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For the three family quark flavor mixing, the best parametrization is the original

Kobayashi-Maskawa matrix, VKM , with four real parameters: three rotation angles

θ1,2,3 and one phase δ. A popular way of presentation is by the unitarity triangle

which, however, explicitly displays only three, not four, independent parameters.

Here we propose an alternative presentation which displays simultaneously all four

parameters: the unitarity boomerang.

PACS numbers:

Introduction

As is well known, there are different ways of parameterizing the Kobayashi-Maskawa[1]

quark mixing matrix, VKM . For three generations of quarks, VKM is a 3× 3 unitary mixing

matrix with three rotation angles (θ1, θ2, θ3) and one CP violating phase δ. The magnitudes

of the elements Vij of VKM are physical quantities which do not depend on parametrization.

However, the value of δ does. For example, in the Particle Data Group (PDG) parametriza-

tion [2], adopted from Ref.[3], δ ∼ 70◦, whereas the phase in the original KM parametrization

has a different value, δ ∼ 90◦. Care must be exercised in quoting a value of δ, as it depends

on how the matrix is parameterized. For example, the statement made after Eq. (11.3) in

the current edition of PDG is misleading, because it identifies, incorrectly, the phase δ of

Ref.[1].
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It can therefore be more useful to employ only physically-measurable quantities. To this

end, it has long ago been suggested that a unitarity triangle (UT) be used[4] as a useful

presentation for the quark flavor mixing, especially of CP violation[5]. Because of the unitary

nature of the KM matrix, one has
∑

i VijV
∗

ik = δjk and
∑

i VjiV
∗

ki = δjk, where the first and

second indices of Vij take the values u, c, t, ... and d, s, b, ..., respectively. For three

generations of quarks, when j 6= k, these equations form closed triangles in a plane, the

UTs. Six UTs can be formed with all of them having the same area. A(UT ), which is equal

to half of the value of the Jarlskog determinant [6] J , so that A(UT ) = 1

2
J . The inner angles

of a given UT are therefore closely related to the CP violating measure J . When the inner

angles are measured independently, their sum, whether it turns out to be consistent with

precisely 180◦, provides a test for the unitarity of the KM matrix. The unitarity triangle is

also a popular way, to present CP violation, with three generations of quarks.

A UT , however, does not contain all the information encoded in the KM matrix, VKM .

Although a UT has three inner angles and three sides, it contains only three independent

parameters. The three parameters can be chosen to be two of the three inner angles and the

area, or the three sides, or some combination thereof. One needs an additional parameter

fully to represent the physics: this is hardly surprising, as the original UT idea of [4] involved

only two, of the three, rows or columns of the 3× 3 matrix, VKM ,

An improved presentation is thus rendered desirable, in order better to present the

KM matrix, VKM , diagrammatically. In this Letter, we propose such a new diagram, the

unitarity boomerang. The boomerang diagram will contain information from not just one

UT , but two UTs, from among [7] the six possible different UTs.

Unitarity Boomerang

We indicate the KM matrix and its elements by VKM = (VKM)ij, with i = u, c, t and

j = b, s, d. The unitarity of this matrix implies ΣiVijV
∗

ik = δjk and ΣjVijV
∗

kj = δik. The

j 6= k and i 6= k cases form, respectively, the six possible different UT presentations for VKM

in a convenient two-dimensional plane. There are, thus, a total of 18 inner angles in the

six UTs. However, only 9 are different because, by Euclidean geometry, each angle, in any

particular UT , must have its equal counterpart in another, different, UT . To understand
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this simple but crucial discussion consider the two UTs defined by

UT (a) (VKM)ud(VKM)∗ub + (VKM)cd(VKM)∗cb + (VKM)td(VKM)∗tb = 0

UT (b) (VKM)ud(VKM)∗td + (VKM)us(VKM)∗ts + (VKM)ub(VKM)∗tb = 0 (1)

The inner angles defined by UT (a), in Eq. (1), are

φ1(β) = arg

(

−
(VKM)cd(VKM)∗cb
(VKM)td(VKM)∗tb

)

φ2(α) = arg

(

−
(VKM)td(VKM)∗tb
(VKM)ud(VKM)∗ub

)

φ3(γ) = arg

(

−
(VKM)ud(VKM)∗ub
(VKM)cd(VKM)∗cb

)

(2)

Correspondingly, the unitarity triangle, UT (b) in Eq. (1), defines another three inner angles

φ′

1(β
′) = arg

(

−
(VKM)us(VKM)∗ts
(VKM)ub(VKM)∗tb

)

φ′

2(α
′) = arg

(

−
(VKM)ub(VKM)∗tb
(VKM)ud(VKM)∗td

)

φ′

3(γ
′) = arg

(

−
(VKM)ud(VKM)∗td
(VKM)us(VKM)∗ts

)

(3)

It is clear that φ′

2 = φ2.

Since all the six UTs have the same area J/2, not all the different 9 an-

gles are independent. For example J = |(VKM)td(VKM)∗tb||(VKM)ud(VKM)∗ub| sinφ2 =

|(VKM)td(VKM)∗tb||(VKM)cd(VKM)∗cb| sinφ1 = |(VKM)us(VKM)∗ts||(VKM)ub(VKM)∗tb| sinφ
′

1 =

|(VKM)ud(VKM)∗td||(VKM)us(VKM)∗ts| sinφ
′

3. It can be shown that only 4 independent pa-

rameters are needed to parameterize the six UTs, and two different UTs contain the needed

4 parameters.

The values for the angles in UT (a), of Eq.(1), derived from various experiments given by

PDG are[2]: φ1 = (21.46± 0.98)◦ (derived from data on sin(2φ1) = 0.681± 0.025), and the

values for φ2 and φ3 are (88
+6

−5)
◦ and (77+30

−32)
◦, respectively. These values are consistent with

the unitarity of the KM matrix within error bars. UT (a), defined by Eq. (1), is almost a

right triangle, by virtue of φ2. Numerically, the angles φ′

1 and φ′

3 are close to φ1 and φ2,

respectively. All the angles in the two UTs are sizable, making experimental determination

of them merely challenging, while for the other four choices of UT there is always, at least,
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one small angle where measurement may be exceptionally difficult. It is therefore easiest to

work with the two UTs, UT (a) and UT (b), for practical purposes. We now show that, by

combining information from these two UTs, into the boomerang diagram 1 displayed in Fig.

1, all information needed to specify the KM matrix, VKM , can be extracted.

The unitarity boomerang is formed by locating the common angle φ′

2 = φ2 from the two

UTs of UT (a) and UT (b) at the top point A and the shortest sides, AC = |(VKM)ud(VKM)∗ub|

andAC ′ = |(VKM)ubV
∗

tb|, on the opposite sides. The other sides are: AB = |(VKM)td(VKM)∗tb|,

AB′ = |(VKM)ud(VKM)∗td|, BC = |(VKM)cd(VKM)∗cb| and B′C ′ = |VKM)us(VKM)∗ts|.

FIG. 1: The unitarity boomerang. The sides are: AC = |VudV
∗

ub|, AC
′ = |VubV

∗

tb|, AB = |VtdV
∗

tb|,

AB′ = |VudV
∗

td|, BC = |VcdV
∗

cb| and B′C ′ = |VusV
∗

ts|.

One can choose the area (J/2) of the triangles, two inner angles from one of the UTs

(for example φ1 and φ2), and a third angle from the other UT (for example φ′

3) as the four

independent parameters.

Original KM parametrization and Unitarity Boomerang

To show explicitly how the unitarity boomerang can provide all information needed to

specify the quark flavor mixing, we work with a specific parametrization, VKM , originally

given by Kobayashi and Maskawa[1]

1 The name arises from resemblance to the hunting instrument.
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VKM =











c1 −s1c3 −s1s3

s1c2 c1c2c3 − s2s3e
iδ c1c2s3 + s2c3e

iδ

s1s2 c1s2c3 + c2s3e
iδ c1s2s3 − c2c3e

iδ











. (4)

One can also work with other parameterizations, such as that adopted by the PDG. But we

find an interesting feature of the original KM parametrization which turns out to be very

convenient for the discussions of the unitarity boomerang.

Using experimental values[2] for (VKM)us = 0.2257±0.0010, (VKM)ub = 0.00359±0.00016

and (VKM)td = 0.00874+0.00026
−0.00037, one finds that s2s3 << 1. At a few percent level, one has

(VKM)tb = (c1s2s3 − c2c3e
−iδ) ≈ −c2c3e

−iδ.

Then

φ2 = arg(−
s1s2 ∗ (c1s2s3 − c2c3e

−iδ)

c1 ∗ (−s1s3)
)

≈ arg(
s1s2 ∗ (−c2c3e

−iδ)

c1 ∗ s1s3
) = π − δ. (5)

The CP violating phase δ, in this parametrization, is equal to π− φ2, to a good approxima-

tion.

The fact that φ2 = (88+6

−5)
◦ implies δ ≈ 90◦. The almost right triangle UT may in-

dicate that CP, from a deeper perspective, is maximally violated[8, 9]. Kobayashi and

Maskawa, with remarkable prescience, made an excellent choice of parametrization. We

suggest that the original parametrization of Kobayashi-Maskawa matrix be used as the stan-

dard parametrization. A parametrization suggested by Fritzsch and Xing[8], which also has

its phase close to φ2, is another alternative interesting parametrization. From the unitarity

boomerang, one can easily obtain approximation solutions for the four physical parameters.

One first notices that the relation in Eq.(5) allows one to read off the δ from the top an-

gle in the diagram. Taking the ratio, of the two sides AC/AC ′ or AB/AB′, one obtains

|(VKM)ud/(VKM)∗tb| ≈ c1 since |(VKM)tb| is very close to 1. With c1 and therefore s1 known,

the length of the sides AB and AC’ then provide the values for s2 and s3.
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One can obtain more precise solutions by using the following information from four sides,

AC = a, BC = b, AB = c and AB′ = d of the unitarity boomerang:

a = |(VKM)ud(VKM)∗ub| = c1s1s3 , b = |(VKM)cd(VKM)∗cb| = s1c2|c1c2s3 + s2c3e
−iδ| ,

c = |(VKM)tdVKM)∗tb| = s1s2|c1s2s3 − c2c3e
−iδ| , d = |(VKM)ud(VKM)∗td| = c1s1s2 . (6)

Using the above, one can express s1,2,3 and δ as functions of a, b, c and d. The KM

parameters can be determined. For example

a2 − c21 + c41

(

c2

d2
−

b2

c41 − c21 + d2

)

= 0 . (7)

Solving for the roots of the above equations, the c21 is determined up to four possible discrete

solutions. Restricting to real positive solutions with magnitude less than 1, one can further

limit the choices.

The other angles, and the phase, can be determined from the following relations

s2 =
d

c1s1
, s3 =

a

c1s2
,

cos δ =
b2/s21c

2
2 − (c21c

2
2s

2
3 + s22c

2
3)

2c1c2s2c3s3
=

c21s
2
2s

2
3 + c22c

2
3 − c2/s21s

2
2

2c1c2s2c3s3
. (8)

After applying the constraint on c22,3, that they satisfy 0 ≤ c22,3 ≤ 1, the solution is even more

restricted. Putting in numerical values, for the sides, and comparing with the approximate

solution above, we find that a unique solution survives.

Discussion

The most popular way to present the flavor mixing for three generations of quarks is by a

unitarity triangle which, however, explicitly displays only three of four independent param-

eters. To have a diagrammatical representation for the full four independent parameters,

we have proposed improvement to the unitarity boomerang.

By studying the unitarity boomerang, one can obtain all the information enshrined

in KM matrix. We find that the original parametrization by Kobayashi and Maskawa is

particularly convenient for this purpose. The angle φ2 in the boomerang diagram, to a good

approximation, can be identified with the phase δ in the original KM parametrization [1].
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The fact that φ2 = (88+6

−5)
◦ implies δ ≈ 90◦, so that this parametrization may be the right

one to study assiduously, in order to probe further the connection to the origin of, possibly

maximal, CP violation. We, therefore, humbly submit that the original parametrization of

KM matrix be kept as the standard.
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