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Abstract

This paper revisits the construction of Universal One-Way Hash Functions (UOWHFS) from
any one-way function due to Rompel (STOC 1990). We give a simpler construction of UOWHF's;
which also obtains better efficiency and security. The construction exploits a strong connection
to the recently introduced notion of inaccessible entropy (Haitner et al. STOC 2009). With
this perspective, we observe that a small tweak of any one-way function f is already a weak
form of a UOWHEF: Consider F'(x,7) that outputs the i-bit long prefix of f(x). If F were a
UOWHTF then given a random z and 4 it would be hard to come up with 2’ # x such that
F(x,i) = F(2',4). While this may not be the case, we show (rather easily) that it is hard to
sample z’ with almost full entropy among all the possible such values of z’. The rest of our
construction simply amplifies and exploits this basic property.

With this and other recent works, we have that the constructions of three fundamental
cryptographic primitives (Pseudorandom Generators, Statistically Hiding Commitments and
UOWHFs) out of one-way functions are to a large extent unified. In particular, all three con-
structions rely on and manipulate computational notions of entropy in similar ways. Pseudo-
random Generators rely on the well-established notion of pseudoentropy, whereas Statistically
Hiding Commitments and UOWHFs rely on the newer notion of inaccessible entropy.
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1 Introduction

Universal one-way hash functions (UOWHFSs), as introduced by Naor and Yung [NY], are a weaker
form of collision-resistant hash functions. The standard notion of collision resistance requires that
given a randomly chosen function f < F from the hash family, it is infeasible to find any pair
of distinct inputs z, 2’ such that f(z) = f(2’). UOWHFSs only require target collision resistance,
where the adversary must specify one of the inputs x before seeing the description of the function
f. Formally:

Definition 1.1. A family of functions Fj, = {F, : {0,1}"*) — {0,1}’”('“)}26{071};6 is a family of
universal one-way hash functions (UOWHFS) if it satisfies:

1. Efficiency: Given z € {0,1}* and x € {0,1}*®), F,(z) can be evaluated in time poly(n(k), k).
2. Shrinking: m(k) < n(k).

3. Target Collision Resistance: For every probabilistic polynomial-time adversary A, the proba-
bility that A succeeds in the following game is negligible in k:

(a) Let (x,state) « A(1%) € {0,1}"*) x {0,1}*.
(b) Choose z < {0,1}*.

(¢) Let o/ & A(state, z) € {0,1}(5).

(d) A succeeds if x # 2/ and F,(x) = F,(2').

It turns out that this weaker security property suffices for many applications. The most imme-
diate application given in [NY] is secure fingerprinting, whereby the pair (f, f(z)) can taken as a
compact “fingerprint” of a large file x, such that it is infeasible for an adversary, seeing the finger-
print, to change the file z to 2’ without being detected. More dramatically, Naor and Yung [NY] also
showed that UOWHF's can be used to construct secure digital signature schemes, whereas all previ-
ous constructions (with proofs of security in the standard model) were based on trapdoor functions
(as might have been expected to be necessary due to the public-key nature of signature schemes).
More recently, UOWHF's have been used in the Cramer—Shoup encryption scheme [CS] and in the
construction of statistically hiding commitment schemes from one-way functions [HNO™, HRVW].

Naor and Yung [NY] gave a simple and elegant construction of UOWHFSs from any one-way
permutation. Subsequently, Rompel [Rom1] gave a much more involved construction to prove that
UOWHFs can be constructed from an arbitrary one-way function, thereby resolving the complexity
of UOWHFs (as one-way functions are the minimal complexity assumption for complexity-based
cryptography, and are easily implied by UOWHFs).! While complications may be expected for con-
structions from arbitrary one-way functions (due to their lack of structure), Rompel’s analysis also
feels quite ad hoc. In contrast, the construction of pseudorandom generators from one-way func-
tions of [HILL], while also somewhat complex, involves natural abstractions (e.g., pseudoentropy)
that allow for modularity and measure for what is being achieved at each stage of the construction.

In this paper, we give simpler constructions of UOWHFs from one-way functions, based on (a
variant of) the recently introduced notion of inaccessible entropy [HRVW]. In addition, one of the
constructions obtains slightly better efficiency and security.

"More details of Rompel’s proof are worked out, with some corrections, in [Rom2, KK].



1.1 Inaccessible Entropy

For describing our construction, it will be cleaner to work with a variant of UOWHFs where there
is a single shrinking function F' : {0,1}" — {0,1}"™ (for each setting of the security parameter k)
such that it is infeasible to find collisions with random inputs. That is, an adversary A is given a
uniformly random & {0, 1}, outputs an ' such that F(z') = F(x), and succeeds if 2/ # z.2 Note
that we can assume without loss of generality that 2’ = A(z) is always a preimage of F(z) (A has
the option of outputting = in case it does not find a different preimage); we refer to an algorithm
A with this property as an F'-collision finder.

Our construction is based on an entropy-theoretic view of UOWHFs. The fact that F' is shrink-
ing implies that there are many preimages x’ available to A. Indeed, if we consider an (inefficient)
adversary A(z) that outputs 2’/ & F~1(F(x)) and let X be a random variable uniformly distributed
on {0,1}", then

H(A(X)[X) = H(X|F(X)) = n—m,

where H(:|-) denotes conditional Shannon entropy. (See Section 2for more definitional details.) We
refer to the quantity H(X|F(X)) as the real entropy of F~!.

On the other hand, the target collision resistance means that effectively only one of the preimages
is accessible to A. That is for every probabilistic polynomial-time F'-collision finder A, we have
Pr[A(X) # X] = neg(n), which is equivalent to requiring that:

H(A(X)[X) = neg(n)

for all probabilistic polynomial-time F-collision finders A. (If A can find a collision X’ with non-
negligible probability, then it can achieve nonnnegligible conditional entropy by outputting X’ with
probability 1/2 and outputting X with probability 1/2.) We refer to the maximum of H(A(X)|X)
over all efficient F-collision finders as the accessible entropy of F~!. We stress that accessible
entropy refers to an upper bound on a form of computational entropy, in contrast to the Hastad et
al.’s notion of pseudoentropy [HILL].

Thus, a natural weakening of the UOWHEF property is to simply require a noticeable gap
between the real and accessible entropies of F~1. That is, for every probabilistic polynomial-time
F-collision finder A, we have H(A(X)|X) < H(X|F(X))— A, for some noticeable A, which we refer
to as the inaccessible entropy of F.

1.2 Our Constructions

Our constructions of UOWHEFs have two parts. First, we show how to obtain a function with no-
ticeable inaccessible entropy from any one-way function. Second, we show how to build a UOWHF
from any function with inaccessible entropy.

OWFs = Inaccessible Entropy. Given a one-way function f : {0,1}" — {0,1}", we show
that a random truncation of f has inaccessible entropy. Specifically, we define F'(x,i) to be the
first ¢ bits of f(x).

To see that this works, suppose for contradiction that F' does not have noticeable inaccessible
entropy. That is, we have an efficient adversary A that on input (x,4) can sample from the set
S(xz,i) ={2": f(a')1..; = f(x)1.;} with almost-maximal entropy, which is equivalent to sampling

2Tt is easy to convert any such function F into a standard UOWHF family by defining F;(z) = F(z + z).



according to a distribution that is statistically close to the uniform distribution on S(z,7). We can
now use A to construct an inverter Inv for f that works as follows on input y: choose xg & {0,1}",
and then for ¢ = 1,...,n generate a random x; & A(zi—1,7 — 1) subject to the constraint that
f(zi)1, i = y1,. i- The latter step is feasible, since we are guaranteed that f(z;)1,.. i—1 = Y1, i—1
by the fact that A is an F-collision finder, and the expected number of trials needed get agreement
with y; is at most 2 (since y; € {0,1}, and y and f(x;) are statistically close). It is not difficult
to show that when run on a random output Y of f, Inv produces an almost-uniform preimage of
Y. This contradicts the one-wayness of f. Indeed, we only need f to be a distributional one-way
function [IL], whereby it is infeasible to generate almost-uniform preimages under f.

Inaccessible Entropy == UOWHFs. Once we have a non-negligible amount of inaccessible
entropy, we can construct a UOWHEF via a series of standard transformations.

1. Repetition: By evaluating F' on many inputs, we can increase the amount of inaccessible
entropy from 1/ poly(n) to poly(n). Specifically, we take F*(z1,...,z¢) = (F(z1),...,F(xt))
where ¢ = poly(n). This transformation also has the useful effect of converting the real
entropy of F~! to min-entropy.

2. Hashing Inputs: By hashing the input to F (namely taking F'(z,g9) = (F(z),g(x)) for a
universal hash function g), we can reduce both the real (min-)entropy and the accessible
entropy so that (F’)~! still has a significant amount of real entropy, but has (weak) target
collision resistance (on random inputs).

3. Hashing Outputs: By hashing the output to F' (namely taking F'(z,g) = g(F(z))), we can
reduce the output length of F' to obtain a shrinking function that still has (weak) target
collision resistance.

There are two technicalities that occur in the above steps. First, hashing the inputs only
yields weak target collision resistance; this is due to the fact that accessible Shannon entropy is
an average-case measure and thus allows for the possibility that the adversary can achieve high
accessible entropy most of the time. Fortunately, this weak form of target collision resistance can
be amplified to full target collision resistance using another application of repetition and hashing
(similar to [CRS™]).

Second, the hashing steps require having a fairly accurate estimate of the real entropy. This
can be handled similarly to [HILL, Roml], by trying all (polynomially many) possibilities and
concatenating the resulting UOWHFs, at least one of which will be target collision resistant.

A More Efficient Construction. We obtain a more efficient construction of UOWHFs by
hashing the output of the one-way function f before truncating. That is, we define F(z,g,i) =
(9,9(f(x))1...;). This function is in the spirit of the function that Rompel [Roml] uses as a first
step, but our function uses three-wise independent hash function instead of n-wise independent
one, and enjoys a much simpler structure.®> Our analysis of this function is significantly simpler
than Rompel’s and can be viewed as providing a clean abstraction of what it achieves (namely,
inaccessible entropy) that makes the subsequent transformation to a UOWHF much easier.

3Rompel started with the function f'(z, g1, g2) := (g2 (fo(91(2))), g1, g2), where g1 and g2 are n-wise independent
hash-functions, and fo is defined as fo(z,y,7) = (f(z),y" ", 0%).



We obtain improved UOWHF parameters over our first construction for two reasons. First, we
obtain a larger amount of inaccessible entropy: (logn)/n bits instead of roughly 1/n? bits. Second,
we obtain a bound on a stronger form of accessible entropy, which enables us to get full target
collision resistance when we hash the inputs, avoiding the second amplification step.

This construction yields better parameters than Rompel’s original construction. A one-way
function of input length n yields a UOWHF with output length O(n7), improving Rompel’s bound
of O(ng). Additionally, we are able to reduce the key length needed: Rompel’s original construction
uses a key of length O(n'?), whereas our construction only needs a key of length O(n”). If we allow
the construction to utilize some nonuniform information (namely an estimate of the real entropy of
F~1), then we obtain output length O(n®), improving Rompel’s bound of O(n). For the key length,
the improvement in this case is from O(n”) to O(n®). Of course, these bounds are still far from
practical, but they illustrate the utility of inaccessible entropy in reasoning about UOWHF's, which
may prove useful in future constructions (whether based on one-way functions or other building
blocks).

1.3 Perspective

The idea of inaccessible entropy was introduced in [HRVW] for the purpose of constructing statisti-
cally hiding commitment schemes from one-way functions and from zero-knowledge proofs. There,
the nature of statistically hiding commitments necessitated more involved notions of inaccessible
entropy than we present here — inaccessible entropy was defined in [HRVW] for interactive pro-
tocols and for “generators” that output many blocks, where one considers adversaries that try to
generate next-messages or next-blocks of high entropy. In such a setting, it is necessary to have
the adversary privately “justify” that it is behaving consistently with the honest party, and to
appropriately discount the entropy in case the adversary outputs an invalid justification.

Here, we are able to work with a much simpler form of inaccessible entropy. The simplicity
comes from the noninteractive nature of UOWHFs (so we only need to measure the entropy of a
single string output by the adversary), and the fact that we can assume without loss of generality
that the adversary behaves consistently with the honest party. Thus, the definitions here can serve
as a gentler introduction to the concept of inaccessible entropy. On the other hand, the many-
round notions from [HRVW] allow for a useful “entropy equalization” transformation that avoids
the need to try all possible guesses for the entropy. We do not know an analogous transformation
for constructing UOWHEFs. We also note that our simple construction of a function with inacces-
sible entropy by randomly truncating a one-way function (and its analysis) is inspired by the the
construction of an “inaccessible entropy generator” from a one-way function in [HRVW].

Finally, with our constructions, the proof that one-way functions imply UOWHF's now paral-
lels those of pseudorandom generators [HILL, HRV] and statistically hiding commitments [HNO™,
HRVW], with UOWHFs and statistically hiding commitments using dual notions of entropy (high
real entropy, low accessible entropy) to pseudorandom generators (low real entropy, high pseudoen-

tropy).

2 Preliminaries

Most of the material in this section is taken almost verbatim from [HRVW], and missing proofs
can be found in that paper.



2.1 Random Variables

Let X and Y be random variables taking values in a discrete universe /. We adopt the convention
that when the same random variable appears multiple times in an expression, all occurrences
refer to the same instantiation. For example, Pr[X = X] is 1. For an event E, we write X|g
to denote the random variable X conditioned on E. The support of a random variable X is
Supp(X) := {z : Pr[X = 2] > 0}. X is flat if it is uniform on its support. For an event F, we
write I(E) for the corresponding indicatory random variable, i.e. I(FE) is 1 when E occurs and is
0 otherwise.

We write || X —Y|| to denote the statistical difference (a.k.a. variation distance) between X and
Y, ie.

|X — Y| = max |Pr[X € T] — Pr[Y € T]|.
TCU

If | X — Y| <e (respectively, || X — Y| > ¢), we say that X and Y are e-close (resp., e-far).

2.2 Entropy Measures

We will refer to several measures of entropy in this work. The relation and motivation of these
measures is best understood by considering a notion that we will refer to as the sample-entropy:
For a random variable X and = € Supp(X), we define the sample-entropy of = with respect to X
to be the quantity

Hx(z) :=log(1/ Pr[X = z]).

The sample-entropy measures the amount of “randomness” or “surprise” in the specific sample x,
assuming that x has been generated according to X. Using this notion, we can define the Shannon
entropy H(X) and min-entropy Hoo (X)) as follows:

HX) = B [Hx()
HooX) o= xESTpiS(X)HX(x)

We will also discuss the maz-entropy Ho(X) := log(1/| Supp(X)|). The term “max-entropy” and
its relation to the sample-entropy will be made apparent below.

It can be shown that Hoo(X) < H(X) < Hp(X) with equality if and only if X is flat. Thus,
saying Hoo(X) > k is a strong way of saying that X has “high entropy” and Ho(X) < k a strong
way of saying that X as “low entropy”.

Smoothed Entropies. Shannon entropy is robust in that it is insensitive to small statistical
differences. Specifically, if X and Y are e-close then | H(X)—H(Y)| < e-log |U|. For example, if i =
{0,1}™ and € = £(n) is a negligible function of n (i.e., ¢ = n~*()), then the difference in Shannon
entropies is vanishingly small (indeed, negligible). In contrast, min-entropy and max-entropy are
brittle and can change dramatically with a small statistical difference. Thus, it is common to work
with “smoothed” versions of these measures, whereby we consider a random variable X to have high
entropy (respectively, low entropy) if X is e-close to some X’ with Hoo(X) > k (resp., Ho(X) < k)
for some parameter k and a negligible £.4

4The term “smoothed entropy” was coined by Renner and Wolf [RW], but the notion of smoothed min-entropy
has commonly been used (without a name) in the literature on randomness extractors [NZ].



These smoothed versions of min-entropy and max-entropy can be captured quite closely (and
more concretely) by requiring that the sample-entropy is large or small with high probability:

Lemma 2.1. 1. Suppose that with probability at least 1 — ¢ over x & X, we have Hx (z) > k.
Then X is e-close to a random variable X' such that Hoo (X') > k.

2. Suppose that X is e-close to a random variable X' such that Hoo(X') > k. Then with proba-
bility at least 1 — 2¢ over x & X, we have Hx (z) > k — log(1/e).

Lemma 2.2. 1. Suppose that with probability at least 1 — ¢ over x & X, we have Hx (z) < k.
Then X is e-close to a random variable X' such that Ho(X') < k.

2. Suppose that X is e-close to a random variable X" such that Hy(X') < k. Then with probability
at least 1 — 2 over x & X, we have Hx () < k +log(1/¢).

Think of € as inverse polynomial or a slightly negligible function in n = log(|/|). The above
lemmas show that up to negligible statistical difference and a slightly superlogarithmic number of
entropy bits, the min-entropy (resp. max-entropy) is captured by lower (resp. upper) bound on
sample-entropy.

Conditional Entropies. We will also be interested in conditional versions of entropy. For jointly
distributed random variables (X,Y) and (x,y) € Supp(X,Y), we define the conditional sample-
entropy to be Hxy(z]y) = log(1/Pr[X = x|Y = y]). Then the standard conditional Shannon
entropy can be written as:

HXY)= B [Hey(ly)] = B [H(Xly—,)] = HX,Y) - H(Y).
(zy)(XY) y<Y

There is no standard definition of conditional min-entropy and max-entropy, or even their smoothed
versions. For us, it will be most convenient to generalize the sample-entropy characterizations of
smoothed min-entropy and max-entropy given above. Specifically we will think of X as having
“high min-entropy” (resp., “low max-entropy”) given Y if with probability at least 1 — ¢ over

(m,y) & (X7 Y)v we have HX|Y<m‘y) >k (resp., HX|Y($‘:U) < k)

Flattening Shannon Entropy. It is well-known that the Shannon entropy of a random variable
can be converted to min-entropy (up to small statistical distance) by taking independent copies of
this variable.

Lemma 2.3. 1. Let X be a random wvariable taking values in a universe U, let t € N, and let
e > 0. Then with probability at least 1 — e — 2720 over & xt,

[Hye(z) —t-H(X)| < O(/t - log(1/¢) - log (U] - 1)).

2. Let X,Y be jointly distributed random wvariables where X takes values in a universe U, let
t € N, and let € > 0. Then with probability at least 1 — e — 2= over (x,y) & (XYY =
(XYY,

ey (zly) — - HX|Y)| < O(v/2 Tog(1/) - log(iU] - 1)).



Proof. 1. For & = (x1,...,;), we have Hye(z) = S2'_ Hy(x;). Thus, when z & Xt Hy:(z)
is the sum of ¢ independent random variables Hx (z;), and thus we can obtain concentration
around the expectation (which is ¢ - H(X)) via Chernoff-Hoeffding Bounds. These random
variables Hy (z;) are not bounded (as is required to apply the standard Chernoff-Hoeffding
Bound), but they are unlikely to be much larger than O(log|U|). Specifically, for every 7 > 0

we have
Pr[Hx () > log(|U/7)] > Pr[X = ;]
;X @ €U:Hx (z;)>log(lU|/T)
< |u| -2 lesiUl/m)

IN

= T

A Chernoff Bound for random variables with such exponentially vanishing tails follows from
[Vad], and it says that the probability that the sum deviates from the expectation by at
least A - (log(|U]/7)) + 27t is at most exp(—Q(A2/t)) + exp(—Q(7t)), provided 7 € [0,1].
An appropriate choice of A = O(y/tlog(1/¢)) and 7 = min{1,O(log(1/¢)/t)} completes the
proof.

2. Similar, noting that Hxey«(z]y) = S, Hxy (zilyi)-

2.3 Hashing

A family of functions F = {f : {0,1}" — {0,1}™} is 2-universal if for every x # 2’ € {0,1}",
when we choose F & F, we have Pr[F(z) = F(z')] < 1/|{0,1}"|. F is t-wise independent if for
all distinct x1, ...,z € {0,1}", when we choose F’ & F, the random variables F(z1),...,F(x;) are
independent and each uniformly distributed over {0,1}™.

F' is explicit if given the description of a function f € F and x € {0,1}", f(x) can be computed
in time poly(n,m). F is constructible if it is explicit and there is a probabilistic polynomial-time
algorithm that given z € {0,1}", and y € {0,1}™, outputs a random f & F such that f(z) =y.

It is well-known that there are constructible families of 2-universal functions (resp. t-wise

independent functions) in which choosing a function f < F uses only max{n,m} + m (resp., t - n)
random bits.

3 Inaccessible Entropy for Inversion Problems

As discussed in the introduction, for a function F, we define the real entropy of F~! to be the
amount of entropy left in the input after revealing the output.

Definition 3.1. Let n be a security parameter, and F : {0,1}" — {0,1}"™ a function. We say that
F~1 has real Shannon entropy k if
H(X|F (X)) = k,

where X is uniformly distributed on {0,1}". We say that F~' has real min-entropy at least k if
there is a negligible function e = e(n) such that

Pr n. [Hx|p(x)(z|F(x)) > k] > 1 —¢e(n).

7



We say that F~1 has real max-entropy at most k if there is a negligible function e = €(n) such that
Pr p  [Hxpoo(@lF(2) < k] > 1—e(n).
Note that more concrete formulas for the entropies above are:

Hy|p(x) (@] F(2)) = log|F~'(F(x))|
H(X|F(X)) = E[log|F~H(F(X))]].
As our goal is to construct UOWHFs that are shrinking, achieving high real entropy is a natural

intermediate step. Indeed, the amount by which F' shrinks is a lower bound on the real entropy of
F~1
Proposition 3.2. If F : {0,1}" — {0,1}™, then the real Shannon entropy of F~1 is at least n—m,
and the real min-entropy of F~1 is at least n — m — s for any s = w(logn).
Proof. For Shannon entropy, we have
H(X|F(X)) > H(X) - H(F(X)) >n—m.

For min-entropy, let S = {y € {0,1}"" : Pr[f(X) = y] < 27"7*}. Then Pr[f(X) € 5] <

2 . 27™M=% = neg(n), and for every z such that f(z) ¢ S, we have
1

PrlX = z|F(X) = f(z)]
Pr{f(X) = f(=)]

Pr[X = z]

—m—Ss

2—n
= n—m—Ss.

Hx|px)(z|F(z)) = log

= log

log

0

To motivate the definition of accessible entropy, we now present an alternative formulation of
real entropy in terms of the entropy that computationally unbounded “collision-finding” adversaries
can generate.

Definition 3.3. For a function F' : {0,1}" — {0,1}", an F-collision-finder is a randomized
algorithm A such that for every x € {0,1}" and coin tosses r for A, we have A(z;r) € F~Y(F(x)).

Note that A is required to always produce an input =’ € {0,1}" such that F(z) = F(2’). This
is a reasonable constraint because A has the option of outputting ' = x if it does not find a true
collision. We consider A’s goal to be maximizing the entropy of its output 2/ = A(z), given a
random input x. If we let A be computationally unbounded, then the optimum turns out to equal
exactly the real entropy:

Proposition 3.4. Let F : {0,1}" — {0,1}™. Then the real Shannon entropy of F~' equals the
mazimum of H(A(X; R)|X) over all (computationally unbounded) F'-collision finders A, where the
random variable X is uniformly distributed in {0,1}" and R is uniformly random coin tosses for
A. That is,

H(X|F (X)) = max H(A(X: ) X),

where the maximum is taken over all F-collision finders A.



Proof. The F-collision finder A that maximizes H(A(X)|X) is the algorithm A* that, on input z,
outputs a uniformly random element of f~1(f(z)). Then

H(A"(X; R)|X) = Ellog |f 1 (f(X))]] = H(X|F(X)).
O

The notion of accessible entropy simply restricts the above to efficient adversaries, e.g. those
that run in probabilistic polynomial time (PPT for short):

Definition 3.5. Let n be a security parameter and F : {0,1}" — {0,1}"™ a function. We say that
F~1 has accessible Shannon entropy at most k if for every PPT F-collision-finder A, we have

H(A(X; R)|X) < k

for all sufficiently large n, where the random variable X is uniformly distributed on {0,1}" and R
is uniformly random coin tosses for A.

As usual, it is often useful to have an upper bound not only on Shannon entropy, but on the
max-entropy (up to some negligible statistical distance). Recall that a random variable Z has
max-entropy at most k iff the support of Z is contained in a set of size 2*. Thus, we require that
A(X;R) is contained in a set L(X) of size at most 2¥, except with negligible probability:

Definition 3.6. Let n be a security parameter and F : {0,1}" — {0,1}" a function. For p =
p(n) € [0,1], we say that F~1 has p-accessible max-entropy at most k if for every PPT F-collision-
finder A, there exists a family of sets {L(%)}yesupp(x) €ach of size at most 2F such that x € L(x)
for all x € Supp(X) and

PriA(X;R) e L(X)]>1-p

for all sufficiently large n, where random variable X is uniformly distributed on {0,1}"™ and R is
uniformly random coin tosses for A. In addition, if p = e(n) for some negligible function e(-), then
we simply say that F~' has accessible max-entropy at most k.

The reason that having an upper bound on accessible entropy is useful as an intermediate step
towards constructing UOWHFs is that accessible max-entropy 0 is equivalent to target collision
resistance (on random inputs):

Definition 3.7. Let F': {0,1}"™ — {0,1}™ be a function. For q = q(n) € [0,1], we say that F is
g-collision-resistant on random inputs if for every PPT F'-collision-finder A,

Pr[A(X;R) =X]>gq,

for all sufficiently large n, where random variable X is uniformly distributed on {0,1}"™ and R is
uniformly random coin tosses for A. In addition, if ¢ =1 —e(n) for some negligible function &(-),
we say that F is collision-resistant on random inputs.

Lemma 3.8. Let n be a security parameter and F : {0,1}" — {0,1}™ be a function. Then, for
any p =p(n) € (0,1), the following statements are equivalent:

(1) F~! has p-accessible mazs-entropy 0.



(2) F is (1 — p)-collision-resistant on random inputs.
In particular, F~ has accessible mazx-entropy 0 iff F is collision-resistant on random inputs.

Proof. Note that (1) implies (2) follows readily from the definition. To see that (2) implies (1),
simply take L(z) = {z}. O

While bounding p-accessible max-entropy with negligible p is our ultimate goal, one of our
constructions will work by first giving a bound on accessible Shannon entropy, and then deducing
a bound on p-accessible max-entropy for a value of p < 1 using the following lemma:

Lemma 3.9. Let n be a security parameter and F : {0,1}" — {0,1}™ be a function. If F~! has
accessible Shannon entropy at most k, then F~1 has p-accessible maz-entropy at most k‘/p—l—O(Q_k/p)

for any p=p(n) € (0,1).

Proof. Fix any PPT F-collision-finder A. From the bound on accessible Shannon entropy, we have
that H(A(X; R)|X) < k. Applying Markov’s inequality, we have

Pr - [Haoxmx (Alw;r)lz) <k/p] > 1-p

R
X, r<R

Take L(zx) to be the set:
L(z) = {z} U {z" : Hy(x;p)x (2'|z) < k/p}

We may rewrite L(z) as {z}U{z’ : Pr,[A(z;7) = 2/] > 27¥/P}. It is easy to see that |L(z)| < 2F/P41
and thus F~! has p-accessible max-entropy at most k/p + O(27%/7). O

Once we have a bound on p-accessible max-entropy for some p < 1, we need to apply several
transformations to obtain a function with a good bound on neg(n)-accessible max-entropy.

Our second construction (which achieves better parameters), starts with a bound on a different
average-case form of accessible entropy, which is stronger than bounding the accessible Shannon
entropy. The benefit of this notion it that it can be converted more efficiently to neg(n)-accessible
max-entropy, by simply taking repetitions.

To motivate the definition, recall that a bound on accessible Shannon entropy means that the
sample entropy HA(X;R”X(x/‘Z') is small on average over x E X and o/ & A(z; R). This sample
entropy may depend on both the input = and the 2’ output by the adversary (which in turn may
depend on its coin tosses). A stronger requirement is to say that we have upper bounds k(z) on
the sample entropy that depend only on x. The following definition captures this idea, thinking of
k(x) = log |L(x)|. (We work with sets rather than sample entropy to avoid paying the log(1/¢) loss
in Lemma 2.2.)

Definition 3.10. Let n be a security parameter and F : {0,1}" — {0,1}" a function. We say
that F~! has accessible average max-entropy at most k if for every PPT F-collision-finder A, there
exists a family of sets {L(x)}zesupp(x) and a negligible function ¢ = e(n) such that x € L(z) for
all z € Supp(X), Eflog |L(X)|] < k and

PriA(X;R) € L(X)] =2 1 —¢(n),

for all sufficiently large n, where random variable X is uniformly distributed on {0,1}" and R is
uniformly random coin tosses for A.
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We observe that bounding accessible average max-entropy is indeed stronger than bounding
accessible Shannon entropy:

Proposition 3.11. If F~! has accessible average maz-entropy at most k, then for every constant
¢, F~1 has accessible Shannon entropy at most k + 1/n°.

Proof. Given an F-collision-finder A, let {L(z)} be the sets guaranteed in Definition 3.10. Let
random variable X be uniformly distributed in {0,1}", let R be uniformly random coin tosses for
A, and let I be the indicator random variable for A(X; R) € L(X). So Pr[I = 0] = neg(n). Then:

HAGG R)IX) < H(AX R)X, 1) + H(T)
< Pr[l =1]-H(A(X;R)|X,I =1)+Pr[I =0]- H(LA(X; R)|X,I = 1) + neg(n)
< Pr[l =1]-E[log |L(X)||I = 1]+ Pr[l =0] - n + neg(n)
< Ellog|L(X)] + neg(n)
<k + neg(n).

4 Inaccessible Entropy from One-way Functions

In Section 4.1 we show that any one-way function can be very slightly altered into a function with
inaccessible entropy. In Section 4.2 we show that an additional hashing step implies a stronger form
of inaccessible entropy (which we can then use for a more efficient construction of UOWHF). Still,
we find the more direct construction of Section 4.1 and its analysis to be striking in its simplicity.

4.1 A Direct Construction

Theorem 4.1 (Inaccessible Shannon entropy from one-way functions). Let f: {0,1}" — {0,1}" be
a one-way function and define F over {0,1}" x [n] as F(x,i) = f(x)1,..;. Then F~1 has accessible
Shannon entropy at most H(Z|F(Z)) —1/(2°-n*-log®n), where Z = (X, I) is uniformly distributed
over {0,1}" x [n].?

Proof. Suppose on the contrary that there exists a PPT F-collision-finder A such that
H(Z|F(Z)) —H(A(Z;R)|Z) < e =1/(2°-n"-log®n)

for infinitely many n’s, and R is uniformly distributed over the random coins of A. Since I is
determined by F(Z), and since Z also determines the second part of A’s output (since A is an
F-collision-finder), it follows that

H(X|F(Z)) - H(A'(Z;R)|Z) < ¢

where A’ is the algorithm that on input (z;r) outputs the first component of A(z;r)’s output. In
the following use A’ to construct an efficient algorithm that inverts f with constant probability.
We do so in two steps: 1. Constructing such an inverter under the assumption that we have access
to an (inefficient) oracle Samgea defined shortly, and 2. Showing how to efficiently approximate
Samgeal using A’.

®We believe that the actual gap between the real and accessible entropy of F~ ' is Q(1/n?), or possibly even Q(1/n),
and not Q(1/n*) as stated. Since even the optimistic Q(1/n) bound does not yield as efficient overall construction as
the one resulting from Section 4.2, we defer a tighter analysis to the final version of the paper.
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Algorithm 4.2 (Samgeal)-
Input: z € {0,1}", i € [n] and b € {0,1}.

Return a random ' € F~Y(F(x,i—1))1 such that f(2'); = b (return an arbitrarily value if no such
7' exists), where F~Y(F(x,7))1 = {a’ € {0,1}": F(2',j) = F(z,j)}.

That is, Samigear outputs uniformly at random 2’ such that f(z'):,. ; = (f(2)1,..i-1,b). We
define an algorithm Inv with access to an oracle Sam. When Sam = Sam|gea, it will be easy to
argue that Inv inverts f with probability one.

Algorithm 4.3 (Inv®¥™).
Input: y € {0,1}".
Oracle: Sam.

Fori=1 ton do:

let ' = Sam(z*=1,i,y;) (where x°

is chosen arbitrarily)

Output z™.

It is immediate that Inv ¥™de inverts f with probability one. We now turn to showing that A’
can be used to efficiently approximate Samgeal- The resulting algorithm Samgs will be sufficiently
similar to Samigess and as a result InvS*™ will still invert f with high probability. A property
of Inv that will come handy is that, on a uniform value y = f(x), the first coordinate of each
individual query that the inverter InvS@™ie makes (i.e., 2*) is uniform in {0,1}" (the queries are
correlated of course).

Recall that the output of A’ has high Shannon entropy - almost as high as the uniform distri-
bution over its set of prescribed outputs. Claim 4.5 (which is rather standard), shows that this also
implies that the distribution of A”’s output is statistically close to this uniform distribution.

Definition 4.4. For ¢ € [0, 1] let A be the family of efficient F-collision-finders with the following
guarantee: for every A” € As there exist infinitely many n’s such that

| (Z,A"(Z;R)) — (Z,F~Y(F(2))1) |< 8, where R is uniformly distributed over the random-coins
of A" and F~Y(F(x,4))1 is uniformly distributed over F~(F(x,1))1.

Showing that the output of A’ is statistically close to uniform can therefore be formalized by
showing the following claim:

Claim 4.5. A’ € Aﬁ.

Proof.

1(Z,FH(F(2)) = (Z,A(ZR) | = E_[IFTH(F(2))1 = A'(% R))]

E
27

<

E
27

VHE (FG)) - HA G R)

< \/ZEZ [H(F ' (F(2)h) — H(A'(2; R))]

= VH(X|F(Z)) — H(A'(Z; R))
< Ve,
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where the first inequality uses the fact that if W is a random variable whose support is contained
in a set S and U is the uniform distribution on S, then |[U — W/| < /H(U) — H(W). (See [CT,
Lemma 11.6.1].) O

As we just shown that A" € A . it is enough to show how to use an algorithm A” € A;
to approximate Samqgea (with error which depends on §). In order to keep notation simple, we
abuse notation and denote by A5 some A” € As. Fix ¢ € [0,1] and consider the following efficient
approximation of Samgeal:

Algorithm 4.6 (Sams).
Input: z € {0,1}", i € [n] and b € {0,1}.
Oracle: As.
Repeat 16n - logn times:
1. Let ' = As(xz,i— 1)
2. If f(2'); = b, return x’.

Abort.

Let Invs denote Inv®™s and Inviges denote Inv ™del . We will show that the output of Invg (on
a random value f(x)) is statistically close to that of Invigea;. As Invigea inverts f with probability
one, we will conclude that Invs inverts f with high probability as well. To analyze the statistical
distance between the outputs of the two inverters, we consider hybrid inverters that use the ideal
Samigear in the first queries and use Samg in the rest of the queries: For i € [n + 1] let Invf; be the
variant of Inv that uses Samges) in the first ¢ — 1 queries and Samg for the rest of the queries. The
next claim will allow us to easily bound the difference between the output distribution of any two
neighboring hybrid inverters:

Claim 4.7. Let i € [n] and let & = ||(X, As(X,4; R)) — (X, F 1 (F(X,0))1)|, then
(X, Samigea (X, i, f(X)i)) — (X, Sams(X, 1, f (X)) <1/2n+16-n -logn - ;.

Proof. Sams is imperfect for two reasons (which our analysis handles separately). The first reason
is that Sams relies on the output of A that returns an inverse that is only close to uniform (rather
than fully uniform). The error accumulated in each query to A is §; and there are only 16-n-logn
such queries, which altogether contributes 16 -7 -logn - d; to the statistical distance bounded by the
claim. The second source of error is that after 16 - n - log n unsuccessful repetitions, Samg aborts
without retrieving a correct inverse z’. As we now argue, such failure will only happen with small
probability (contributing 5~ to the bound in the claim).

To separate our analysis of the two sources of error, we start by considering the case that §; = 0.
Note that in this case As(z,4; R) = Ao(x,i; R) is identical to F~1(F(z,4));. For x € {0,1}", 4 € [m]
and b € {0,1}, let a(x,i,b) := Pry&f(x)[yi =0b|y,. -1 = f(x)1,.i-1]. Note that for every 1,
Pria(X,i, f(X):)) < B] < B for every § > 0. We also note that Samgs(z,1i, f(z);) aborts with

probability at most (1 — £)6™1em < L in the case that a(z,i, f(z);) > 4, and that in case it
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does not abort, (since we assume that §; = 0) it returns the same distribution as Samigeal(z, 7, b)
does. Hence, for the case that §; = 0 we have that

H(X7 Samldeal(Xvi7 f(X)z)) - (X> Sam&(X7iv f(X)z))H

< Prla(X, 1, f(X);) < ﬁ] + Pr[Sams(X, i, f(X);) aborts | a(X, 1, f(X);) > ﬁ]
1 1

S
1

< —.

— 2n

We now want to analyze the general case where §; may be larger than zero. The statistical distance
between the output distribution of Sams(X, i, f(X);) in the case §; = 0 and in the general case is
at most the maximal number of calls to A5 made by Sams times [[(X, As(X, 7)) — (X, Ao(X,7))]],

we therefore have that
H(X7 Samldeal(X7i7 f(X)Z) - (X7 Sam5(X7 ia f(X)Z)))”
1
< % + 167 - logn ||(X>A5(X7Z) - (XvAO(X7Z)||

_ % +16n - logn - [|(X, As(X, 1) — (X, F~H(E(X,)))|

1
=—+16-n-logn-J;.
2n

O
Now note that the i’th query of Inv$(f(X)) (a query to Sams) and the i’th query of Inv’™ (f(X))
(a query to Samigeal) are both distributed as (X, ¢, f(X);). Therefore Claim 4.7 yields that for every

i € [n],

Hlnvf{"l(f(X)) — Im}ng < % +16-n-logn - ;.

Hence,
Pr[Invs(f(X)) € fHF(X))]
> 1 It (f(X)) — Invi(f(X))]|
i=1

— 1 . .
>1- Z% +16-n- logn ' ||(X7 Samldea|(X>Z7f(X)i) - (X7 Sam(s(Xvaf(X)l)H

i=1
1
> 5—16-n2-10gn-(5.
Let Inv be the instantiation of Invs obtained when we implement Samg using A’. Claim 4.5 yields

that Pr[Inv(f(X)) € f1(f(X))] = Pr[Inv z(f(X)) € fH(f(X))] >1/2-16-n*-logn-\/e > 1/4.
O
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4.2 A More Efficient Construction

The following theorem shows that a simplified variant of the first step of [Rom1] (which is also the
first step of [KK]) yields inaccessible entropy with much stronger guarantees than those obtained in
Section 4.1. The function we construct is F(x,g,1) = (¢(f(«))1,...i,9), where g : {0,1}" — {0,1}"
is a three-wise independent function. Since the composition of g and f is still a one-way function
then Theorem 4.1 already implies that F'~! has inaccessible entropy. The benefits of the additional
hashing step are that 1. we get more inaccessible entropy (©(1/n) bits rather than ©(1/n*) bits),
and 2. we get a bound on accessible average max-entropy rather than accessible Shannon entropy.
These allow for a simpler and more efficient transformation of F' into a UOWHF.

Theorem 4.8 (Inaccessible average max-entropy from one-way functions). Let f: {0,1}" — {0,1}"
be a one-way function and let G = {g:{0,1}"" — {0,1}"} be a family of constructible,three-wise
independent hash functions. Define F' with domain Dom(F) :={0,1}" x G x [n] by

F(.I‘,g,i) = (g(f(x))l,“.,i»g)'

Then, for every constant d, F~! has accessible average maz-entropy at most H(Z|F(Z))—(dlogn)/n
for every d > 0, where Z = (X, G, I) is uniformly distributed over Dom(F’).

Proof. Let ¢ be a sufficiently large constant (whose value we determine later, depending on the
constant d in the theorem statement) and define for every y € {0,1}" and i € [n]:

L(y,i) = {y' € {0,1}": Hyx)(y) > (i +c-logn) vy =y}

(Recall that the sample entropy is defined as Hy(x)(y) = log(1/ Pr[f(X) = y]) = n — log |f‘1(y) ,
so the “heavy” images, where f~!(y) is large, have low sample entropy.) Namely, L(y, i) consists,
in addition to y itself, of “i-light” images with respect to f.

We later show that the sets L'(xz, g,i) = f~'(L(f(x),i)) x {(g,4)} satisfy the properties required
to show that the accessible max-entropy of F~! is as stated in the theorem.® Towards this goal,
we first show that the only accessible inputs of F' come from preimages of L(y, ).

Claim 4.9. For every PPT F'-collision-finder A and every constant ¢ > 0, it holds that
Pr[Al(X7 G, I; R) §é fﬁl(L(f(X)v I))] < neg(“)?

where (X, G, I) is uniformly distributed over Dom(F'), R is uniformly distributed over the random
coins of A, and Ay denotes the first component of A’s output.

Note that the above immediately yields that Pr[A(X,G,I; R) ¢ L'(X,G,I)] < neg(n), since
the other two output components of A are required to equal (g,), due to the fact that F(x,g,1)
determines (g, 7).

Proof. Suppose on the contrary that there exist an efficient F-collision-finder A, ¢ > 0 and a non-
negligible function ¢ = £(n) such that Pr[4;(X,G,;R) ¢ f~YL(f(X),I))] > e. Fix a triple
(x,i,7) and let
eair = PrlAi(z, Gyr) & fTHL(f(2),9))]-
SWe are working with the set L, and not with L', as it significantly simplifies notations. Note that the sets L’ are

independent of the adversary, even though the definition of accessible average max-entropy allows the sets to depend
on the adversary. Further, note that the sets L are independent of G.

15



Define A'(g) = A1(x, g;7). We will show how to use any such A’ to invert f with probability at least
€xir/n°. By picking (z,4,7) at random, we will invert f with probability at least Ey ; r[eg.ir/n°] =
g/n, which contradicts the one-wayness of f. Our inverter works as follows, on input y € {0, 1}".

Inv(y): choose g uniformly at random from G subject to the constraint g(y)i..;. = g(f(x))1.i,"
and output A’(g).
To analyze the success probability Inv, we first rewrite the success probability of A" as follows:

evir < PrA(G) ¢ fTHL(f(2),17))
= D PG e
yEL(f(x)i)
= ) PrlG)ii = G(f(@)h]
y&L(f(2),i)
PrA'(G) € [T WIGW)1i = G(f(2))1.]
= 27 > PrA(G) € FW)IGW)1 = GF())1.].
y&L(f(x)i)
Above the second equality follows because A is an F-collision finder (so it is always the case that
' = A'(g) = A(z,g,1)1 has the property that g(f(2'))1...; = g(f(x))1..i), and the third inequality
follows by the two-wise independence of G (y ¢ L(f(x),7) implies that y # f(x)). Now, we can
bound the success probability of Inv in finding a preimage of Y = f(X) by:

Pr[Inv(Y) € f (V)]
= ) Pr[y =y - PrlA(G) € T W)IGW)ri = f(@)1.4]

> Y Py =y PrA(G) € FTW)IGWi = fl@)r4]
yEL(f(x),1)
1
> s Y PrA(G) € ST W)IGW) 1 = fla)red
yEL(f(2),1)
> 596,1',7“/77/0’

where the penultimate inequality holds because every y ¢ L(f(z), ) satisfies Hy(x)(y) < (i+c-logn).
U

We have seen that sets f~1(L(y,4)) capture the accessible inputs of F’; now it remains to show
that the expected logarithm of their size is sufficiently smaller than the real entropy H(Z|F(Z)) =
Ellog |F~1(F(Z))|] (again, this property immediately propagates to L').

Claim 4.10. For every constant ¢ > 8, it holds that

B flog /(). 1)) < B [log | 7 (F(2)) | - 2 (S50,

where Z = (X, G, I) is uniformly distributed in Dom(F).

"This can be done by first choosing z & {0,1}™7" and then using the constructibility of G to generate a random
g such that g(y) = (¢(f(z))1...s, 2)-
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Proof. We assume for simplicity that n is a power of 2 (otherwise, we “pad” f) and that c is a
power of 2, and let ¢ = ¢/2. For ease of notation, we will work in entropy units of ¢’ logn. Namely,
fori € {0,---,m=n/(c'logn)} and y € {0,1}", let y(1y, . (;} be the first i-¢'logn bits of y, define

Hyoxo) (y)
Ao\
Hy(y) = clogn

and let
g =Pr[Hp(f(X)) € [i,i +1)].

Recall that (X, G, I) is uniformly distributed in Dom(F'). We define additional random variables
that categorize the “non trivial collisions” induced by F' into two separate categories:

Light := [{2’ € {0,1}": f(2') # f(X) A G(f(2)quy,..(1y = GUF(X)) 1y 1y
AHp(f(2") > T+ 2}].

Namely, Light consists of the preimages that collide with f(X), different from f(X), and “light”
— have few preimages. Similarly, let

Heavy := [{z' € {0,1}": f(z') # f(X) AG(f(«") 3,1y = GUF(X) 1y, (1
A Hf(f(x')) < I+ 2}.

Namely, Heavy consists of the preimages that collide with f(X), different from f(X), and “heavy”
— have many preimages. Note that

|F~'(F(Z))| = Light + Heavy + | f~"(f(X))|
(recall that the all elements F~'(F(z,g,i)) are of the form (z',g,7)) and

|F7HL(F(X), 1))| < Light + | £~ (£(X))].

Thus, we have
Ellog |[F~H(F(2))|] - Ellog | f~(L(f(X), D))|] (1)

Light + Heavy + \fl(f(X))q
Light + | f~1(f(X))]

>E [log

We manipulate this as follows:

Light 4+ Heavy + | f 1 (f(X))]
B [lOg [F (7)) + Light }

Heavy
z B [log <1 + |f~Y(f(X))| + Light + Heavy)]
Heavy }

B [‘fl(f(X))\ + Light + Heavy

>

where the last inequality uses the fact that log(1+a«a) > « for a < 1. The proof of Claim 4.10 easily
follows from the next claim, which yields that with constant probability, Heavy is a significant term
in (|f~1(f(X))| + Light + Heavy).
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Claim 4.11. Let > 1, i €{0,...,m —1} and z € {0,1}". Condition on I =i and X = x, and
define the following events (over the random variable G ):

E’l1 : (Light + Heavy) < 3- on—i-(c'logn)
E? : Heavy > (Qi+1 — - \/1/7) . 2n—i~c/ logn—1
Then Pr[E}] > 2/3, and Pr[E?] > 1 —4/a?.

Proof. For E}, we note that E[Light + Heavy] < gn—i(c'logn) Yy two-universality of G, and apply
Markov’s Inequality.
For E?, let

S:={a' € {0,1}": f(a) # f(@) NHy(f(2") € [i+1,i +2)}.

Note that S| > (gi+1 — neg(n)) - 2™, where we subtract neg(n) for not taking into account the
preimages of f(x). For g € G, let

Sy :={a" € {0,1}": f(a') # f(x) NHp(f(2)) € [i +1,i +2)
A g(f @)y, g = 9(f (@) qay g

note that (conditioned on I =i and X = x) Heavy > [Sg|. We write [Sg| = 3" ¢ (s) 1o,y - Iy,
where 1,4, is the indicator for g(y)(1y,..tiy = 9(f (%)) 1}, fi3- By the three-wise independence of G,
the 1g,’s are pairwise independent Bernoulli random variables, each with expectation g—ic'logn,
Thus, E[|Sg|] > (giz1 — neg(n)) - 27’18 Assuming that giy1 > « - /1/n¢ > /1/n¢ (as
otherwise the claim about E’Z2 holds trivially), it follows that

EHSG” > it - Qn—i-c’ logn—1

By the pairwise independence of 15 ,’s, we also have

Var(|Sall = Y Varllgy - |f ' (»)]
yef(S)
< 2—i~c’logn‘ Z {f—l(y)f
yef(S)
< g iclogn gl max |l (y)| < 27i¢ logn  gn gn—(i+1)-c'logn
< 5] max |7 (0)] <

2
— ( 2 . 2n—i~c’ log n—1>
= = ,
n

and thus by Chebyshev inequality
PI‘[E?] > Pr |:’SG| > (Qi-i-l — oA /1/nc/) . 2n—i.c/ logn—1:|
« 4
> 1-Pr||ISa] ~ElISell| = 5 - VVarlSall]| 21— —.
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Noting that Hy(f(X)) > i means |f~(f(X))| < 27~#(¢1¢") and applying Claim 4.11 with
a = 4, we have

Ellog|F~(F(2))|] - Ellog | f~(L(Y, 1))}

Heavy

> E :
- |f~1(f(X))| + Light 4+ Heavy

1 m—1 ' . ) ‘
2 ) PriHg(f(X)) 2 i - Pr{Ej A EF | Hy(£(X)) 2 4]

i=0
<Qi+1 _ n;/lp) . 2n7i-c’ logn—1
on+2—i-(c’' logn)

1 & 1 1 Git1 — 4/nc/?
> . . S ([ B N S
> X laatran - (1-5 ) ( .

v
Z|
—
3
R
S
|
Q
~~
g
&3
no
N~

,i€{0,...,m}

1 m
> - 0
~  48m O<710’/Q>7

where the first inequality is by Equation 2, and the third inequality holds since gg = 0 for every

one-way function, which implies that Zlgigjgm g q = Zogigjgm ¢ q > % . Zj,z‘e{o,...,m} ¢ - q;-
Thus, Claim 4.10 holds with respect to any ¢ = 2¢ > 8.

By Claims 4.9 and 4.10 and the fact that F(z,g,i) determines g and i, the sets L'(z,g,i) =
FHL(f(x),i)) x {(g,i)} satisfy the properties required to show that the accessible max-entropy
of F~!is at most H(Z|F(Z)) — Q(c(logn)/n). Taking ¢ to be a sufficiently large constant times d,
completes the proof. O

5 UOWHFs from Inaccessible Entropy

In this section we show how to construct a UOWHF from any efficiently computable function
with a noticeable gap between real Shannon entropy and either accessible average max-entropy or
accesssible Shannon entropy. Recall that the more efficient construction from Section 4.2 satisfies
the former, and the more direct construction from Section 4.1 satisfies the latter. Combined with
these constructions, we obtain two new constructions of UOWHF's from any one-way function.

In both cases, we first transform the entropy gap into a noticeable gap between real Shannon
entropy and accessible maz-entropy. We begin with the construction that starts from a gap between
real Shannon entropy and accessible average max-entropy because the transformation involves fewer
steps (and is also more efficient).

5.1 The More Efficient UOWHF

Theorem 5.1. Suppose there exists a polynomial-time computable function F : {0,1}* — {0,1}™
such that F~1 has a noticeable gap A between real Shannon entropy and accessible average maz-
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entropy. Then, there exists a family of universal one-way hash functions with output length
O(Ms/A3) and key length O(M\*s/A3 -logn) for any s = w(logn).

Combining this with Theorem 4.8, from any one way function f : {0,1}" — {0,1}", we get
a UOWHF with output length O(n”) and key length O(n7) (where we instantiate the preceding
theorem with A = O(n) and A = logn/n).
The construction proceeds via a series of transformations as outlined in Section 1.2; we begin by
describing these transformations and establishing the properties they achieve.

Gap Amplification. Here, we show that a direct product construction increases the gap between
real entropy and accessible entropy. Another useful effect of direct product (for certain settings of
parameters) is turning real Shannon entropy into real min-entropy, and turning accessible average
max-entropy into accessible max-entropy.

Lemma 5.2 (Gap amplification). Let n be a security parameter and F : {0,1}" — {0,1}"™ be a
function. Fort € poly(n), let F' be the t-fold direct product of F. Then, F* satisfies the following
properties:

i. If F~1 has real Shannon entropy at least k, then (F')~! has real min-entropy at least t - k —
n - /st for any s = w(logn).

ii. If F~1 has accessible average maz-entropy at most k, then (F*)~! has accessible maz-entropy
at most t -k +n - /st for any s = w(logn).

Proof. In the following X and X® = (Xi,...,X;) are uniformly distributed over {0,1}" and
({0,1}™)! respectively.

i. Follows readily from Lemma 2.3.
ii. Given any PPT F'-collision-finder A’, we construct a PPT F-collision-finder A that:

On input x, picks a random i in [¢] along with random x1,...,2;—1,Tiy1, ..., T¢,
computes A'(z1,...,x¢) — (2],...,2}), and outputs z/.

By the bound on the accessible average max-entropy of F~!, we know that there exists a
family of sets {L(x)} such that E[log|L(X)|] < k, # € L(z), and Pr[A(X) ¢ L(X)] < neg(n).
Consider the family of sets {L’(:z:(t)) sz e ({o, 1}")'} given by:

L(®) = L@) x L) x - x L"),

By linearity of expectations, we have E[log|L'(X1,...,Xy)|] < t- k. Moreover, by the
Chernoff-Hoeffding bound and using the fact that log |L(X)| assumes values in [0,n], we
have

Prllog |L/(XW)| >t - k + nv/st] (3)
= Prllog| LX)+ +1og |L(X)| >tk +nv/st] < e .

We claim that this implies that A’ has accessible max-entropy at most t - k + nv/st. Suppose
otherwise, then there exists a non-negligible function € such that

Pr[A(F{(X®)) ¢ L'(XP)] > e —e72° > ¢/2
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Therefore,
Pr[A(F(X)) ¢ L(X)] = Pr[A/(FY(XW)) ¢ L'(XW)]/t > €/2t

which contradicts our assumption on A.
O

Entropy reduction. Next, we describe a construction that given F and any parameter ¢, re-
duces the accessible max-entropy of F~! by roughly ¢ bits, while approximately preserving the gap
between real min-entropy and accessible max-entropy.

Lemma 5.3 (Reducing entropy). Let n be a security parameter and F : {0,1}" — {0,1}™ be
a function. Fiz a family of 2-universal hash functions G = {g : {0,1}* — {0,1}*}. Then, F' :
{0,1}" x G — {0,1}™ x G x {0,1}¢ as given by F'(x,g) = (F(x),g,9(x)) satisfies the following
properties:

i. If F~1 has real min-entropy at least k, then (F')~! has real min-entropy at least k —{ — s for
any s = w(logn).

ii. If F~1 has accessible maz-entropy at most k, then (F')~1 has accessible maz-entropy at most
max{k —{+s,0} for any s = w(logn).

Proof. In the following X and G are uniformly distributed over {0,1}" and G respectively.
i. Fix g € G and let S, = {z| Pr[g(X) = z] < 27¢~%}. Observe that:

e Pr[g(X) € Sy] <27° by a union bound over z € S;

e In addition, whenever z ¢ S;, we have that:

PrX = | F(X) = Fla).ga) =2 < X :Pf[g‘(f; 2 | =)
< PriX =z | F(X) = F(z)]
— 9—L—s

Combining the two observations, we have that for all ¢ € G, with probability 1 — 27° over
& X, we have Hx|r(x),gx) (2| F (), g(7)) > Hx|px)(z|F(2)) — (£ + 5). The bound on the
real min-entropy of F” then follows from the bound on the real min-entropy of F.

ii. Given any PPT F’-collision-finder A’, we construct a PPT F-collision-finder A as follows:
On input z, picks a pair (g,r) uniformly at random and output A’(x, g;r).

By the bound on the accessible max-entropy of F~!, we know that there exists a family of
sets {L(z) C {0,1}" : & € {0,1}"} such that |L(z)| < 2¥, x € L(z), and

Pr[A(X,G;R) € L(X)] > 1 — neg(n), (4)

where R is uniformly distributed over the random coins of A. Let L'(z,g) :=
{(«',g9) : 2’ € L(x) A g(2') = g(z)}. Equation 4 yields that

Pr[A'(X,G;R) € L'(X,G)] > 1 — neg(n).
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Next, we bound the size of the set L'(x,g) via 2-universal hashing. Specifically, for all
x € {0,1}" it holds that

Pr(|L(z,G)| < 287141} > 1 - 270D,

where we are taking into account the possibility that € L(z). Combining the last two
inequalities, we obtain

Pr[A'(X,G;R) € L'(X,G) A |L'(X,G)| < max {2]’3_“‘5, 1}] > 1 —neg(n) — 276,

The above yields an upper bound of max{k — £+ s}, on the accessible max-entropy of (F’)~1.
]

Reducing Output Length. The next transformation gives us a way to derive a function that
is both length-decreasing and collision-resistant on random inputs.

Lemma 5.4 (Reducing output length). Let n be a security parameter and F : {0,1}"™ — {0, 1} be
a function. Fiz a family of pairwise independent hash functions G = {g :{0,1}™ — {0, 1}”_log"}
and let F' : {0,1}" x G — {0,1}"7198" x G be defined by F'(zx,g) = (9,9(F(x))). The following
holds: if F~' has real min-entropy at least w(logn) and F is collision-resistant on random inputs,
then F' is collision-resistant on random inputs.

Proof. The bound on real min-entropy implies that there exists a subset S C {0,1}" of density
at most neg(n), such that for all z ¢ S it holds that |F~(F(z))| = n*(1). Hence, it follows that
|Tm F| < neg(n) - 2". Therefore, |Im F| < [S| + (|S|/n*(M)) < neg(n) - 2". Next, observe that by
2-universal hashing,

Pr[3y eImF:y # F(X)AG(y) = G(F(X))] < z‘ir_rioﬂ < neg(n) (5)

Namely, g(F'(z)) uniquely determines F'(z) with high probability. In particular, a collision for go F'
is also a collision for F. Given any PPT F’-collision-finder A’, we construct a PPT F-collision-finder
A as follows:

On input x, pick g and r at random and compute ' = A'(z,g;r). If F(2') = F(x),
output 2/, else output z.

Equation 5 implies that Pr[A"(X, G; R) # (A(X; G, R),G)] < neg(n). Therefore, Pr[A'(X,G; R) =
(X,G)] > 1 —neg(n). Namely, F' is also collision-resistant on random inputs. O

Additional Transformations. We present two more standard transformations from folklore and
previous work that are needed to complete the construction.

Lemma 5.5 (From random inputs to targets, folklore). Let n be a security parameter and F :
{0,1}" — {0,1}™ be a length-decreasing function. Suppose F' is collision-resistant on random
inputs. Then, {Fy : {0,1}" — {0,1}™} croy» Fy(x) = F(y +2) as defined by F,(x) = F(y+x) is
a family of target collision-resistant hash functions.

Proof. Given a PPT adversary A’ that breaks target collision-resistance of Fé, we can construct a
PPT adversary A that breaks F' as follows:
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On input z, run A’(1™) to compute (xo, state), and then run A’(state, z @ xp) to compute
x1. Output = @ x,  z1.

Note that (xg,21) is a collision for Fy., —iff (2,2 ® xo ® x1) is a collision for F. It then follows

quite readily that A breaks F' with the same probability that A’ breaks Fé. O

The following result of Shoup [Sho] (improving on [NY, BR]) shows that we can construct
target collision-resistant hash functions for arbitrarily long inputs starting from one for a fixed
input length.

Lemma 5.6 (Increasing the input length [Shol). Let n be a security parameter, t = poly(n) be a
parameter and let {F, : {0,1}"11°8" — [0, 1}"} be a family of target collision-resistant hash func-
tions. Then, there exists a family of target collision-resistant hash functions {Fé, : {0, 1} Htlogn
{0, 1}"} where |y'| = O(ly|log ).

Putting It Together. Recall that we started out with a function F' with a gap A between real
Shannon entropy and accessible average max-entropy. Let kgga, denote the real Shannon entropy
of F~1. Throughout, let s € w(logn) denote any super-logarithmic function.

STEP 1 (gap amplification): Let F} be the t-fold direct product of F'. That is, Fy(z1,...,2¢) =
(F(z1),...,F(x;)) where t € O(A\?s/A?). Specifically, we require that

t'kREAL_)"\/Ezt'(kREAL_A/m‘F)\-\/E—I-?)S.

Lemma 5.2 yields that this repetition increases both the real and accessible entropies of
F) by a factor of ¢t (comparing to Fy). In addition, this repetition converts real Shannon
entropy to real min-entropy and accessible average max-entropy to accessible max-entropy
(up to additive terms that are sub-linear in ¢). More precisely:

o Fy:{0,1}% — {0,1}" where £N(n) =t- X and £V (n) =t - m.
o [ I has real min-entropy at least ¢ - krgarp, — m - V/st, which by our choice of ¢ is at least
t - (krpar — A/2) + X - /st + 3s.

o I ! has accessible max-entropy at most ¢ - (krgar — A) + X - /st.
From the next step on, the construction is given an additional parameter k (a “good” estimate
of krpar) such that k € [krgar, krear + A/2]. This means that:

e F ! has real min-entropy at least ¢ - (k — A) +m - /st + 3s.

e F[ ! has accessible max-entropy at most ¢ - (k — A) 4+ m - \/st.

That is, there is a gap of 3s between real min-entropy and accessible max-entropy, and
moreover, we “know” where the gap is (given k).

STEP 2 (entropy reduction): Apply entropy reduction to Fj to obtain Fy. That is, Fs(z,g) =
(Fi(z),g,9(x)), where g : {0,1}" — {0,1}* is selected from a family of 2-universal hash
functions, where £ = £(n,k) =t - (k — A) + X- /st + 5= O(t\). Lemma 5.3 yields that this
additional hashing reduces the real min-entropy and accessible max-entropy by ¢ (up to an
additive term of s). More precisely,
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o F5:{0,1}% — {0,1}2" where 5°(n, k) = O(t\) and £3""(n, k) = O(t)).
o Iy ! has real min-entropy at least s.

o Iy ! has accessible max-entropy at most 0. Hence, Fy is collision-resistant on random
inputs (by Lemma 3.8).

STEP 3 (reducing the output length): First reduce the output length of F, by hashing the
output to £ —logn bits. That is, F3(z,g) = (g, g(F3(z))) where g : {0,1}%" — {0,1}¢ ~logn
is selected from a family of pairwise-independent hash functions.

o F3:{0,1}% — {0,1}%" where £5'(n, k) = O(t\) and €V (n, k) = /2 — logn.

e By Lemma 5.4, F3 remains collision-resistant on random inputs.

Next, transform F3 into a family {F,} of target collision-resistant hash functions via a random
shift, following Lemma 5.5. That is, Fy(z) = F3(y + ).

e This yields a non-uniform construction { ¥y} with input length and key length ¢5'(n, k) =
O(t\) = O(\3s/A?), where the non-uniformity corresponds to choice of the parameter
k € [krpar, krear + A/2].

STEP 4 (removing non-uniformity): To remove the non-uniform advice k, we “try all possibil-
ities” from 0 to A in steps of size A/2, similar to the approach used in [Rom1] (see also [KK,
Section 3.6])

i. First, we construct £ = X-2/A families of functions {F}} for i = 1,2,..., x, where {F}
is the family of functions obtained by instantiating Steps 1 through 3 with the parameter
k set to the value i¢A/2. This x families of functions satisfy the following properties:

e Each of Fyl7 ..., Fy is length-decreasing; in particular, FyZ has input length
05 (n,iA/2) and output length £5%(n,iA/2)—log n. Note that £5"(n,iA/2) < 5 (n, \)
for all i because ¢(n, k) increases as a function of k. We may then assume that all
% functions Fyl, ..., I} have the same input length £3'(n, A) and the same output
length ¢5%(n, \) —logn by padding “extra part” of the input to the output.

e At least one of {Fy},...,{F}} is target collision-resistant; this is because kgpar €
[0, A] so there exists some ¢ for which iA/2 lies between kgpar, and kggar, + A/2.

ii. Next, for each i =1,2,...,k, we construct a family of functions {Fyf} from {F;} with in-
put length -5 (n, \), key length O (¢ (n, X)-log n) and output length ¢5'(n, \) —log n, by
following the construction given by Lemma 5.6. Again, at least one of {Fgll}, ce {F;ﬁ}
is target collision-resistant.

iii. Finally, we define a family of functions {F},, . j,.} to be the concatenation of FZ:}I’ cee F;ﬁ

on the same input. That is, Fy, . 4. (z) = F@%l (x)o---0 F;ﬁ (x).

e Note that F' has input length x - £5(n, \) and output length & - (¢5'(n, \) — logn),
so I is length-decreasing.

e Moreover, since at least one of {F;l},...,{ﬁgﬂ} is target collision-resistant,
{Fy,,..5.} must also be target collision-resistant. This is because a collision for
Fy, ... 5. is a collision for each of Fgll, o ,F;ﬁ.

This yields a uniform construction of a UOWHEF with output length length O(A/A - A -
A2s/A?) = O(Ms/A3). and key length O(A/A - X-X2s/A? -logn) = O(\*s/A3 -logn).
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5.2 UOWHTF via a Direct Construction

Theorem 5.7. Suppose there exists a polynomial-time computable function F : {0, 1})‘ — {0,1}™
such that F~' has a noticeable gap A between real Shannon entropy and accessible Shannon entropy.
Then, there exists a family of universal one-way hash functions with output length O(\8s%/ A7) and
key length O(X8s% /AT -logn) for any s = w(logn).

Combining this with Theorem 4.1, from any one way function f : {0,1}" — {0,1}", we get
a UOWHF with output and key length O(n%) (where we instantiate the preceding theorem with
A=0(n) and A = ©(1/n*logn)).

As alluded to earlier, we show how to transform a noticeable gap between real Shannon entropy
and accessible Shannon entropy to one between real Shannon entropy and accessible max-entropy,
and then follow the construction from the previous section. To achieve this, we first need to establish
some additional properties achieved by gap amplification and entropy reduction.

Lemma 5.8 (Gap amplification, continued). Let n be a security parameter and F : {0,1}" —
{0,1}™ be a function. For t € poly(n), let F' be the t-fold direct product of F. Then, F! also
satisfies the following properties:

i. If =1 has real Shannon entropy at most k, then (F*)~! has real maz-entropy at most t - k +
n - /st for any s = w(logn).

ii. If F~1 has real min-entropy at least k, then (F*)~1 has real min-entropy at least t - k.
iii. If F~' has real maz-entropy at most k, then (F')~! has real maz-entropy at most t - k.

. If F~! has accessible Shannon entropy at most k, then (F')~! has accessible Shannon entropy
at most t - k.

v. If F~1 has accessible maz-entropy at most k, then (F')~! has accessible maz-entropy at most
t-k.

vi. If F is q-collision-resistant on random inputs and F~' has real max-entropy at most k, then
F~! has accessible maz-entropy at most (1 — q/8) - tk +t, provided that t = w((1/q) - logn).

Proof. Again, X and X) = (Xy,...,X;) are uniformly distributed over {0,1}" and ({0,1}")
respectively.

i. Follows readily from Lemma 2.3.

ii. This follows from a union bound and that fact that for all 1, ..., z;:

t

Hyw (@1, m|Fh (o, m)) = > Hype (@il F(2:)
=1

iii. Same as previous part.
iv. Given any PPT F'-collision-finder A’, we construct the following PPT F-collision-finder A:

On input z, pick a random i in [t] along with random x1,...,2;—1, i1, ..., X4,
compute A'(x1,...,z¢) — (2], ..., 2}), and output z}.
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vi.

Define the random variables (X7,...,X}) = A'(X1,...,Xt). Then,

H(X!, ..., X!|X1,..., X))

—~

< H(X{|X1) + -+ H(X/|X;) subadditivity of conditional Shannon entropy

= ¢ -H(X}|X7) where I has the uniform distribution over [¢]

= t-H(A(X)|X) by definition of A

< t-k by the bound on accessible Shannon entropy of F~!

. Analogous to Lemma 5.2 part ii, but simpler, since we do not have to use the Chernoff-

Hoeffding bound.

Suppose on the contrary that there exists a PPT F'-collision-finder A’ that violates
the guarantee on accessible max-entropy.  For z® ¢ ({0,1}")!, let B(z®) :=

{l‘/(t) € ({0, 1} Ft(z®) = Ft(z'D) A Hz € [t]: x’gt) = xl(t)}’ > qt/8}. By the bound on

real max-entropy, we have that Pr[3i € [t]: ]F_I(F(Xi(t)))| > 2F] < t-neg(n) = neg(n).
Hence,

Pr[|B(X0)] > (qtt)zﬂq/@tk} < neg(n) (6)

Since A’ achieves accessible max-entropy greater than (1 — ¢/8)tk + ¢, there must exists a
non-negligible function € such that Pr[A/(X®); R') ¢ B(X®)] > ¢ —t-neg(n) > ¢/2, where R’
is uniformly distributed over the random coins of A’. Namely, A’ finds collisions on at least
a 1 — q/8 fraction of the coordinates with non-negligible probability.

Since F' is g-collision resistant, this violates a standard Chernoff-type direct product theorem.
We now give a self-contained proof, following a similar analysis done for standard collision
resistance in [CRS™]. Consider the following PPT F-collision-finder A:

On input =z € {0,1}", pick a random i € [t| along with random
Tlyeeny Timly Titls - - - g, compute A'(z1,...,2¢) — (24,...,2}), and output z.

To analyze the success probability of A’, fix any subset S of {0,1}" of density ¢/2. If t =
w(logn/q), then a Chernoff bound yields that

Pr[A/(X®) ¢ BEXD) A |{i € [t]: X € S} > q/4] > ¢/4.
This means that

Pr[A/(XD) - (X),... . X)ANX; € SAX] # X;] >¢e/4-q/8.

!
We may then deduce (following the same calculations in [CRS™T, Prop 2|) that

Pr [PrlA(w; R) # o] > /4-4/8-2/q|> 1 - ¢/2.

R
X

where R is uniformly distributed over the random coins of A. By repeating A a sufficient
number of times, we may find collisions on random inputs of F with probability 1 — ¢,
contradicting our assumption that F' is g-collision-resistant on random inputs.
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O

Lemma 5.9 (Reducing entropy, continued). Let n be a security parameter and F : {0,1}" —
{0,1}™ be a function. Fiz a family of 2-universal hash functions G = {g : {0,1}* — {0,1}*}.
Then, F': {0,1}" x G — {0,1}™ x G x {0,1}* as given by F'(x,g) = (F(z),g,9(x)) satisfies the
following properties:

i. If F~1 has real maz-entropy at most k, then (F')™' has real maz-entropy at most max{k —
4,0} for any s = w(logn).

ii. If F~1 has p-accessible maz-entropy at most k, then (F')~% has p + 2-) _gecessible maz-
entropy at most max{k — ¢+ s,0} for any s.

Proof. In the following X and G are uniformly distributed over {0,1}" and G respectively.
i. Fix an x such that |[F~1(F(x))| < 2*. By 2-universal hashing,
E[G7H(G(@) N (F T (F@)\ {=})]] < (2" =1)-27 <28
The bound on the real max-entropy of F~! and the Markov’s inequality, yield that
Pr{IGH(G(X)) N (P (F(XO))\ {2})] = 207D - 28] < 2761 4 neg(n).
The bound on the real max-entropy of (F’')~! follows.
ii. Readily follows from the proof of Lemma 5.3 part ii.

O

Putting everything together. Recall that we started out with a function F' with a gap A
between real Shannon entropy and accessible Shannon entropy. Let kgzga, denote the real Shannon
entropy of F~ 1.

STEP 1 (gap amplification): Let F; be the t-fold direct product of F' for a sufficiently large ¢ to
be determined later. That is, Fy(z1,...,2¢) = (F(z1),..., F(xt)).
Lemma 5.2 yields that this repetition increases both the real and accessible entropies of F; by
a factor of ¢t. In addition, the repetition converts real Shannon entropy to real min-entropy
and real max-entropy (up to an additive o(t) term). More precisely:
o Fy:{0,1}% — {0,1}%" where £{N(n) =t- X and £9"(n) =t - m.

o I ! has real min-entropy at least t-kggar — \/st and real max-entropy at most ¢- kggar, +
A\st.

o FI ! has accessible Shannon entropy at most t - kppar — tA.

From the next step on, the construction is given an additional parameter k (a “good” estimate
of kppas) such that k € [krpar, krear + A%/128)]. This means that:

o FI ! has accessible Shannon entropy at most tk — tA. Lemma 3.9 yields that Fr ! has
(1 — A/4k)-accessible max-entropy at most tk — tA/2.
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STEP 2 (entropy reduction): Apply entropy reduction to F} with ¢ = ¢(n, k) =tk —tA/2+ s to
obtain Fy. That is, Fy(z, g) = (Fi(z), g,9(z)), where g : {0,1}1" — {0,1}* is selected from a
family of 2-universal hash functions.

By Lemma 5.3 and Lemma 5.9, this reduces the accessible max-entropy to 0, which allows us
to deduce that Fy is weakly collision-resistant on random inputs.

o Fy: {0,1}% — {0,1}%" where £5(n, k) = O\ + £(n, k) = O(t)\) and (3" (n, k) =
O(tm +£(n,k)) = O(tA).

. F2_1 has real min-entropy at least t - (krpap — k + A/2) — A\y/st — 2s, which is at least
t-(A)2 — A?/128)\) — \Vst — 2s

and real max-entropy at most ¢ - (kgpar, — k 4+ A/2) + M\st <t - A/2 4 \/st.

o Fy ! has (1 — A/4k + 27))-accessible max-entropy at most 0. Thus, Fy is g-collision-
resistant on random inputs(by Lemma 3.8), for ¢ = A/4k — 2790),

STEP 3 (gap amplification): Fj is t’-fold direct product of Fy, where t' = s/q = O(ks/A). That
iS, Fg(l‘l, ey ZISt/) = (Fg(ibl), ey FQ(iUt/)).

By Lemma 5.8, this allows us to amplify the weak collision-resistance property of F5 to obtain
a gap between real min-entropy and accessible max-entropy in Fj.

o Iy ! has real min-entropy at least
' (t-(A/2 — A?/128)) — A\Vst — 2s).

e F; ! has accessible max-entropy at most ¢ - (1 — ¢/8) - (tA/2 + A/st) + 1), which is at
most:

' (t- (A/2 — Ag/16) + \Vst) +1).
Now, k < X, so ¢ = AJdk —279) > A/4\ — 27906), This means F3_1 has accessible
max-entropy at most:

o (t (A2 — A2/64N + 2799 1 AVst) + 1).

Note that the gap is at least ¢/ - (¢ - A?/128) — 270s) — (2A/st + 25 + 1)), which is at least
3s as long as:
t-A2/128)0 > 27%) L a5t + 25 4+ 1 + 3s/t/

Since 3s/t' = 3¢ < 3A, we can set t = O(A\/A + As/A% + \s/AY) = O(\'s/A%) so that Fy !
has a gap of 3s between real min-entropy and accessible max-entropy, and moreover, we know
where this gap is (given k).

STEPS 4/5/6: We follow steps 2, 3, and 4 in the previous construction, with the following modifi-
cations in the parameters:

e We apply entropy reduction first, with

(=t (t-(A)2— Ag/16) + A\Vst) + 1) + s.
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e To remove the non-uniform advice k, we “try all possibilities” from 0 to A in steps of
size A%/128)\.

We then obtain a non-uniform construction of UOWHFs with output and key length O(A -
t-t) = O(\5s?/AP), since t = O(\*s/A%) and #' = O(\s/A). We also obtain a uniform
construction with output length O(A\/(A2/A) - X -t-t' -logn) = O(A\8s%2/A") and key length
O(M\8s2 /AT -logn).
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