
. The

splitting inside multiplets owing to the explicit violation of SU(3) by the strange quark mass

is O(msNc). If ms is treated as a small perturbation, ms = O(1/N2
c ), as I claim it should [3],

the splitting inside the sextet must be equidistant to a good accuracy. Let us confront these

predictions with current data.

There are good candidates for the above ground-state multiplets: Λc(2286) and Ξc(2468)

for (3̄, 1/2+); Σc(2455), Ξc(2576) and Ωc(2698) for (6, 1/2
+); finally Σc(2520), Ξc(2645) and

Ωc(2770) presumably form (6, 3/2+), see Fig. 3, right. Strictly speaking the JP quantum

numbers of most of these baryons are not measured directly but there is not much doubt

they differ from the above assignments. Assuming they are correct, the observed parity-plus

charmed baryons form precisely those multiplets that follow from the collective quantization.

The splittings inside the two sextets are equidistant to high accuracy, confirming that ms

can be treated as a small perturbation. Were ms “not small”, there would be substantial

O(m2
s) corrections to the masses, which would violate the equidistant character of the sextets

spectrum.
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The centers of the three multiplets are at

m
(

3̄, 1/2+
)

=
2287 + 2 ∗ 2468

3
= 2408 MeV,

m
(

6, 1/2+
)

=
3 ∗ 2455 + 2 ∗ 2576 + 2698

6
= 2536 MeV,

m
(

6, 3/2+
)

=
3 ∗ 2520 + 2 ∗ 2645 + 2770

6
= 2603 MeV. (7)

Although the two sextets are not exactly degenerate, their splitting 67 MeV (an unaccounted

1/N2
c effect) is much less than the splitting between the anti-triplet and the mean mass of

the sextets, which is

2536 + 2603

2
− 2408 = 162 MeV = E

(6)
rot − E

(3̄)
rot =

1

I1
= O(1/Nc). (8)

Furthermore, this number should be compared with the moment of inertia following from

the splitting between light baryons, (10, 3
2

+
) and (8, 1

2

+
), yielding 1/I1 = 153MeV, see

Section II. The proximity of the two completely different determinations of the moment of

inertia supports the basic idea that it is reasonable to view both light and heavy baryons

from the same large-Nc perspective [24].

VI. CHARMED AND BOTTOM BARYONS, EXCITED STATES

There are higher SU(3) multiplets with Y ′ = 2
3
, however a closer inspection shows that the

corresponding rotational excitations have large O(1) energies and not O(1/Nc) as requested

for the rotational states. Therefore, those higher rotational states are, strictly speaking,

beyond control. Higher parity-plus heavy baryon resonances should arise as one-particle

and particle-hole excitations, like for light baryons.

As to parity-minus states, there are several possibilities to construct them. The first is to

excite one of the u, d quarks from the 0+ valence level to the first excited level for s quarks,

which is 1
2

−
, see Fig. 2, transition 1. It would be then an analogue of Λ(1405, 1

2

−
). There is,

however, an argument against it. The transition has Y ′ = −1
3
which is possible with the 3̄

and 6 representations but now it corresponds to T ′ = 1
2
in both cases. This difference with

ground-state multiplets has a dramatic consequence: both multiplets have anO(1) rotational

energy and hence should be discarded. [To check the analytical Nc dependence one has to

construct the prototype multiplets that reduce at Nc = 3 to those under consideration, see

the Appendix.]
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The second possible way of making parity-minus states is to excite the s quark from the

highest filled 1
2

+
level to the 1

2

−
level. It would be an analogue of N(1535, 1

2

−
), see Fig. 2,

transition 2. The quantization of rotations about this excitation along the lines presented

above, leads to three degenerate anti-triplets 2× (3̄, 1/2−), (3̄, 3/2−) and many sextets with

various spins. However, this interpretation is not too realistic either. First, there are only

two observed anti-triplets presumably with negative parity, Λc(2595, 1/2
−), Ξc(2790, 1/2

−?)

and Λc(2625, 3/2
−?), Ξc(2815, 3/2

−?). There are no candidates for the second (3̄, 1/2−)

although it may be found in future. Second, the average mass of the two Λc’s is only 300

MeV higher than the lowest charmed baryon Λc(2786.5, 1/2
+), whereas from light baryons

we expect that this excitation energy is about 1535 − 940 ≈ 600 MeV. It contradicts the

basic large-Nc concept that the one-particle levels for heavy baryons do not differ much from

those for light baryons.

Therefore at the moment I think that the most plausible construction of the lowest parity-

minus states is to assume that there is a 1− level for u, d quarks below the valence 0+ level,

see Fig. 3, left. It has to be filled in in the ground state as it has E < 0 but since there is a

hole in the valence 0+ level there is an excitation when one u, d quark from the 1− level fills

the hole in the 0+ shell. Such excitation is absent for light baryons (since the valence 0+

shell is fully filled there), therefore no previous knowledge prevents us from assuming that

the excitation energy is only 300 MeV.

The quantization of rotations about such excitation produces two degenerate anti-triplets

(3̄, 1/2−) and (3̄, 3/2−), exactly as needed for phenomenology. However, this transition

generates also a number of higher mass almost degenerate sextets with spin from 1/2 to

5/2, none of which has been observed so far. Unfortunately, experimental knowledge of the

parity-minus heavy baryons is too scarce to choose between different interpretations.

VII. CHARMED AND BOTTOM BARYONS, EXOTIC STATES

Our new observation is that there is a Gamov–Teller-type transition when the axial

current annihilates a strange quark in the 1
2

+
shell, and creates an u or d quark in the 0+ shell

(see Fig. 4, left), like in the case of the Θ+. In heavy baryons it is even more trivial as there

is a hole in the 0+ valence shell from the start. Filling in this hole means making charmed

(or bottom) pentaquarks which I name “Beta baryons” [26], B++
c = cuuds̄, B+

c = cudds̄,
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and B+
b = buuds̄, B0

b = budds̄. While the existence of Θ+ requires an excited (‘Roper’)

one-particle level, the existence of the Bc,b baryons needs only the ground-state level which

is undoubtedly there. In this sense, the Bc,b baryons are more basic than the Θ+ .

What are the SU(3) multiplets corresponding to this excitation? The hypercharge is

Y ′ = 3 ∗ 1
3
− (−2

3
) = 5

3
. The lowest SU(3) representation containing particles with Y ′ = 5

3

is the anti-decapenta (15)-plet (p = 1, q = 2) [30], see Fig. 4, right. Therefore, this is an

allowed multiplet generated by the transition. There are two particles with Y ′ = 5
3
, hence

their isospin is T ′ = 1
2
. The allowed spin is given by Eq. (4) where one puts J1 =

1
2
, J2 = 0

and obtains that the possible spins of the multiplets are 1
2
(twice) and 3

2
, parity plus. All of

them are degenerate in the leading order in 1/Nc but split in the next-to-leading order.

Thus the Gamov–Teller-type transition shown in Fig. 4, left, induces three almost degen-

erate multiplets: 2× (15, 1/2+) and (15, 3/2+).

E=0

u,d s

KP=0+

P=1/2+J

... ...

c (b )

cuudscudds

Σ
c

Λ
c

Ξ
c

cddsu cuusd

cdssu cussd

=
c

++

c

+
= (~ )B B 2420

Y=5/3

Ξ
c

3/2

Ω
c

1

FIG. 4: The arrow shows the lowest Gamov–Teller excitation (left) leading to charmed pentaquarks

forming 15 (right).

The six baryons at the corners of the hexagon in Fig. 4, right, are explicitly exotic: their

quantum numbers cannot be achieved from 3-quark states. The rest 9 baryons are crypto-

exotic: they are mainly pentaquarks but have the quantum numbers of the ground-state

baryons belonging to 3̄ and 6 representations, and can mix with them. The mixing is an

SU(3) violating effect, the mixing angle being θ = O(msN
2
c /Λ) where Λ ∼ 1GeV is a

typical scale in strong interactions. Actually the isotopic quadruplet Ξ3/2
c and the triplet

Ω1
c mix up with the corresponding members of the 3̄ and 6 only through isospin breaking,

therefore this mixing can be neglected. The mixing of Λc, Σc and Ξc leads to a shift in

the physical baryon masses, that is quadratic in ms; it is of the order of m2
sN

3
c /Λ. The

fact that baryons in the sextets are almost equidistant means that in practice the mixing is

numerically small. Probably more important is the mixing between the two (15, 1/2+)-plets
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with identical quantum numbers: one goes up, the other goes down.

VIII. MASS SPLITTING IN THE EXOTIC ANTI-DECAPENTA-PLET

The 15-plets are split in the leading O(msNc) order, as usually. The SU(3)-violating

term in the QCD Lagrangian, mss̄s, has a singlet and an octet pieces; it is the octet piece

that leads to the splitting. Since there are two ways of getting an octet in the direct product

of 15 ⊗ 15 there are two mass parameters m1,2 that determine all mass shifts in the 15.

[This is similar to the octet baryons where there are also two parameters, and distinct from

the sextet, decuplet and antidecuplet where there is only one, and consequently the masses

are equidistant.] In what follows I ignore the next-to-leading mixing of the 15-plets with

the 3̄ and 6, and of the two (15, 1/2+) between themselves.

A simple exercise in the SU(3) algebra (which I suppress) leads to the following masses

of the members of the 15-plet, for each horizontal line in Fig. 4, right, from top to bottom:

B++,+
c : M1 = M0 −m1 −m2, (9)

Σ++,+,0
c : M2 = M0 −m1 −

m2

4
,

Λ+
c : M3 = M0 +

m1

2
−

5m2

8
,

Ξ++,+,0,−
c : M4 = M0 −m1 +

m2

2
,

Ξ+,0
c : M5 = M0 +

5m1

4
−

m2

16
,

Ω+,0,−
c : M6 = M0 + 2m1 +

m2

2
,

where

M0 =
1

15
(2M1 + 3M2 +M3 + 4M4 + 2M5 + 3M6)

is the center of the 15-plet. There are 6 different masses M1−6 expressed through 3 param-

eters, therefore there are 3 relations, analogous to the Gell-Mann-Okubo relation for the

octet:

M1 +M4 = 2M2,

5M1 + 2M2 + 2M5 = 9M3,

4M1 +M2 +M6 = 6M3.
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These combinations do not depend on the SU(3)-violating parameters m1,2. However, in the

large-Nc approach m1,2 are related to the splittings inside all other multiplets: 3̄, 6, 8, 10

and 10. These relations will be considered elsewhere.

We see that the lightest is the exotic doublet Bc, and the heaviest is the exotic triplet Ω1
c .

Since we know the separation between the 1/2+ level for s quarks and the 0+ level for u, d

quarks from fitting the light baryon resonances (it is 130 MeV, see Section III), and assuming

that it does not change for heavy baryons (as it would be at Nc → ∞), we estimate the

mass of the B++,+
c pentaquarks at about m(Λc)+130MeV = 2420MeV. The corresponding

bottom pentaquarks B+,0
b mass is about m(Λb)+130MeV = 5750MeV. These are very light

masses.

The accuracy of this prediction is O(1/Nc) ∼ 150MeV but there is a 360 MeV margin

below the threshold for strong decays Bc → ΛcK (2780 MeV), Bb → ΛbK (6110 MeV). It

means that such light charmed and bottom baryons have no strong decays, which makes

their observation feasible.

Using the rule of thumb that each lower line in the SU(3) weight diagram is approxi-

mately 140 MeV heavier than the previous, the expected mass of another exotic pentaquark,

the quadruplet Ξ3/2
c , is about 2700 MeV. However, this is above the threshold for the strong

decay, for example Ξ−
c (csddū) → Ξ0

c(csd)+π−(dū), at 2610 MeV. Therefore, the exotic pen-

taquarks Ξ3/2
c can manifest themselves as extremely narrow peaks in Ξcπ mass distributions.

The same applies to the exotic Ω1
c(∼ 2850) decaying into Ωcπ (threshold at 2840 MeV).

Charmed pentaquarks have been considered by Wu and Ma in another approach [31];

however, these authors get far larger masses and in addition pentaquarks with c̄ quarks

appear almost degenerate with those made of c quarks. This is not the case in the present

scheme where anti-charmed pentaquarks are O(1), that is substantially, heavier than the

charmed ones.

How to make a qqqqQ̄ pentaquark in the present approach? Apparently the 0+ shell for

u, d quarks must be completed, and one has to put somewhere the fourth quark to make

the state ‘colorless’. The first two excited states, the 1
2

−
level for s quarks and the excited

(‘Roper’) 0+ level for u, d quarks, are rather close in light baryons, see Fig. 2. They may be

reshuffled somewhat by 1/Nc corrections as one goes from light to heavy baryons, therefore

which one is lower in heavy baryons is not clear beforehand. Assuming it is the 1
2

−
level,

the lowest anti-charmed pentaquarks are Pc̄s = uudsc̄, uddsc̄ of Gignoux et al. [28] and
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Lipkin [29]; they belong to the 3 representation and have negative parity. The allowed spins

are 1
2
(twice) and 3

2
, according to the quantization rules formulated in Sections IV and V,

see Fig. 5.

E=0

u,d s

KP=0+
P=1/2+J

... ...

c (b )
--P=1/2JKP=0+

Y=1/3
udds −c uuds−cP−cs

udss−c

- -

FIG. 5: Anti-charmed (anti-bottom) pentaquarks with negative parity; filling scheme for four

quarks (left) and the multiplets it generates (right): 2× (3, 1/2−) and (3, 3/2−).

Assuming the lowest excited state is the 0+ level, the lowest anti-charmed pentaquark

is Θc = uuddc̄ of Karliner and Lipkin [27] belonging to the 6̄ representation; it has then

spin-parity 1
2

+
, see Fig. 6. Such Θc is a direct analog of the light-quark Θ+ as it also arises

from exciting the ‘Roper’ level.

E=0

u,d s

KP=0+
P=1/2+J

... ...

c (b )
--P=1/2JKP=0+

udds −c uuds−c
P−cs

udss−c

- - uudd −c
Θc

Y=4/3

FIG. 6: Anti-charmed (anti-bottom) pentaquarks with positive parity; filling scheme for four quarks

(left) and the multiplet it generates (right): (6̄, 1/2+).

To estimate the mass of anti-charmed pentaquarks, we assume that the valence 0+ level

for u, d quarks is at about 100 MeV. It must be positive otherwise it would belong to

the vacuum state, but less than 130 MeV otherwise the 1
2

+
level for s quarks would have

positive energy. From light baryons we know that the two excited levels are about 460

MeV higher than the valence u, d shell. Therefore the lightest anti-charmed pentaquarks are

expected at about m(Λc) + 100 + 460 ≈ 2850MeV. This is slightly above the strong-decay

threshold for the Θc → D−p (2810 MeV) and slightly below the threshold for Pc̄s → Dsp

(2910 MeV). The O(1/Nc) ∼ 150MeV precision in our mass predictions does not allow at

present a definite conclusion whether the anti-charmed baryons are stable against strong

decays, which is critical for their observation. The important point is that anti-charmed
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(anti-bottom) pentaquarks are essentially (∼ 500MeV) heavier than the charmed (bottom)

pentaquarks. Allowing even for a 360 MeV uncertainty in numerics, Beta baryons Bb,c

remain below the threshold for strong decays!

IX. PRODUCTION RATE OF BETA BARYONS, AND DECAY SIGNATURES

In principle, Bb,c baryons can be produced whenever charm (bottom) is produced. How-

ever, the production rate is expected to be very low. It is affected by the general suppression

of charm (bottom) production, and by the small coalescence factor specific for the produc-

tion of objects built of many constituents. Therefore, high-energy, high-luminosity machines

like LHC have better chances.

It is very difficult to make a reliable estimate of the production rate, say, at LHC, therefore

I make a pessimistic estimate [32]. The number of charmed baryons produced in the central

rapidity range (where it is maximal) is estimated as dN/dy ∼ 10−3. For bottom quarks it

is several times less. The number of anti-deuterons produced at LHC is expected at the

level of dN/dy ∼ 10−4. Deuterons are 6 quarks so the rate gives an idea of the coalescence

factor for a 5-quark system, too. To get the lower bound for the production rate for the

pentaquark Bc baryons I am inclined to multiply the two probabilities and obtain for the

LHC
dNBc

dy
∼ 10−7, y ≈ 0. (10)

This is low enough but one looses even more when a specific channel is chosen to trigger the

decay of Bc. From the experience with ‘ordinary’ charmed baryons we know that there are

very many decay channels, the largest branching ratios being at the level of 1%. Therefore,

it is important to choose a decay channel with as low background as possible, rather than

seeking for a dominant decay mode. B++
c has a remarkable decay into pπ+ proceeding

through the Cabibbo-unsuppressed annihilation cs̄ → ud̄. However, this decay has probably

a large background even if events are selected with protons spatially displaced from the

reaction vertex. I expect that the Bc lifetime is of the same order as that of normal charmed

baryons, i.e. 10−13 s, meaning that its decay can be resolved in a vertex detector. In addition,

the in-flight Cabibbo-unsuppressed decay c → sud̄ is probably faster than annihilation.

The B++
c → s̄sd̄duuu intermediate state is interesting because it can further proceed into

ΛK+π+ or to pK+K̄0 or, via a narrow resonance φ, to pφπ+ → pK+K−π+. These channels
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may balance the branching ratio and background conditions. In fact, a similar channel

pK+K−π− has been used by E791 in the search for the neutral anti-charm pentaquark

Pc̄s [33] but with the trigger that four charged particles have the total zero charge. Here it

must be +2. The B+
c can decay into three-prong final states pφ → pK+K− or ΛK+.

Returning to the production rate (10) it should be multiplied by a typical branching ratio

10−2 to a particular observation channel, yielding a tiny observation rate of 10−9. Given

that the total number of events at LHC is 1015/year, it still promises 106 registrations of Bc

per year. Respectively, there could be as much as 105 Bb events per year. At Fermilab the

rate is 3 orders of magnitude less but still probably accessible. It is interesting that a good

fraction of Bb decays must be into Bc plus pions since the dominant weak decay is b → cdū.

Because it is the main b-quark decay, Bc can be looked for at B-factories, Belle and Babar.

As a conservative estimate of the Bc production probability I would take the product of the

probability to create a charmed baryon of comparable mass (say, Σc(2455) or Ξc(2468)), and

of the probability to create a deuteron. Searching for Bc in relativistic heavy ion collisions

may be also promising since the coalescence factor may be more favorable there.

X. CONCLUSIONS

If the number of colors Nc is treated as a free algebraic parameter, baryon resonances are

classified in a simple way. At large Nc all baryon resonances are basically determined by the

“intrinsic” quark spectrum which takes certain limiting shape at Nc → ∞. This spectrum

is the same in light baryons q . . . qq with Nc light quarks q, and in heavy baryons q . . . qQ

with Nc−1 light quarks and one heavy quark Q, since the difference is a 1/Nc effect.

One can excite quark levels in various ways called either one-particle or particle-hole

excitations; in both cases the excitation energy is O(1). On top of each one-quark or quark-

antiquark excitation there is generically a band of SU(3) multiplets of baryon resonances,

that are rotational states of a baryon as a whole. Therefore, the splitting between multiplets

is O(1/Nc). The rotational band is terminated when the rotational energy reaches O(1).

Some multiplets which differ only by spin are degenerate in the leading order but become

split in the next O(1/N2
c ) order.

In reality Nc is only 3, and the above idealistic hierarchy of scales is somewhat blurred.

Nevertheless, a close inspection of the spectrum of baryon resonances reveals certain hierar-
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chy schematically summarized as follows:

• Baryon mass: O(Nc), numerically 1200 MeV, the average mass of the ground-state

octet

• One-quark and particle-hole excitations in the intrinsic spectrum: O(1), typically 400

MeV, for example the excitation of the Roper resonance

• Splitting between the centers of SU(3) multiplets arising as rotational excitations of

a given intrinsic state: O(1/Nc), typically 133 MeV

• Splitting between the centers of rotational multiplets differing by spin, that are de-

generate in the leading order: O(1/N2
c ), typically 44 MeV

• Splitting inside a given multiplet owing to the nonzero strange quark mass: O(msNc),

typically 140 MeV.

In practical terms, the lowest light baryon multiplets (8, 1/2+) and (10, 3/2+) form the

“rotational band” about the ground state, with the splitting between their centers being

3
2I1

= 230MeV = O(1/Nc). The ground state of a heavy baryon (where one light quark is

replaced by a heavy one so that there is a hole in the light quarks valence shell) generates a

rotational band of three multiplets, (3̄, 1/2+), (6, 1/2+) and (6, 3/2+). These are precisely

the observed multiplets, and the prediction is that the two sextets are degenerate in the

leading order whereas the splitting between the 3̄ and 6 is 1
I1

= 153MeV. In reality the two

sextets are not degenerate but their splitting 67 MeV (an 1/N2
c effect) is substantially less

than the splitting between the mean mass of the sextets and the anti-triplet, which is 162

MeV, off by only 6% from the large-Nc prediction.

This coincidence encourages to look what is the lowest non-rotational excitation of a heavy

baryon in the large-Nc limit. Apparently, it is the particle-hole excitation where one takes

an s quark from the highest filled shell and puts an u or d quark at the lowest u, d valence

shell, filling in the hole there, see Fig. 4. The corresponding baryon resonances have the

(penta) quark content B++
c = cuuds̄, B+

c = cudds̄ with mass m(Λc) + 130MeV = 2420MeV

and B+
b = buuds̄, B0

b = budds̄ with mass m(Λb) + 130MeV = 5750MeV. I call them “Beta

baryons” (implying, of course, that “Alpha baryons” are the standard, mainly three-quark

baryons). Actually, Bb,c baryons are part of the larger 15 multiplet of pentaquarks, and
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there must be three of them: two with spin-parity 1/2+ and one with 3/2+. The splitting

of these 15-plets is expected to be less than 100 MeV.

The arithmetic for the masses would be exact in the limit of infinite Nc, however in reality

O(1/Nc) ∼ 150MeV corrections are allowed. However, there is still quite some room below

the threshold for strong decays, which is at 2780 MeV. Therefore, I believe that at least

one but maybe two or even three exotic pentaquarks Bb,c are stable with respect to strong

decays. This makes their discovery feasible, despite that the production rate is probably

very low, see Section IX.

I think that the presented case for the heavy Bb,c pentaquarks is even stronger that it has

been for the Θ+ pentaquark [17], whose mass I confirm here from a new, unified point of view.
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Appendix. ARBITRARY Nc PROTOTYPES OF SU(3) MULTIPLETS

The usual SU(3) multiplets, 8 and 10 for light baryons, 3̄ and 6 for charmed and bottom

baryons, arise for baryons made minimally of three quarks. If Nc is considered a free param-

eter baryons made of Nc quarks fall into other SU(3) multiplets. The aim of this Appendix

is to construct the generalizations of the ordinary multiplets to arbitrary Nc, such that the

‘prototype’ multiplets reduce to the usual ones at Nc=3.

A generic SU(3) multiplet or irreducible representation is uniquely determined by two

non-negative integers (p, q) having the meaning of upper (lower) components of the irre-

ducible SU(3) tensor T
{f1...fp}
{g1...gq}

symmetrized both in upper and lower indices and with a

contraction with any δgnfm being zero. Schematically, q is the number of boxes in the lower

line of the Young tableau depicting an SU(3) representation and p is the number of extra

boxes in its upper line, see Fig. 7.
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FIG. 7: A generic SU(3) multiplet is, on the one hand, defined by the Young tableau and on the

other hand can be characterized by quantum numbers (T3, Y ) of its members filling a hexagon in

the (T3, Y ) axes (the weight diagram).

The dimension of a representation or the number of particles in the multiplet is

Dim(p, q) = (p+ 1)(q + 1)
(

1 +
p+ q

2

)

. (A.1)

In the weight (T3, Y ) diagram where T3 is the third projection of the isospin and Y is the

hypercharge, a generic SU(3) representation takes the form of a hexagon, whose the upper

horizontal side contains p + 1 ‘dots’ or particles, the adjacent sides contain q + 1 particles,

with alternating p+1 and q+1 particles in the rest sides, the corners included – see Fig. 7.

If either p or q is zero, the hexagon reduces to a triangle.

Particles at the upper (horizontal) side of the hexagon have the hypercharge

Ymax =
1

3
p+

2

3
q (A.2)

being the maximal possible hypercharge of a multiplet with given (p, q). The number of

particles in a horizontal line with given Y is

n(Y ) =
4

3
p+

2

3
q + 1− Y. (A.3)

(possible non-unity multiplicities of particles with fixed Y, T3 are neglected here.)

To find what SU(3) multiplets are generated as rotation states from a given intrinsic

quark ground state or excitation, one has first to determine the hypercharge Y ′ by counting

the number of u, d, s quarks involved in the intrinsic quark state,

Y ′ =
1

3
(# of u, d quarks)−

2

3
(# of s quarks). (A.4)
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For example, for the ground state light baryon Y ′ = 1
3
Nc as there are Nc u, d quarks at the

ground-state valence level, Fig. 1. The number of particles with this hypercharge is related

to the isospin T ′ by the equation

2T ′ + 1 = n(Y ′) =
4

3
p+

2

3
q + 1− Y ′. (A.5)

The logic of constructing the prototype multiplets is as follows. One first finds the allowed

multiplets that contain a given Y ′ for Nc=3, and reads off the T ′ for those multiplets from

the weight diagrams. By construction, Y ′ ≤ Ymax, the highest possible hypercharge of an

allowed multiplet. Let us write Ymax = Y ′+X where X is the number of steps in the weight

diagram, by which the top of the diagram is separated from Y ′.

In principle, there are many ways how to generalize the real-world SU(3) multiplets to

arbitrary Nc. The natural one [7, 8] is to fix at all Nc the shape of the weight diagram at

its upper part, meaning fixing T ′ and X for all Nc as they appear at Nc = 3. Physically,

it corresponds to the generalization where one adds more u, d quarks to the baryon as one

increases Nc, and not s quarks. The (p, q) numbers of the prototype multiplet in question

is then found from Eq. (A.5) and from

Y ′ +X = Ymax =
1

3
p+

2

3
q. (A.6)

The rotational energy of the prototype multiplet is given by Eq. (3). Let us consider several

examples of building the prototype multiplets at arbitrary Nc. We assume Nc is odd such

that baryons are fermions.

Light baryons, ground state

In this case Y ′ = 1 at Nc=3, and the allowed multiplets are 8, 10 since these multiplets

contain a line with Y ′ = 1; for the octet there are two such particles, hence T ′ = 1
2
, whereas

for the decuplet there are four such particles, hence T ′ = 3
2
. In both cases it is the upper

line, therefore X = 0.

Generalizing these multiplets to arbitrary Nc we fix T ′ and X what they are at Nc = 3

but change Y ′ according to Eq. (A.4). For the ground state Y ′ = Nc

3
. Solving Eqs.(A.5,A.6)
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with respect to (p, q) we find the prototype ‘octet’:
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The prototype ‘decuplet’ is
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The rotational energies of the prototype “8” and “10” differ by 3
2I1

= O(1/Nc). The

term Nc

4I2
= O(1) is a common shift in this (and subsequent) examples. Higher multiplets

containing Y ′ = Nc

3
have O(1) rotational splitting and should be discarded for this reason.

The spins of these two prototype multiplets are found from the vector addition rule (2).

In this case J1 = J2 = 0, hence the spin J = 1
2
for the ‘octet’, and J = 3

2
for the ‘decuplet’.

Light baryons, 0+ → 1
2

−
transition

This is the intrinsic one-quark excitation 1 in Fig. 2. At Nc=3 it corresponds to Y ′ = 0,

and the allowed multiplets are, in principle, the singlet, the octet and the decuplet, with

T ′ = 0, (0, 1), 1, respectively, and X = 1 in all cases. The generalization changes Y ′ = Nc−3
3

.

The prototype ‘singlet’ is
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(A.9)

The spin of this ‘singlet’ is J = 1
2
.
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To build the ‘octet’ we take T ′ = 1 and X = 1 and find

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We note that the rotational energy differs from that of the ‘singlet’ by O(1). Therefore, this

multiplet, strictly speaking, is not a rotational excitation of the intrinsic state. In this case

the rotational band consists of only one state, the ‘singlet’. At Nc=3 it is the Λ(1405, 1/2−).

Light baryons, 1
2

+
→ 1

2

−
transition

This is the intrinsic particle-hole excitation 2 in Fig. 2. Y ′ is the same as for the ground

state (see above), hence the rotational band consists of ‘octets’ and ‘decuplets’. Their spins

are found from Eq. (2): the rotational band about this transition consists of the following

multiplets: (8, 1/2−) (twice), (8, 3/2−), (10, 1/2−), (10, 3/2−) (twice) and (10, 5/2−). In

the leading 1/Nc order the three octets are degenerate and so are the four decuplets.

In reality, there is indeed a well-grouped triad of octets with the approximate centers

at 1615(8, 1/2−), 1710(8, 1/2−) and 1680(8, 3/2−). Given that degeneracy is always lifted

by any additional interaction (for example by the strange quark mass) such that one state

goes up and the other goes down, this seems to be a success of the description. The

situation is worse with parity-minus decuplets. Two of them are rather well identified at

approximately 1758(10, 1/2−) and 1850(10, 3/2−). As to the rest decuplets, there is only a

one-star ∆(1940, 3/2−) and a three-star ∆(1930, 5/2−) in the PDG, which can fit into the

picture but the experimental situation is inconclusive.

Light baryons, 1
2

+
→ 0+ transition

This is the intrinsic particle-hole excitation 4 in Fig. 2. At Nc = 3 it corresponds to

Y ′ = 2, and the allowed multiplets are the 10 and the 27, with T ′ = 0, 1, respectively, and
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X = 0 in both cases. The generalization is Y ′ = Nc+3
3

. The prototype ‘anti-decuplet’ is
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The spin of this ‘10’ is J = 1
2
.

To build the prototype ‘27’-plet we put T ′ = 1 and X = 0 and find
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The spins of the ‘27’-plet are found from the vector addition law J = 1 + 1

2
, and can

be both J = 1
2
and J = 3

2
. In the leading order in 1/Nc they are degenerate but both

separated by 1
I1

≈ 150MeV from the ‘10’. In practical terms it means that there must be

an exotic triplet Θ++,Θ+,Θ0 with spins 1
2
and 3

2
about 150 MeV heavier that the singlet

Θ+ belonging to the anti-decuplet.

Heavy baryons, ground state

In this case Y ′ = 2
3
at Nc=3, and the allowed multiplets are 3̄, 6 since these multiplets

contain particles with Y ′ = 2
3
; for the 3̄ there is one such particle, hence T ′ = 0, whereas

for the 6 there are three such particles, hence T ′ = 1. In both cases it is the upper line,

therefore X = 0.

Generalizing these multiplets to arbitrary Nc we fix T ′ and X what they are at Nc=3 but

change Y ′ according to Eq. (A.4). For the ground state Y ′ = Nc−1
3

. Solving Eqs.(A.5,A.6)

with respect to (p, q) we find the prototype ‘anti-triplet’:
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Its spin is determined from J = T′ + Jh and can be only 1
2
.

The prototype ‘sextet’ is
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The spins are 1
2
and 3

2
.

Heavy baryons, 0+ → 1
2

−
transition

This is the intrinsic one-quark excitation analogous to transition 1 in Fig. 2. At Nc=3

it corresponds to Y ′ = −1
3
, and the allowed multiplets are the anti-triplet and sextet with

T ′ = 1
2
and X = 1 in both cases. The generalization is Y ′ = Nc−4

3
. The prototype ‘anti-

triplet’ is
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We see that already the lowest possible multiplet has an unacceptable O(1) energy as

compared to the ground state rotational energy. It means that from the large-Nc viewpoint

the existence of this multiplet strictly speaking cannot be claimed. One has to explain the

parity-minus heavy baryons by other means – see Section V.

Heavy baryons, 1
2

+
→ 0+ transition

This is the intrinsic particle-hole excitation depicted in Fig. 4, left. At Nc = 3 it cor-

responds to Y ′ = 5
3
, and the allowed multiplet is the anti-decapenta-plet shown in Fig. 4,

right, with T ′ = 1
2
and X = 0. Its arbitrary-Nc generalization has Y ′ = Nc+2

3
. The prototype
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‘anti-decapenta-plet’ is characterized by






































p

q

Dim

Erot

=







































1

Nc+1
2

(Nc+3)(Nc+7)
4

Nc+2
4I2

+ 3
8I1

Nc→3
−→







































1

2

15

5
4I2

+ 3
8I1

.

(A.16)

The spins of the ‘anti-decapenta-plet’ are found from the relation J = 1

2
+ 1

2
+ 1

2
. Therefore,

there are two multiplets with spin 1
2
and one multiplet with spin 3

2
, all degenerate in the

leading order in 1/Nc. Their lightest members are the exotic Beta-baryons Bb,c, the main

prediction of this paper.

[1] D. Diakonov and V. Petrov, JETP Lett. 43, 75 (1986) [Pisma Zh. Eksp. Teor. Fiz. 43, 57

(1986)]; D. Diakonov, V. Petrov and P. Pobylitsa, Nucl. Phys. B306, 809 (1988); D. Diakonov,

Eur. Phys. J. A24S1, 3 (2005), hep-ph/0412272.

[2] A. Hosaka and H. Toki, Phys. Rep. 277, 65 (1996); A. Hosaka, Phys. Lett. B571, 55 (2003).

[3] D. Diakonov, JETP Letters 90, 407 (2009) [Pisma Zh. Eksp. Teor. Fiz. 90, 451 (2009)],

arXiv:0812.3418 [hep-ph]; Nucl. Phys. A827, 264C (2009), arXiv:0901.1373 [hep-ph].

[4] D. Diakonov, arXiv:0912.3175 [hep-ph], to be published in Chinese Physics C;

D. Diakonov, lecture at the International Workshop New Frontiers in QCD - 2010, Jan. 18 -

Mar 19, Kyoto, Japan, see http://www2.yukawa.kyoto-u.ac.jp/∼nfqcd10/Slide/Diakonov.ppt;

D. Diakonov, V. Petrov and A. Vladimirov, in preparation.

[5] A. Manohar, “Hadrons in the 1/N expansion”, in: At the frontier of particle physics, M. Shif-

man (ed.), World Scientific, vol. 1, 507 (2002); Large Nc QCD 2004, Proceedings Int. Work-

shop, Trento, July 5-11, 2004, J.L. Goity, R.F. Lebed, A. Pich, C.L. Schat, N.N.Scoccola (eds.),

World Scientific (2005) 307 p.; T. Cohen, Nucl. Phys.A755, 40 (2005), arXiv:hep-ph/0501090.

[6] A. Bohr and B. Mottelson. Nuclear structure. New York: W. A. Benjamin (1998) vol. 1.

[7] Z. Dulinski and M. Praszalowicz, Acta Phys. Polon. B 18, 1157 (1987).

[8] D. Diakonov and V. Petrov, Phys. Rev D 69, 056002 (2004), arXiv:hep-ph/0309203.

[9] A. De Rujula, H. Georgi and S. Glashow, Phys. Rev. D12, 147 (1975).

[10] Historically, this Ansatz for the pion field in a nucleon appears for the first time in a 1942

paper by Pauli and Dancoff [11] (I thank A. Hosaka for bringing my attention to that early

29

http://arxiv.org/abs/hep-ph/0412272
http://arxiv.org/abs/0812.3418
http://arxiv.org/abs/0901.1373
http://arxiv.org/abs/0912.3175
http://www2.yukawa.kyoto-u.ac.jp/~nfqcd10/Slide/Diakonov.ppt
http://arxiv.org/abs/hep-ph/0501090
http://arxiv.org/abs/hep-ph/0309203


work), and reappears in 1961 in the seminal papers by Skyrme [12].

[11] W. Pauli and S.M. Dancoff, Phys. Rev. 62, 85 (1942).

[12] T.H.R. Skyrme, Proc. Roy. Soc. Lond. A 260, 127 (1961); Nucl. Phys. 31, 556 (1962).

[13] A. Blotz, D. Diakonov, K. Goeke, N.W. Park, V. Petrov and P. Pobylitsa, Nucl. Phys. A355

(1993) 765.

[14] D. Diakonov and V. Petrov, arXiv:0812.1212 [hep-ph], to be published in The Multifaceted

Skyrmion, G. Brown and M. Rho, eds., World Scientific.

[15] E. Witten, Nucl. Phys. B223, 433 (1983).

[16] B.-S. Zou, Eur. Phys. J. A35 325 (2008), arXiv:0711.4860 [nucl-th].

[17] D. Diakonov, V. Petrov and M. Polyakov, Zeit. Phys. A359, 305 (1997),

arXiv:hep-ph/9703373.

[18] T. Nakano et al. (LEPS Collaboration), Phys. Rev. C79, 025210 (2009), arXiv:0812.1035

[nucl-ex].

[19] V.V. Barmin et al. (DIANA Collaboration), Phys. Atom. Nucl. 70, 35 (2007),

arXiv:hep-ex/0603017; arXiv:0909.4183 [hep-ex].

[20] A. Aleev et al. (SVD Collaboration), Phys. Atom. Nucl. 68, 974 (2005), arXiv:hep-ex/0401024;

arXiv:hep-ex/0509033v3; arXiv:0803.3313 [hep-ex].

[21] S. Chekanov et al. (ZEUS Collaboration), Phys. Lett. B591, 7 (2004), arXiv:hep-ex/0403051.

[22] A. Airapetian et al. (HERMES Collaboration), Phys. Lett. B585, 213 (2004),

arXiv:hep-ex/0312044.

[23] Ya.I. Azimov, K. Goeke and I. Strakovsky, Phys. Rev. D76, 074013 (2009), arXiv:0708.2675

[hep-ph]

[24] The relation m(6) − m(3̄) = 2
3(m(∆) − m(N)) has been first derived in Ref. [25] from the

application of the Skyrme model to heavy baryons, an aproach being similar in spirit to the

present one.

[25] A. Momen, J. Schechter and A. Subbaraman, Phys. Rev. D49, 5970 (1994),

arXiv:hep-ph/9401209.

[26] On the naming: After I proposed the name Θ+ for the pentaquark uudds̄, its heavy coun-

terparts uuddc̄ and uuddb̄ conjectured by Karliner and Lipkin [27] have been named Θc and

Θb, respectively, according to the tradition to denote baryons with subscripts c, b when the

strange quark in a light baryon is replaced by a heavy one. Earlier pentaquarks of the type

30

http://arxiv.org/abs/0812.1212
http://arxiv.org/abs/0711.4860
http://arxiv.org/abs/hep-ph/9703373
http://arxiv.org/abs/0812.1035
http://arxiv.org/abs/hep-ex/0603017
http://arxiv.org/abs/0909.4183
http://arxiv.org/abs/hep-ex/0401024
http://arxiv.org/abs/hep-ex/0509033
http://arxiv.org/abs/0803.3313
http://arxiv.org/abs/hep-ex/0403051
http://arxiv.org/abs/hep-ex/0312044
http://arxiv.org/abs/0708.2675
http://arxiv.org/abs/hep-ph/9401209


qqqsQ̄ have been hypothesized by Gignoux, Silvestre-Brac and Richard [28] and Lipkin [29]

and denoted as Pc̄s. I propose here a very different type of pentaquarks qqqQs̄ which I suggest

to call “Beta baryons” and denote as Bc,b (calligraphic ‘Bee’ in LaTeX). The implication is

that “Alpha baryons” are mainly the three-quark ones, of course.

[27] M. Karliner and H. Lipkin, hep-ph/0307343.

[28] C. Gignoux, B. Silvestre-Brac and J.M. Richard, Phys. Lett. B193, 323 (1987).

[29] H. Lipkin, Phys. Lett. B195, 484 (1987).

[30] In SU(3), there are four representations with dimension 15: 15 (p=2, q=1), 15 (p=1, q=2),

15′ (p=4, q=0), 15
′
(p=0, q=4). The tradition is to call the multiplet anti if the number of

particles with highest hypercharge is less than those with lowest hypercharge, cf. 3 vs. 3̄, 6

vs. 6̄, 10 vs. 10. The representation 15
′
formally also contains particles with hypercharge 5

3

but it can be minimally built from four antiquarks and is thus irrelevant.

[31] B. Wu and B.-Q. Ma, Phys. Rev. D70 (2004) 034025, arXiv: hep-ph/0402244.

[32] I am indebted to Ya. Azimov, Yu. Shabelsky and M. Strikman for their input in this discussion.

[33] E.M. Aitala et al. (E791 Collaboration), Phys. Rev. Lett. 81, 44-48 (1998); Phys. Lett. B448,

303 (1999).

31

http://arxiv.org/abs/hep-ph/0307343
http://arxiv.org/abs/hep-ph/0402244

	I Introduction
	II Mean field in baryons
	III Baryons made of u,d,s quarks
	IV Baryon resonances from rotational bands
	V Charmed and bottom baryons, the lowest multiplets
	VI Charmed and bottom baryons, excited states
	VII Charmed and bottom baryons, exotic states
	VIII Mass splitting in the exotic anti-decapenta-plet
	IX Production rate of Beta baryons, and decay signatures
	X Conclusions
	Appendix Arbitrary Nc prototypes of SU(3) multiplets
	 References

