Update-Optimal Authenticated Structures Based on Lattices

Charalampos PapamanthofRoberto Tamassia

March 7, 2010

Abstract

We study the problem of authenticating:aindexdynamic tablen the authenticated data structures
model, which is related to memory checking. We present tiseléittice-basedauthenticated structure
for this problem, which isipdate-optimal In specific, the update time (1), improving in this way
the “a priori” logarithmic limit (inn) of Merkle tree constructions. Moreover, the space is ra#ied
to be O(n), while other logarithmic bounds for other complexitiesg(eproof size) are still in place.
To achieve this result, we exploit the “linearity” of laidased hash functions and show how necessary
properties —for security—of lattice-based digests can beagitieed under updates. This is the first con-
struction achieving constant update bounds without cgustiher time complexities to increase beyond
logarithmic. All previous solutions enjoying such an ugdebmplexity have (sub)linear proof or query
bounds. As an application of our lattice-based authemtitatructure, we provide the first construction
of an authenticated Bloom filter, an update-intensive datecire that falls into our model.

Keywords: Authenticated data structures, lattice-based cryptography.

1 Introduction

Increasing interest in online data storage and processing has recdrtththe establishment of the field of
cloud computing20]. Files can be outsourced to service providers that offer hyggotig and fast network
connections (e.g., Amazon S3) as a means of mitigating maintenance and stustsgén this way, clients
create virtual hard drives consisting of online storage units that amratggeby remote and geographically
dispersed servers. In such settings, the ability to check the integrity otegnstored data is an important
security property, or otherwise a faulty or malicious server can lose or tawigiethe client’'s data (e.g.,
deleting or modifying afile). In order to solve the problem of efficiently direg the integrity of outsourced
data, the model chuthenticated data structurdsee, e.g., [24, 36]) has been developed, which is closely
related to memory checking [7]. In an authenticated data structure, ukiseteers answer queries on a
data structure on behalf of a trusted source and provide a proof ottyadfceach answer to the user.

In specific, in an authenticated data structure, there are three participatitigs. The owner of the data,
calledsource outsources its data to multiple untrusted sites, calladers Theclients due to scalability
issues can only send queries to #eversand wish to verify answers received by the servers, based only
on the trust they have to the source. This trust from the source to the éfiargsally conveyed through a
time-stamped signature on the data structigest a collision resistant succinct representation of the data
structure (e.g., the root hash of a Merkle tree).

In the study of authenticated data structures, apart from achievin@lpeogecurity under a well-
accepted assumption (e.g., strong RSA assumption), it is important to achielleasymptotic bounds
for relevant complexity measures, which are listed in the first column of Thiiédso explained in more
detail at the end of Section 2). Therefore, there is typically a challengaatgtoff between security and
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Table 1 Asymptotic time and space complexity of previous solutions and of otk feothe problem of
authenticating a dynamic table of size We denote with: the security parameter. Paramelex € < 1

is a constant that can be arbitrarily chosen. Also, “D. Log” standsBiscrete Logarithm”, “Generic CR”"
stands for “Generic Collision Resistanc&APSVP, is the gap version of the shortest vector problem in
lattices (see Definition 1), where= O(nkv'k).

y | [7.271 | [4 | 1291 | [10,35]] [18]] [30]| thiswork |
source update logn 1 1 1 nt 1 1
server update logn 1 n nlogn | nf 1 log” n
server query logn n 1 1 ne ne logn
verification logn n 1 1 1 1 logn
source space n n n n n n n
server space n n n n n n n
proof size logn n 1 1 1 1 logn
update info. 1 1 1 1 ne 1 1
assumption || Generic CR| D. Log | Strong DH Strong RSA GAPSVP, is hard

efficiency. In this work we show that the cryptographic primitive usedlware a significant impact on the
efficiency of the structure. Towards this goal, we emghijices a mathematical tool that was shown to
have many applications in cryptography after Ajtai’s seminal result [1]vaadgrovide the first constant

complexity bounds for the update time of a lattice-based authenticated structure

The motivation for this work stems from the absence in the literature of anratighted structure where
an efficient update (e.g., i0(1) or O(loglog n) time) does not cause other complexity measures to “blow
up” to sublinear or linear. For example, although updates are optimally pegtbmO(1) time in [4], the
size of the proof implied with such an authenticated structuf¥is), i.e., to prove an element that has been
accumulated to aaptimallyupdatable digest, all the elements have to be communicated. Similarly, in [30],
while more optimal bounds due to the use of accumulators are achievedjstereiblinear complexity
O(n) for query or update time, a trade-off that was also observed in [14gréefore, if one wishes to
avoid (sub)linear complexities, one has to resort to the extensively ligtdin theory and practice, Merkle
tree [25], or various alternations of it [7, 19]. However, all solutioasdd on Merkle trees and use “generic
collision resistanc¥ (see Table 1) as a hardness assumption, inherently enforce logaritbmjexities
on all the complexity measures. In this paper we combine the merits of a Mer&léttenary tree is used
in our construction) and the convenient “linearity” of lattice-based hasbtions [17] towards constructing
a constant-update authenticated structure, while keeping other complexgymagéogarithmic.

In this work, we use a model similar to that of memory checking [7]. The streste wish to authen-
ticate is adynamictable of sizen, accessed through indicés. . ., n. The table is dynamic and each index
can take one of’ different values, e.g., fof = 2 we have aooleantable. The valu€” is not dependent
onn,i.e.,C = O(1) (it can also beoly(k), wherek is the security parameter).

Related work. Lattice-based cryptography began with Ajtai’s first construction of away hash func-
tion based on hard lattice problems [1]. This function was shown to be collisgistant by Goldreich [17]
and further generalizations of it were given by Micciancio [26]. Othasthfunctions based on lattices with
reduced public key size are due to Micciancio [23] and Peikert [31¢eR#ty, trapdoorfunctions based on
lattices were introduced in [16].

In the field of data integrity checking, several authenticated data stradiased on cryptographic hash-
ing have been developed, beginning with the well-known Merkle treesq,722] and modifications of

We callgeneric collision resistant functior{§eneric CR in Table 1) those functions that are believed to be collisionaesis
in practice (e.g., SHA-256).



it [19]. Lower bounds for hashing-based methods in the authenticatedsttactures model are shown
in [37], and in the context of memory checking in [14, 28]. Authenticated dauctures using other crypto-
graphic primitives, such asne-way accumulatoif®, 5, 10] are presented in [18], achieviofn) bounds.
Bilinear pairings accumulators, the security of which is based on the strifigr Bellman assumption, are
introduced in [29]. Authenticated hash tables proved secure underomg RSA assumption or the strong
Diffie-Hellman assumption are introduced in [30], where, however, tldatgoor query time is sublinear.

We observe that all of the above constructions belong to one of the foljoimia categories: either
(a) they have logarithmic source update complexity, with all the other complexigsunes being also
logarithmic, e.g., [7, 19, 27]; or (b) they have sublogarithmic source tepatamplexity (e.g., constant) but
at least one of the other complexities is (sub)linear, e.g., [4, 29, 30]mAwry and comparison of our work
with previous constructions in the literature can be found in Table 1. We nattetthour knowledge, this is
the first construction that enjoys a constant update time complexity, withonteease in other complexity
measures. We are able to achieve these bounds by exploiting the “linedii#ytice-based hash functions,
which other primitives such ageneric collision resistant functiofased in [7, 19, 27]) andxponentiation
functions(used in [4, 29, 30]) lack.

Contributions.  Our main contribution is the construction of an update-optimal authenticatectata

ture for ann-index table based on lattices. The update time of the authenticated strue(ig {ger update

and the space complexity §3(n). Our authenticated structure is update-optimal: The update complexity is
constant, i.e., not dependent enwhile logarithmic costs for other complexity measures are still in place.
This is the first lattice-based authenticated structure and the first oneisev@adonstant update bounds.
All previous solutions enjoying such an update complexity have (sub)lireaxf or query bounds. As an
application of our lattice-based structure, we provide the first construofian authenticated Bloom filter.

2 Preliminaries

We start with some preliminary notions that are important in our main construdtitime following, we use

k to denote the security parameter (we do notuss is usually done in lattice-related bibliography) and

to denote the size of the table to be authenticated. We use upper case baddattarote matrices, e.@,
lower case bold letters to denote vectors, dagnd lower case italic letters to denote scalars. Finally, for a
vectorx = [x; X2 ... Xi]7, |[X|| denotes the Euclidean normxf

Lattices. Given the security parametét, a full-rank k-dimensional lattice is the infinite-sized set of
all vectors produced as the integer combinatieﬁ@fz1 xb; oz € Z, 1 < i < k}, whereB =
{by,bs,..., by} is the basisof the lattice andby, bs, ..., b, are linearly independent, all belonging to
R*. We denote the lattice produced By(i.e., the set of vectors) with(B).

A well-known difficult problem in lattices is the approximation within a polynomiakéa of theshortest
vector in a lattice §VP problem). Namely, given a lattice(B) produced by a basiB, approximate up to
a polynomial factor irk the shortest (in an Euclidean sense) vectdk(B), the length of which we denote
with A\(B). A similar problem in lattices is the “gap” version of the shortest vector prol{feAPSVP.,),
the difficulty of which is going to be useful in our context.

Definition 1 (Problem GAPSVP,) Letk be the security parameter. AninputédPSVP.,, is ak-dimensional
lattice basisB and a numbetr!. In YES inputsA(B) < d and inNO inputsA(B) > v x d, wherey > 1.

Concerning the complexity of the above problem, we note that, for expoheatiges ofy, i.e, v =
20(%) one can use the LLL algorithm [22] and produce a solution in polynomial tifinerefore the dif-
ficult version of the problem arises for polynomigl for which no efficient algorithm is known to date,
even for factors slightly smaller than exponential [32], i.e., very big patyiats. Moreover, for polyno-



mial factors, there is no proof that this problem\NiB-hard’, which makes the polynomial approximation
cryptographically interesting as well.

Reductions. After Ajtai's seminal work [1] where an one-way function based on Hatiites problem is
presented, Goldreich et al. [17] presented a variation of the functiorijding at the same time collision
resistance. Based on this collision resistant hash function, Micciancjagribed a generalized version
of it, a modification of which we are using in our construction. The securiti@hash function is based on
the difficulty of thesmall integer solutiomproblem (SIS):

Definition 2 (Problem SIS,, ,,, 3) Letk be the security parameter. Given an integea matrixF < Z’;Xm
and a realf, find a non-zero integer vectare 7"\ {0} such thattz =0 mod p and||z| < .

Note that at least one solution to the above problem exists when /mp*/™ andm > k [26].
Moreover, ifp > 4\/ﬁk1-5ﬂ, we will see that such a solution is difficult to find. We continue with the
definition ofSIS’, where the solution vector is required to have at least one odd coordinate

Definition 3 (Problem S|s;7mﬁ) Let k be the security parameter. Given an integea matrixF € Z’;X’”
and a reals, find an integer vectozr € Z"\2Z™ such thattz =0 mod p and||z|| < .

Micciancio [26] showed that if is odd, there is a polynomial time reduction fr(‘jﬁs;,mﬁ to SIS, 1 4

Lemma 1 (Reduction from S|s;7mﬁ to SIS, ., 5 [26]) For any odd integep € 2Z + 1, andSIS’ instance
I = (p,F, 3), if I has a solution as an instance 8IS, then it also has a solution as an instanceSt§'.
Moreover, there is a polynomial time algorithm that on input a solution 8% instancel, outputs a
solution to the sam8IS’ instancel.

As proved by Micciancio [26], under a certain choice of parame@&SVP., can be reduced t6IS’
(this can be derived as a combination of Lemma 5.22 and Theorem 5.23pf [26

Lemma 2 (Reduction from GAPSVP., to SIS/, ;[26]) For any polynomially bounded, m,p = k%0,

with p > 4/mk'®3 andy = 147Vkp3, there is a probabilistic polynomial time reduction from solving
GAPSVP,, in the worst case to solvirfﬁjs;’mﬂ on the average with non-negligible probability.

A direct application of Lemma 1 and Lemma 2 gives the following result.

Theorem 1 Letp = k°M) be an odd positive integer. For any polynomially boundedn = k°0),
with p > 4/mk'®3 andy = 147Vkp3, there is a probabilistic polynomial time reduction from solving
GAPSVP,, in the worst case to solvinglS, ,, 3 on the average with non-negligible probability.

In other words, Theorem 1 states that if there is an algorithm that sohaseaage instance 84S, ,, 3
(an average instance refers to the fact that the mitrix Z’;X"L is chosen uniformly at random), for an

oddp, p > 4/mk'® 3 andy = 147k, then, this algorithm can be used to produce a solution to any (the
worst) instance oGAPSVP.,.

Lattice-based hash function. Letm = 2k? and3 = d./m whered is poly(k) andp be a polynomially
bounded odd integer such that> 4./mk'3. It is easy to see that giveh and § there is always a

p = O(k%56) to satisfy the above constraints. The collision resistant hash function thatewsing is a
generalization of the function presented in [26], wh&re O(1) (in the security parameter) is used instead.
In our construction we use bigger values §oiNamely the value that we use to bound the norm of the vector
can be up tooly(k). This was observed in the original definition of Ajtai’s one-way functioh ., that

the input vector can contain larger values (but not so large), andls@aated in its extension that achieves
collision resistance [17]. This remark is very useful in our context andiésphat, the larger value one
picks for 3, the larger the modulysshould be so that security is guaranteed.

2In specific, as outlined in [32], the current state of knowledge indicatgsioh factors beyond/k/ log k, it is unlikely that
this problem ifNP-hard and no efficient algorithm is known to date.



Our hash function construction, however, uses a different modulist p) that has: bits instead (note
that thatp hasO(log k log §) bits): Letq be ak-bit modulus that is divided by, i.e.,q = ©(2%) andp|q.

Let also) be a value satisfying
q 2"
A=-== — ] . 1
p O <k‘3'55 > @

We sample a matrik € Z’;Xm uniformly at random. After that we compute the mafix= AF. Note that
the elements of matriM have entries irZ,. Also note that\ defines annjective homomorphisiiom Z,,
to Z,. We can now define the functidny : Z™ — Z’; ashm (X) = Mx mod ¢, where|x|| <  and the
modulo operation is taken component-wise. The above function can bedtmbe collision resistant (with
some constraint on the input’s coordinates) based on the difficulty of diﬂqmnGAPSVPMm/Eﬂ:

Theorem 2 (Strong collision resistance)Letm = 2k?, 3 = §/m andp > 4,/mk'>3 be an odd positive
integer. Let alsoF € Z’;Xm be ak x m matrix that is chosen uniformly at random aitl = \F €
Z’;XW whereq and A\ are defined in Equation 1. If there is an algorithm that finds two veckoys €
{0,1,...,6}™ andx # y such thatMx = My mod ¢, then there is an algorithm to solve any instance of
the GAPSVP,, s /& problem.

Proof: Suppose there is an algorithm that findy € {0,1,...,0}™ with x # y such thatMx = My
mod ¢ = M (X —y) =0 mod q. This, by the definition o andM can be written as

MF(X—y)=0 mod A\p=3Ir cZF: \F(x—y)=rA\p=FXx—-y)=rp=Fx—-y)=0 mod p.

Therefore the non-zero vectar= x — y, which also has norrjz|| < (3, since its coordinates are between
—0 and 40, comprises a solution to the proble$i, ,,, 3 (note that matrix- by construction is chosen
uniformly at random). By Theorem 1, this can be used to s@#SVP, for v = 147vVkf3. Setting

B = dy/m we get the desired result]

Therefore we have just presented a collision-resistant hash funceosetiurity of which is based on
the difficulty of the problenGAPSVP,,. Note that as long as = poly(k), ~ is alsopoly(k) and therefore
the hash function is secure since for polynomjigkven forvy slightly smaller than exponential), no efficient
algorithm to solveGAPSVP, is known to date [32].

We can now extend the functidnto accept two inputs as follows: Denote witht the set of alin x 1
(m = 2k?) vectors such that their las entries are zero and the remaining entries afir, ..., §} and
analogously withl'®— the set of alln x 1 vectors such that their firgf entries are zero and the remaining
entries are if0,1,...,d}. For ak x m matrixM sampled uniformly at random we can define the function
h:TOF x TO~ — Zk

hm(x,y) =M(x+y) mod g, (2)

wherex,y € {0,1,...,d}™. Similarly as in Theorem 2, this function is strong collision resistant, i.e., if
someone can fingky,y;) € (T x T%) and(Xz,Ys) € (ToF x T%7) with (x1,y;) # (X2, Ys) such that
M(x; +Y;) = M(X2 +Y,) mod ¢ then one can solve the probleBAPSVP,, for polynomial~y. To see
that, note that the vector, — x» +y; — Yy, has coordinates if0, 1, ..., 6}, since, by the definition oF%+
andT?~, the entries ok; — X, andy, — Yy, do not overlap.

Authenticated data structures. As we mentioned in the introduction, there are three entities participating
in the authenticated data structures computational model [24, 36]. A trsstedethat owns, updates and
outsources his data structutg, along with a signed, timestamped, collision resistant digest &f,itp the
untrustedserversthat respond to queries sent by ttleents The serversshould be able to provide with
proofs to the queries and tioéentsshould be able to verify these proofs based on their trust to the source,
by basically using the correct and signed diggstComplexities relevant to the source are$berce update
time (time taken for the source to compute the updated digestice spacandupdate informatior(size



of information sent to the servers per update, i.e., the signed digest). aRelevthe servers argerver
update time(time taken by the server per updategrver spacequery time(time taken by the server to
compute a proof for a query) armmtoof size Finally, relevant to the client angerification timeandclient
spacewith obvious meaning. The client verification is performed using an algoritheoept, reject} «—
verify(q,11(q), d;), whereq is a query on data structuf®; andII(q) is a proof provided by the server. Note
that the digestl;, the digest ofD;, is an input as well. All these complexity measures are listed in Table 1.

Let now {reject, accept} « check(q, a(q), D;) be an algorithm that, given a quegyon data structure
D, and an answeiy(q) checks to see if this is the correct answer to quer\We can now present the
formal security definition, which states that it should be difficult (exceith wegligible probability) for a
computationally bounded adversary to produce verifying proofs fariect answers, even after he brings
the data structure to a state of his liking:

Definition 4 (Security) Supposé is the security parameter and is a computationally bounded adversary
that is given the public key of the soungle Our data structureDy is in the initial state with digesiy. The
adversary.A issues an updatepd, in the data structureD; for i = 0,...,h = poly(k) and therefore
computesD; .1 and d;11. Suppose now the source is givépn and issues a number of updates (say
updates), bringing the data structure to the statg, whereh’ = h + u + 1. Then the adversary enters the
attack stage where he chooses a qugand computes an answei(q) and a verification proofI(q). We
say that the authenticated data structure is secure if

Pr {(L H(Q)v a(q)} — A(lkv pk)a accept «— Verify(Q? H(Q), dh’); < V(k')
reject < check(q, a(q), Dyr); | digest(Dy/) =dpr | — ’

wherev (k) is negligible in the security parametér

3 Main construction

Suppose we are given a table that consista ofdices1,2,...,n. In each index we can store a value
x; from the setS = {0,1,...,C} where|S| = O(1). In this section we describe the application of the
lattice-based hash function on top of a structure ofdices, in the model described in the introduction.
Without loss of generality assume thats a power of two so that we can build a complete binary tree
on top of the table. LeT be that tree and le¢;, xo, . . ., X,, be the original values of the table. Assume each
of the elements i{0, 1, ..., C} can be represented with a vector of sizthat has entries ifZ,. Namely
X1,X2, ..., Xp € Z’;. We are going to use the hash functibi (x,y) defined in Equation 2 in a recursive
way to define the digest of the structure. We recall tha the security parametdy) is ak x m matrix
with elements sampled uniformly at random fréfp and then multiplied with\, m = 2k?, 3 = §,/m,
p > 4/mk'53 andg = Ap. We now prove some useful properties:

Definition 5 (Radix-2 representation) Letz € Z,. We definef(x) € Z’; to besomeradix-2 representation
of z. Namely iff () = [fo f1 ... fr_1]” thenit holdsz = """ 1,2 mod g.

By “some” radix-2 representation we mean that the functfon Z, — Z’; is “one-to-many”. For
example, forg = 16, x = 7, possible values fof (x) can be[1 1 1 0]7 (the usual binary representation),
[-1020]7 or[-5 —204]" (and many more). When the representati@n is the binary representation,
we will explicitly denote it with f,;, (.). We can now prove the following:

Lemma 3 Foranyz,y € Z, there exist radix-2 representatiorf$.) such thatf(z +y mod q) = f(z) +
f(y) mod q.
Proof: Letx = f(x) be a radix-2 representation efandy = f(y) be a radix-2 representation gf

Thenx +y = [Xo + VYo X1 + Yy ---Xk—1 +Y,_1]T mod g. The resulting vector is a radix-2 representation
of (Xo +¥g) x 20 + (X1 +yy) x 2 + ... 4+ (Xp—1 + Y1) x 271 mod ¢ which can be written as



Xo X 20+ xp x 2V Xy x 28 by x 294y x 2V 4 4y x 2871 mod ¢ = 2 +y mod g.
Thereforef(z) + f(y) =x+y = f(x+y mod ¢q) mod ¢q. O

Note that Lemma 3 is useful in the following sense. It tells us that if one hgg.amepresentation of
x+y mod ¢ (i.e., f1) and picks ary(.) representation of mod ¢ (i.e., f2), one can always find afy(.)
representation fog mod ¢, namelyf; — f>. Definition 5 can be naturally extended for vectors:

Definition 6 Letx € ij. We definef(x) € Z’f to besomeradix-2 representation at. Namely every;,
fori =1,...,k, is mapped to the respectikeentriesf(x;) in the resulting vectoy (x).

We can analogously generalize Lemma 3 as follows:

Corollary 1 For any x,y € Z’; there exist radix-2 representationy.) such thatf(x + y mod ¢q) =
f(X)+ f(y) mod g.

Finally, letU = [I,2 Q;2]" (U stands for “up”) and = [O}2 I;2]7 (D stands for “down”) ben x k?
matrices, wherd,; denotes the square unit matrix of dimenstoand O, denotes the square zero matrix
of dimensiont. It easy to see that for all € {0,1,...,5}k2 itis Ux € T%t andDx € T%~. Namely
multiplying matricedJ andD with a vector in{0, 1, . .., 5}"32 doubles the dimension of the vector by shifting
its entries accordingly and by filling the vacant entries with zeros. Thisatiparwill be used to prepare the
vectors in the appropriate input format for the hash function.

Digest definition. As we mentioned in the beginning of Section 3, we build a binary tre€lefels on
top of ourn-index table. For each nodeof the tree, we are going to define a collision resistant dig@st,
based on the lattice-based hash function we introduce in Section 2. Tte didbke root will serve as the
digest of the whole structure.

For every leaf node; of the tree; = 1, ..., n (note that at node; we store the valug;) we define the
leaf digestd(v;) simply asd(v;) = X; mod ¢. For an internal node, with left child left(«) and right child
right(u), we define thénternal digestas

d(u) =M [Uf(d(left(u))) + Df(d(right(u)))] mod ¢, ®3)
where, by the constraint of the inputs in the definition of the hash functioguation 2, it must be

F(d(left(u))), f(d(right(u))) € {0,1,...,0}™/2. (4)

We note here that when the table is built for the first time (initial state), the @depresentatiorf(z)
used is thek2-bit binary representation of, i.e., the entries off(z) are in{0,1}. Note that the binary
representation satisfies the constraints of Equation 4 dincel  {0,1,...,d}. Part of the challenging
job would be to ensure that whenever we perform an update the cotswhquation 4 are in place.

The flow of the computation in Equation 3 is as follows (see Figure 1): Gimentarnal node., with
childrenleft(u) andright(u), digestsd(left(u)), d(right(u)) € Z&. By applying f(.) we transform them
into vectors ofk? “small” entries. By multiplying withU andD we “prepare” them to be input to the hash
function, as defined in Equation 2. Thatice digestbof a tablex;, X, ..., X, € Z’; is defined as follows:

Definition 7 Letn = 2¢, X1, Xa, ..., X, € Z’; be the values of the table that is to be authenticated’&nd
be the complete binary tree of rootand height/ that is built on top of the table. Suppose we compute the
digestsd(u) of the nodes: of the tree as above (Equation 3). We definelétiice digesof a nodeu to be

the valued(u) and thelattice digesbf the table to be the valugr).

We now present the main result of this section, namely the fact that the lattiest dign be expressed
as a sum o terms, which will eventually allow for more efficient updates. bet(x) denote the binary
representation of — 1 andbin(z); thei-th bit of bin(x):



Theorem 3 Letn = 2¢, X, X, ..., Xy, € Z’; be the values of the table that is to be authenticatedAru

the complete binary tree dflevels that is built on top of the table. Letbe an internal node of” at level

0 <t < {,T(z) be the subtree rooted atandrange(z) be the range of successive indices contained in the
leaves ofl'(z). Then thdattice digesti(z) of = can be expressed as

d(z) = Y MA 1) fier)(MA 0 figera) (- - - fiem1) (MA G fie(Xi)) ...))  mod g,
i€range(z)
whereA;; = U if bin(i); = 0, A;; = D if bin(i); = 1 and f;; are somef (.) representations.

Proof: (sketch) By induction on the levels of the tree: We use the definition of thesd{&eguation 3)
recursively on all the nodes of the tree and start applying Corollaryhi&nTve can express the digest as a
sum of terms that are functions of the specific values stored in the tablei@olt in the Appendix). O

Ufk) Dfx) Ufx) Dftx) Ufx) Df(x) Uf(x) Di(x) MUE, (MUFLMUE ) MUT(MUF (DK ) MUF, (MDF-(MUF_6c3)) WU, (M (M , )

Figure 1: (Left) TreeT built on top of a table with 8 values,,xs,...,Xs. After producing anf(.)
representation (with entries §0,1,...,4}) of the child digests, we multiply with eith&s or D, then we
add the two resulting digests and we compute the hash function on them by mugtiplgmM. (Right)
Left part of the tree and relation (indicated with dash lines) between spégifi) representations of the
additive terms computed by Theorem 3 and ftig representation of the internal nodes. Note thatfthe
representations of the internal nodes are the sum of those spggfficrepresentations of the leaves, for

example,f(d(ri1)) = fi1 + fa1 + f31 + fa1 mod gq.

For example, suppose we have a table of eight vatues, . . . , Xs. Rootr lies at level 0 and the leaves
lie at level?, as in Figure 1. Let;; be thej-th node at level for i = 1,..., ¢, with the numbering going
also from the left to the right. Thiattice digestof the table can be expressed as follows (see Figure 1),
according to Theorem 3 and by setting the internal node in Theorem 3 te bedhof the tree:

d(T) = MU fll(MU flg(MU f13(X1))) + MU le(MUfQQ(MDfQ?,(Xl))) + MUf31(|V|Df32(|V|U f33(X3))) +
MU f41 (MD f42(MD f43(X4))) + MD f51(MU f52(MU f53(X5))) + MD fe1 (MU fe2(MD f53(Xs))) +
MD f71(MD f72(MU f73(x7))) + MD fg1(MD fg2(MD fs3(Xg))) mod gq.

Here it is very important to say that the abofg(.) expressions are sonyg.) representations that anet

the binary representationgalthough it can happen sometimes, in the absence of carries). We rextall th
the binary representation is only used in thigial computation of the digest of the table. The flow of the
computation of the digests is depicted in Figure 1.

Digest security. We now give the main security claim for the strong collision resistance ofatttiee
digest given the results from Merkle [25] and Naor and Nissim [27]. In f&&or and Nissim [27] and



Merkle [25] used exactly the same algorithmic construction (i.e., a binarytowgepvide a solution for an
authenticated dictionary, generalizing their result for every strong calligsistant hash functioi

Remark 1 (Naor and Nissim [27]) Possible choices fat include the more efficient MD4 [33], MD5 [34]
or SHA [38] (collisions for MD4 and for the compress function of MD5 wertefibby Dobbertin [12, 13])
and functions based on a computational hardness assumption suchtesdness of discrete log [3, 8, 11]
and subset-sum [17, 21] (these are much less efficient).

The importance of the above remark is that essentially, one can use amy stitision resistant hash
function h(z,y) for a Merkle tree construction, given the hash functidn, y) is secure according to a
widely acceptable computational assumption. Namely, it should be difficult ifighpuld happen with
negligible probability~(k)) for a computationally bounded adversary to fipdy) # (2/,y’) such that
h(z,y) = h(2',y"). We therefore have the following result:

Theorem 4 (Strong collision resistance of the lattice digest).et k& be the security parameter, = 2k2,
B = dy/m andp > 4/mk">3 be an odd positive integer. Let al§oc Z’;X’” be ak x m matrix that is
chosen uniformly at random amd = \F < Z’;Xm whereg and )\ are defined in Equation 1. Let also= 2°,
X1,X2, ..., Xp € Z’qC be the values of the table that is to be authenticated, havilagtiae digestequal to
d. It is computationally infeasible, i.e., it happens with negligible probability), for a computationally
bounded adversary to find a different talylg y,, ...,y,, € Z’; of lattice digest equal td, unless there is a
polynomial-time algorithm for any instance of the probl&hPSVP., for v = 1476\ km.

Proof: By Remark 1 we can use any strong collision resistant hash function tosiezly define a digest
of a Merkle tree. Here we are using the function of Equation 2 which isgtrotiision resistant according
to Theorem 2, unless there is a polynomial-time algorithm for any instance @i titdemGAPSVP,, for

v = 1476vVkm. O

Digestupdate. Suppose now thad;, Xa, ..., X, € Z’; are the values of the table and that ktice digests
have been computed. Lébe the initiallattice digesif the table. The objective of the update is to compute
the newlattice digestof the table, in constant time, whenever the content of some index chaffigeshow
how an update at indek < w < n can be performed, which applies for all indices. Note that for index
where the value,, is stored, the additive term from Theorem 3 is

term(xw) = MAwlfwl(MAwawg(. .. fw(g_l)(MAwgfwg(Xw)) .. )) mod gq, (5)

where f,;(.) (¢ = 1,...,¢) are the suitablef(.) representations (Definition 5) after thegtice digests
have been computed and Corollary 1 has been appliedh\andire eitherU or D according to the binary
representation ofv (see Theorem 3). Let now,, = X,, be the content of th¢,,(.) representation in
Equation 5 and

Gwi = MA 4 (i11) Fu(it1) (MA w(it2) fuir2) (- - - fue—1) (MAwe fue(Xw)) - - -))  mod ¢, (6)

fori =1,...,¢ — 1 be the content of thg,;(.) representation in Equation 5. Note tixatdoes not appear
in any other additive terrterm(x;) for all j # w (see Theorem 3). Suppose now we update indexd we
replacex,, with y,,. The new digest, by Theorem 3, can be computed as

d = d — term(X,) + term(y,,) mod q. (7)

where
term(Y,,) = MA w1 fit (MA w2 fio (- - oo 1) (MA wefope(Yey)) - - ) mod g, (8)

and where now the updatef], values are defined as in Equation 6. Note however that one cannatyse a
radix-2 representatioifi .(.) (: = 1,...,¢) during the update (Equation 8). One has to be careful to use

9



such a representation that does not violate the “small input” requiremenvéator entries if0,1...,0})
for the hash function, after the update takes place. The fie(v) representations, in order to satisfy that,
crucial for the security (see Definition 2), requirement, are computeat@dicg to the following definition:

Definition 8 (Updated radix-2 representations) Suppose the value of index is x,,. An update is is-
sued and the value of index changes toy,,. Letq/, =y,. Then, fori = ¢,...,1 the updatedy, ;

and f,,(.) values are computed as follows, (#),(q.,;) = fuwi(qwi) + fbin(d,y; — qwi) mod ¢, and (b)
qgu(i_l) = MA;f!.(d,;) mod g, whereq,, = term(y,,) andA,,; are eitherU or D according to the
binary representation af.

The representatioffi ,(¢.,;) computed in Definition 8 is a corre¢y.) representation of,,, since, as
foin(¢; — ¢;) is an f(.) representation, by Corollary 1 we hayg; (¢.;) = f(quwi + ;i — quwi) = f(d.;)
mod ¢, which is a correcy(.) representation of, ;. We now present the main theorem of this section:
Theorem 5 Letn = 2¢, X1, Xa, ..., X, € Z’g be the values of the table that is to be authenticated &And
be the complete binary tree éflevels that is built on top of the table. For= ¢,...,1, let {v;} be the
logarithmic-sized path from some indexto the root’s childv;, d(v;) be the respectiviattice digestand
f(d(vy)) € {0,1,...,8}™/? be thef(.) representations of them. An update is issued and the value of index
w changes toy,,. If f(d'(v;)), 7 = ¢,...,1 are the updatedf(.) representations of the path nodes, then
for everyi = ¢,...,1, after the update, it holdg(d'(v;)) < f(d(v;)) +[1 1 ... 1]T, where inequality is
defined component-wise afidl ... 1]7 has sizen/2.

Proof: (sketch) The relation between #0 ) representation of a node lying at levelt and thef;; represen-
tations of the leaf nodes i8(v;) = Zierange(v) fit(qir), whereg;; are defined in Equation 6 (see Figure 1).
If we update thef;;(.) representations according to Definition 8, the entries offthg¢ representations of
the internal nodes can be increased by at most 1 (a binary vector id)dtldeproof in Appendix). O

Note that the above theorem is very important for proving the desiredeipdeplexity (see Theorem 6)
since it ensures, that even after updates, the security of the hasiofusmall inputs) is maintained.

4 Authenticated data structure

In this section we describe how exactly the lattice-based construction isruagtiree-party authenticated
data structure model, which consists of three entitiedrttstedsource, theintrustedservers and the clients.
Let1,...,n be the indices of the table amd, xo,...,X, € Z’; are theinitial values of the table. Due to
space limitations, all the proofs in this section appear in the Appendix.

System setup. We fix the parameters that we are using in our construction as follows: Wéd that

k is the security parametel] is ak x m matrix with elements sampled uniformly at random fraiy

m = 2k%, B = 6y/m, p > 4y/mk'®3, ¢ is ak-bit modulus and\ = ¢/p. It is easy to see that given

k andé there is always @ = O(k3°9) to satisfy the above constraints. Let's get= [c1k3°5] + 1 or

p = [c1k>%5] such thap is an odd positive integer, as required by Theorem 1, for some suitaitar

c1. Finally we sety = n, wheren is the size of our structure, which is a polynomially bounded value (we
are in the computational model). This setup, by Theorem 2, will give a aarigin that is secure based
on the difficulty of GAPSVP,, for v = 1476vkm. In specific, sincen = 2k* and§ = n we have that

v = O(nkv'k) = O(k°) for somec = O(1).

Source. We recall that in each index ifil,...,n} the source can store one of the values of the set
S = {0,1,...,C}. Each element of the sét is represented with a distinct eIementZ’JJ and|S| =
O(1). Note that the possible states of the table is thereff§fé, exponentially large. Suppose now that
X1,X9, ..., X € Z’; are theinitial values of the table and that thatice digestdhave been computed using
the binary representations in Equation 3. The source, for each index {1,...,n} does the following
precomputations: For each valyg; € S — {z,,} (j = 0,1,...,C) it computes andtoresterm(y,,;) as
defined in Equation 5 and by using Definition 8 to compute the updgigd) representations. The initial
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qwi Values that appear in Definition 8 are the ones derivetkby(zx,, ), the initial value of the index. These
initial ¢,,; values are used for the computation of all the the updgte€) representations that correspond
to termsterm(y,,;). Note that the source does not have to store the tree and the digest déthalinodes,
since the source is only interested in correctly updating the lattice digest.

Theorem 6 The source update time @(1) per update, the source perforni¥ 1) group operations per
update and keep@(n) space. Moreover, the update authentication information has(2{z¢ and consists
of O(1) group elements.

Servers. The servers, whenever an update at indeis issued by the source, have to updatel#ttice
digestin the same way that the source did. Therefore they could achieve thisgaskia O(1) time.
However, since they have to provide proofs to the clients for futureiegiehey have to update the digests
of the internal nodes (the nodes belonging to the logarithmic-sized pathrid@rw to the root of the tree)
that are influenced by the update and as a resuli¢heersupdate time cannot b@(1):

Theorem 7 The server update time 8(log? n) per update, the server perforni(log? n) operations in
Z’; per update and. keep3(n) space. Also, the server query tim&lglog n), the proof for a query has size
O(logn) and consists o (log n) group elements.

Clients. Suppose a client sends a query to the server for the value of ind&fter the client verifies the
freshness of the lattice digest sent by the source (which takesQirhy, it verifies the logarithmic sized
proof sent by the server by performing multiplications with malixuntil the client computes the authentic
digest sent by the source. This verification is very similar (only the crypfagc primitive changes) with
the one performed when using a Merkle tree [25]. If there is a match withigined digest, the client
accepts the answer, else it rejects. Each multiplication at every node ddtthéages time) (k*) and since

it is performedO(log n) times, the verification time i©)(k*logn) = O(logn). We give the following
result for the client:

Theorem 8 The client verification time i§(logn) per query, the client performS(logn) operations in
Z’; per query and the client keep¥(1) local space.

Putting everything together we can state our main theorem for the threenpedsf:

Theorem 9 Let k be the security parameter. Then there exists a three-party authenticatadsucture
for authenticating a dynamic table af indices such that: (1) It is secure according to Definition 4 and
assuming the hardness GAPSVP., for v = O(nkv'k); (2) The source update time 3(1) and involves
O(1) group operations; (3) The server update time&igog® n) and involvesD (log? n) group operations;
(4) The source space 3(n); (5) The server space ©(n); (6) The client space i©)(1); (7) The server
query time i90(log n); (8) The client verification time i©(log n) and involves)(log n) group operations;
(9) The proof has siz&(logn) and consists 0 (logn) group elements; (10) The update authentication
information has siz€(1) and consists of)(1) group elements.

Proof: The security is proved from Theorem 4, i.e., we are using a provabiyeeollision resistant hash
function and we maintain its security under updates (by using Theoremlighefother points are due to
Theorems 6, 7 and 8. Also note that= O(nkv/k), since by Theorem 4 we need= 1476vkm and,
m =2k?>andd =n. O

5 Authenticated Bloom filters and discussion

In this section we show how we can use the lattice-based hash function émticite the Bloom filter func-
tionality, a space efficient dictionary data structure, originally introducd@]inThe Bloom filter consists
of an array (table}[0...n — 1] storingn bits. All the bits are initially set t0. Suppose one needs to store
a setS of r elements. The hash functiong;(.) with range{0, ...,n — 1} are used and for each element
s € S we setthe bitsA[h;(s)] to 1, fori = 1,..., K. In this way, false positives can occur, i.e., even if an
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element does not belong to ti$e it might be represented iA. The probability of a false positive can be
proved to bg1 — p)X, wherep = =57/ which is minimized fork’ = In 2(n/r) [6].

The Bloom filter above supports only insertions though. A deletion (i.e., sestbimg bits td)) can cause
the undesired deletion of many elements. To deal with this proldemmting Bloom filtersvere introduced
by Fan et al. [15]. In this solution, by keeping a counter for each indeA @nstead of jusO or 1), we
can tolerate deletions by incrementing the counter during insertions anehtimtting the counter during
deletions. However, the problem oferflowexists. As observed in [9], the overflow (at least one counter
goes over some valu€) occurs with probabilityn(eln2/C)¢, for a certain set of elements. Setting
C =0(1) (e.g.,C = 16) is suitable for most of the applications [9].

By the above description, it is clear that we can use our lattice-basethwditn to authenticate the
Bloom filter functionality: Each index of our table can take values from thg@e..,C}, whereC =
O(1). Note that constant update complexity in this application is very important ghatra Bloom filter
is anupdate-intensivelata structure (i.e., an insertion or deletion of an element invalyesperations).
Therefore we have the following result:

Theorem 10 Let k be the security parameter. Then there exists a three-party authenticatedtducture
for authenticating a Bloom filter of size storingr elements and using” hash functions such that: (1) It
is secure according to Definition 4 and assuming the hardne§AISVP., for v = O(nkv'k); (2) The
source update time i9(K) and involves) (K ) group operations; (3) The server update timeigk log? n)
and involvesO(K log? n) group operations; (4) The source spacelén); (5) The server space i9(n);
(6) The client space i©(1); (7) The server query time i©(K logn); (8) The client verification time is
O(K logn) and involvesD (K log n) group operations; (9) The proof has sig¥ K logn) and consists of
O(K log n) group elements; (10) The update authentication information hag’¥jzgand consists of)(1)
group elements.

It is safe to assume the hardnessGXPSVP., for v = O(nkVk). This is because we are in the
computational model, thereforehas to be polynomial in the security parameter GAPSVP.,, is assumed
to be hard for anyy polynomial ink [32]. For future work we envision reducing the complexities of
our construction (e.g., server update) and, more importantly, applying fattceore authenticated data
structures problems, e.g., deriving a lattice-based cryptographic attomu
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6 Appendix
6.1 Proof of Theorem 3

We prove the claim by induction on the levels of the tféd-or any internal node that lies at level — 1,
there are only two nodes (that store for example vaka¢keft child and odd index) andx; (right child and
even indexj) and belong taange(u)) in the subtree rooted am the root isu and therefore, by Equation 3
we indeed have

d(u) =M [Uf(X:) + Df(x;)] = MU fpin(X;) + MD foin(X;) ,
whereA;; = U andA;; = D, sincei is odd and; is even. Assume the theorem holds for any internal node
v that lies at leveDd < ¢t + 1 < £. Therefore

d(v) = Z MA i(142) fice+2) (MAGe43) Fiers) (- - - fie—1) (MA e fie(X;)) .. .))  mod g,
i€range(v)

whereA;; = U if bin(i); = 0 andA;; = D if bin(i); = 1 and f;;() are somef(.) representations. For any
internal node: that lies at levet, the new digest is produced by combining (see Equation 3) two digests that
correspond to two different trees rooted at level 1 and of rootdeft(z) andright(z) (the left and the right
child of z respectively), i.e.,

d(z) = M[Uf(d(left(z))) + Df(d(right(z)))] mod ¢

= MUf ( Z MA (112 fitt+2) (MA 13 Fiea3) (- - - fie—1) (MA G fie(Xi)) - - ~)))

i€range(left(z))

+ MDf( Z MAi(t+2)fi(t+2)(MAi(t+3)fi(t+3)(-~-fi(e1)(MAiéfi£(Xz‘))-~~))> mod g .

i€range(right(z))
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By applying Corollary 1, we can break eagh) expression into multiplg (.) expressions and therefore we
have

d2) = > MAen) figry MA o) fiera) (- Fiem1y (MAGf(X:)) ...)) mod g,
i€range(z)
whereA;; = U if bin(i); = 0 andA;; = D if bin(i); = 1. This completes the proofJ

6.2 Proof of Theorem 5

Let v, be an internal node df at levell < t < /¢, T'(v;) be the subtree rooted anp andrange(v;) be its
range, wherev € range(v;). By Theorem 3 we have that, before the update it is

d(v) = Z term(X;) = term(X,,) + Z term(x;) mod q.
i€range(vt) i€range(vy)—{w}

After we apply Corollary 1 and by using the notation of Definition 8 we have

f(d(ve)) = fterm(Xy))+f ( Z term(Xi)) = fut(qut)+f ( Z term(Xi)) mod q.
)—{w} )—{w}

i€range(vt i€range(vt

By the way updates are performed (see Definition 8) the quaftity;)) + fuin(¢; — g:) can be written as

F(d(ve) + foin(@opr — qut) = Foin(@oor — Qut) + fuot(Gut) + f ( > term(&')) mod ¢

i€range(vy)—{w}

= f;t(qiut)+f< > term(xi)) mod ¢
)~ {w}

i€range(vt

= f(term(yw))+f( > term(Xz')) mod ¢
)—{w}

i€range(vt

= f (term(yw) + Z term(xi)) mod g
)—{w}

i€range(vt

= f(d'(v)) modgq.

From the above argument and by the facts thak(v;)) € {0,1,...,6}™2 and0 < fuin(dhr — Gut) <
[11 ... 1%, we have that

F(d (o) = f(d(wr)) + foin(qur — qwt) = f(d'(00)) < fd(v)) + 11 ... 17,
O

6.3 Proof of Theorem 6

Assume the setup of Section 4. Suppose the initial state of the taglexis . . . , x,, € Z’g and that the initial
digest of the table ig. As we showed before, for each indexc {1,...,n} the source does the following
precomputations: For each valyg; € S — {z,} (j = 0,1,...,C) it computes and storesrm(y,,;) as
defined in Equation 5, whetg = {0, ..., C}. Each termterm(y,,;) is an element irZ’(j and therefore the
source need®(k?) x O(|S|) bits for each indexv. Therefore the space neededi§n).
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The source issues an update that changes the value ofunttexn x,, toy,,. Then the updated digest
d' is computed by Equation 7 by setting

d = d — term(Xy) + term(y,,) mod q,

which requires two additions (i.e)(1) operations) irZ*, which take timeO (k?) = O(1) (k is a constant).
By using the precomputed table with the) representations, this can be don®id ) time, increasing the
space taD(nd log d), as shown in Section 4. We now prove that there is no internal node ofthernhose
lattice digest has affi(.) that has coordinates not {0, 1,...,5 = n}, and therefore during all the updates,
secure digests are being produced. Suppose in the worst casastaermternal node such that all the
logarithmic-sized paths of the updates cross through itdyt) be the digest of in the initial state. Then,
since the binary (.) representation is used in the beginning, we have that

fldo(v)) <[L1... 17,

where[1 1 ... 1] has sizen/2. Suppose an update is issued which increases the Hamming distance by
one and which changes the digestidv) (note that updates that do not increase the Hamming distance,
i.e., they update already updated indices do not increase the bounda&ihb). Then by Theorem 5 we
have

fldi(v) < f(do(w))+[11 ... )T <211 ... 7.

Similarly, for thei-th update that increases the Hamming distance by one we have that
fldi() < fldig(w)+01 ... )T <GE+Da1... 17,

This implies that while the table is kept in Hamming distancéhere cannot be any internal node, whose
f(.) representation has a coordinate greater thas required by the “small input” constraint (Equation 4).
Since we have sét = n and the maximum Hamming distanceriswe can have unlimited updates. This
means that at any state of the table, there cannot be an internal node f\hoeepresentation violates
Equation 4. As for the update authentication information, this is a signature déttice digest, which is
O(1) bits long and therefore the signature is al$@ ) bits. O

6.4 Proof of Theorem 7

Suppose the initial state of the tablexig xs,...,X, € Z’;. The server stores the binary tree on top of
the table, and at each internal nadef the binary tree it also stores tlfé.) representations of two lattice
digests: Firstly, it stores the binary representatfdi, (v)) of the lattice digestly(v) € Z] of nodev that
corresponds to the initial state of the table. Secondly it storegtheepresentatiorf(d(v)) of thecurrent
lattice digest of the table, denoted wiftw). Since eacty(.) representation require(k3) bits (we recall

that eachy(.) representation hds’ entries inZ, and therefore (k3) bits are needed) and the tree i3%)
nodes in total, the server needs spafé>n) = O(n). Suppose now an update is issued, that changes the
value of the indexv from x,, toy,,. Letvy, vy_1,...,v; be the path from the node of indexto the child

v1 of the root of the tree. Let

term(Xw) = MAwlfwl(MAwawQ(- .. fw(é—l)(MAwEfwé(Xw» .. )) mod q,

and
term(Yy,,) = MA 1 frp1 (MA w2 fro (- - f{U(Z—l)(MAwZ we(Xw)) - ..)) mod g.

Let now g;; andq;j be the contents of the representatigig.) and ,-’j(), as defined in Equation 6. Note
that according to the proof of Theorem 5, we have that; feré, . .., 1

f(d (vi)) = f(d(vs)) + foin(dhs — Gwi) mod q.

16



Fori = ¢,...,1 all this computation can be performed@{k3logn) = O(logn) time, giveng,; andqy,

are known. We show now how we computg; andq/,,. We first computey,,; and f,,;(qu:). If we begin
from the f(.) representation afy (v ), which is actually a binary representation since it is refers to the initial
state of the table, we have that

Join(do(v1)) = foin(M[U foin(d(left(v1))) + D foin(d(right(v1)))]) mod ¢q.

Assume thab; = left(v;_1) (the same applies for every other combination) foria#t 2, ..., ¢. Then the
above is written as

Join(do(v1)) = foin(M[Ufpin(do(v2)) + D foin(do(right(v1)))])
= fbin(MU fiin(do(v2)) + MD fiin(do(right(v1))))
= f*(MU fuin(do(v2))) + f*(Dfoin(do(right(v1)))) mod ¢, 9)

wheref*(.) are somef(.) representations that are computed deterministically, and, in the same way by the
source: For example, it can be the case that theffeft) expression is always a binary representation. But
how long does it take to implement the above “break-up” and computg*thg representations? First of
all, one needs to compute the produltsl fi;, (d(v2)) andMD fy;n (d(right(vy))), which take timeO (k*)
and then run the deterministic algorithm that computes theftifo representations i®(k?) time, since,
in order to compute a binary representatjtii.) one needs timé&(k?) and the substraction to compute the
other f*(.) representation takes tind@(k?3).

Note now that we are interested to continue this computation only for the left aéfByuation 9.
Therefore
J*(MU fin(do(v2))) ¥ (MU fuin (MU fuin(do(vs)) + D fiin(do(right(v2)))]))
= f*(MU fpin(MU fiin(do(v3)) + MD fuin(do(right(v2)))))

S (MU f*(MU fpin(do(v3))) + MU f*(MD fpin (do(right(v2)))))
= [ (MU £ (MU fiin(do(v3)))) + f*(MU f*(MD fiin(do(right(v))))) mod q.

Namely, at the second level, we have one more “break-up” and therefothis way, at the)(log n)-th
level we have)(log n) “break-ups”. Therefore the time complexity of computipg and fu; (qw:) IS

O(logn)
> O(ik*) = O(k*log® n),

i=1

which makes that time complexity of the update algorithm equél(iog? ») (we recall, that, in our setting,
k is a constant). The query time involves the computation of the proof, basicafiputing the collection of
f(.) representations along the path of the queried index. The proof is goirgthefollowing logarithmic-

sized tuple:

{f(d(ve)), f(d(sib(ve))), f(d(ve-1)), F(d(sib(ve-1))), - - -, fd(vr)), f(d(sib(v1)))}

exactly as is done in the computation of a Merkle tree proof. This takKés$logn) = O(logn) time to
compute, since we have to colle@flog n) vectors ofO(k?) bits each, which makes the proof size also
O(K3logn) = O(logn). O
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6.5 Proof of Theorem 8

Suppose the client queries for index Let v, vs_1,...,v1 be the path from the node of indexto the
child v; of the root of the tree. The server computes the following proof

{f(d(ve)), f(d(sib(ve))), f(d(ve-1)), f(d(sib(ve-1))), - -, fd(v1)), f(d(sib(v1)))}

and also sends the answer “the value of indeis r,,”. The client checks to see jf(d(v¢)) = f(r,) and
accordingly performs the following checks:

F(M[AiLf (d(vi)) + A f(d(sib(ve)))]) = f(d(vi1))?

fori = ¢,...,2 and whereA;; andA;, are eitherU or D depending on the binary representationuof
During these computations the client should also check to see that the @iesdifithef (.) representations
are in{0,1,...,n}, so that the constraint of Equation 4 is satisfied. Finally] i§ the authentic digest
received by the source the client performs the final verification, i.e.hbeks to see iIM[A;; f(d(v1)) +
A12f(d(sib(v1)))] = d? If all the checks succeed, then the client accepts the answer, othéheislient
rejects. Since the client has to @log n) checks, each one taking tini& k%), since matrix multiplications
are involved, the verification time 9 (k*1ogn) = O(logn). Finally, the client needs only to locally store
the public key of the source, in order to verify the signature on the digbstefore the local space needed
isO(1). O
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