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Abstract

We study the problem of authenticating ann-indexdynamic tablein the authenticated data structures
model, which is related to memory checking. We present the first lattice-basedauthenticated structure
for this problem, which isupdate-optimal. In specific, the update time isO(1), improving in this way
the “a priori” logarithmic limit (inn) of Merkle tree constructions. Moreover, the space is maintained
to beO(n), while other logarithmic bounds for other complexities (e.g., proof size) are still in place.
To achieve this result, we exploit the “linearity” of lattice-based hash functions and show how necessary
properties —for security—of lattice-based digests can be guaranteed under updates. This is the first con-
struction achieving constant update bounds without causing other time complexities to increase beyond
logarithmic. All previous solutions enjoying such an update complexity have (sub)linear proof or query
bounds. As an application of our lattice-based authenticated structure, we provide the first construction
of an authenticated Bloom filter, an update-intensive data structure that falls into our model.

Keywords: Authenticated data structures, lattice-based cryptography.

1 Introduction
Increasing interest in online data storage and processing has recently led to the establishment of the field of
cloud computing[20]. Files can be outsourced to service providers that offer huge capacity and fast network
connections (e.g., Amazon S3) as a means of mitigating maintenance and storagecosts. In this way, clients
create virtual hard drives consisting of online storage units that are operated by remote and geographically
dispersed servers. In such settings, the ability to check the integrity of remotely stored data is an important
security property, or otherwise a faulty or malicious server can lose or tamper with the client’s data (e.g.,
deleting or modifying a file). In order to solve the problem of efficiently checking the integrity of outsourced
data, the model ofauthenticated data structures(see, e.g., [24, 36]) has been developed, which is closely
related to memory checking [7]. In an authenticated data structure, untrusted servers answer queries on a
data structure on behalf of a trusted source and provide a proof of validity of each answer to the user.

In specific, in an authenticated data structure, there are three participatingentities. The owner of the data,
calledsource, outsources its data to multiple untrusted sites, calledservers. Theclients, due to scalability
issues can only send queries to theserversand wish to verify answers received by the servers, based only
on the trust they have to the source. This trust from the source to the clientsis usually conveyed through a
time-stamped signature on the data structuredigest, a collision resistant succinct representation of the data
structure (e.g., the root hash of a Merkle tree).

In the study of authenticated data structures, apart from achieving provable security under a well-
accepted assumption (e.g., strong RSA assumption), it is important to achieve small asymptotic bounds
for relevant complexity measures, which are listed in the first column of Table1 (also explained in more
detail at the end of Section 2). Therefore, there is typically a challenging trade-off between security and
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Table 1 Asymptotic time and space complexity of previous solutions and of our work for the problem of
authenticating a dynamic table of sizen. We denote withk the security parameter. Parameter0 < ǫ < 1
is a constant that can be arbitrarily chosen. Also, “D. Log” stands for “Discrete Logarithm”, “Generic CR”
stands for “Generic Collision Resistance”,GAPSVPγ is the gap version of the shortest vector problem in
lattices (see Definition 1), whereγ = O(nk

√
k).

[7, 27] [4] [29] [10, 35] [18] [30] this work

source update log n 1 1 1 nǫ 1 1

server update log n 1 n n log n nǫ 1 log2 n

server query log n n 1 1 nǫ nǫ log n

verification log n n 1 1 1 1 log n

source space n n n n n n n

server space n n n n n n n

proof size log n n 1 1 1 1 log n

update info. 1 1 1 1 nǫ 1 1

assumption Generic CR D. Log Strong DH Strong RSA GAPSVPγ is hard

efficiency. In this work we show that the cryptographic primitive used canhave a significant impact on the
efficiency of the structure. Towards this goal, we employlattices, a mathematical tool that was shown to
have many applications in cryptography after Ajtai’s seminal result [1] andwe provide the first constant
complexity bounds for the update time of a lattice-based authenticated structure.

The motivation for this work stems from the absence in the literature of an authenticated structure where
an efficient update (e.g., inO(1) or O(log log n) time) does not cause other complexity measures to “blow
up” to sublinear or linear. For example, although updates are optimally performed inO(1) time in [4], the
size of the proof implied with such an authenticated structure isO(n), i.e., to prove an element that has been
accumulated to anoptimallyupdatable digest, all the elements have to be communicated. Similarly, in [30],
while more optimal bounds due to the use of accumulators are achieved, thereis a sublinear complexity
O(nǫ) for query or update time, a trade-off that was also observed in [14]. Therefore, if one wishes to
avoid (sub)linear complexities, one has to resort to the extensively used,both in theory and practice, Merkle
tree [25], or various alternations of it [7, 19]. However, all solutions based on Merkle trees and use “generic
collision resistance1” (see Table 1) as a hardness assumption, inherently enforce logarithmic complexities
on all the complexity measures. In this paper we combine the merits of a Merkle tree (a binary tree is used
in our construction) and the convenient “linearity” of lattice-based hash functions [17] towards constructing
a constant-update authenticated structure, while keeping other complexity measures logarithmic.

In this work, we use a model similar to that of memory checking [7]. The structure we wish to authen-
ticate is adynamictable of sizen, accessed through indices1, . . . , n. The table is dynamic and each index
can take one ofC different values, e.g., forC = 2 we have abooleantable. The valueC is not dependent
onn, i.e.,C = O(1) (it can also bepoly(k), wherek is the security parameter).

Related work. Lattice-based cryptography began with Ajtai’s first construction of an one-way hash func-
tion based on hard lattice problems [1]. This function was shown to be collisionresistant by Goldreich [17]
and further generalizations of it were given by Micciancio [26]. Other hash functions based on lattices with
reduced public key size are due to Micciancio [23] and Peikert [31]. Recently,trapdoor functions based on
lattices were introduced in [16].

In the field of data integrity checking, several authenticated data structures based on cryptographic hash-
ing have been developed, beginning with the well-known Merkle trees [7, 25, 27] and modifications of

1We callgeneric collision resistant functions(Generic CR in Table 1) those functions that are believed to be collision resistant
in practice (e.g., SHA-256).
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it [19]. Lower bounds for hashing-based methods in the authenticated data structures model are shown
in [37], and in the context of memory checking in [14, 28]. Authenticated data structures using other crypto-
graphic primitives, such asone-way accumulators[2, 5, 10] are presented in [18], achievingO(nǫ) bounds.
Bilinear pairings accumulators, the security of which is based on the strong Diffie-Hellman assumption, are
introduced in [29]. Authenticated hash tables proved secure under the strong RSA assumption or the strong
Diffie-Hellman assumption are introduced in [30], where, however, the update or query time is sublinear.

We observe that all of the above constructions belong to one of the following two categories: either
(a) they have logarithmic source update complexity, with all the other complexity measures being also
logarithmic, e.g., [7, 19, 27]; or (b) they have sublogarithmic source update complexity (e.g., constant) but
at least one of the other complexities is (sub)linear, e.g., [4, 29, 30]. A summary and comparison of our work
with previous constructions in the literature can be found in Table 1. We note that, to our knowledge, this is
the first construction that enjoys a constant update time complexity, without anincrease in other complexity
measures. We are able to achieve these bounds by exploiting the “linearity” of lattice-based hash functions,
which other primitives such asgeneric collision resistant functions(used in [7, 19, 27]) andexponentiation
functions(used in [4, 29, 30]) lack.

Contributions. Our main contribution is the construction of an update-optimal authenticated datastruc-
ture for ann-index table based on lattices. The update time of the authenticated structure isO(1) per update
and the space complexity isO(n). Our authenticated structure is update-optimal: The update complexity is
constant, i.e., not dependent onn, while logarithmic costs for other complexity measures are still in place.
This is the first lattice-based authenticated structure and the first one to achieve constant update bounds.
All previous solutions enjoying such an update complexity have (sub)linearproof or query bounds. As an
application of our lattice-based structure, we provide the first construction of an authenticated Bloom filter.

2 Preliminaries
We start with some preliminary notions that are important in our main construction.In the following, we use
k to denote the security parameter (we do not usen as is usually done in lattice-related bibliography) andn
to denote the size of the table to be authenticated. We use upper case bold letters to denote matrices, e.g.,B,
lower case bold letters to denote vectors, e.g.,b and lower case italic letters to denote scalars. Finally, for a
vectorx = [x1 x2 . . . xk]

T , ‖x‖ denotes the Euclidean norm ofx.

Lattices. Given the security parameterk, a full-rank k-dimensional lattice is the infinite-sized set of
all vectors produced as the integer combinations{∑k

i=1 xibi : xi ∈ Z, 1 ≤ i ≤ k}, whereB =
{b1, b2, . . . , bk} is the basisof the lattice andb1, b2, . . . , bk are linearly independent, all belonging to
R

k. We denote the lattice produced byB (i.e., the set of vectors) withL(B).
A well-known difficult problem in lattices is the approximation within a polynomial factor of theshortest

vector in a lattice (SVP problem). Namely, given a latticeL(B) produced by a basisB, approximate up to
a polynomial factor ink the shortest (in an Euclidean sense) vector inL(B), the length of which we denote
with λ(B). A similar problem in lattices is the “gap” version of the shortest vector problem (GAPSVPγ),
the difficulty of which is going to be useful in our context.

Definition 1 (Problem GAPSVPγ) Letk be the security parameter. An input toGAPSVPγ is ak-dimensional
lattice basisB and a numberd. In YES inputsλ(B) ≤ d and inNO inputsλ(B) > γ × d, whereγ ≥ 1.

Concerning the complexity of the above problem, we note that, for exponential values ofγ, i.e, γ =
2O(k), one can use the LLL algorithm [22] and produce a solution in polynomial time.Therefore the dif-
ficult version of the problem arises for polynomialγ, for which no efficient algorithm is known to date,
even for factors slightly smaller than exponential [32], i.e., very big polynomials. Moreover, for polyno-
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mial factors, there is no proof that this problem isNP-hard2, which makes the polynomial approximation
cryptographically interesting as well.

Reductions. After Ajtai’s seminal work [1] where an one-way function based on hardlattices problem is
presented, Goldreich et al. [17] presented a variation of the function, providing at the same time collision
resistance. Based on this collision resistant hash function, Micciancio [26] described a generalized version
of it, a modification of which we are using in our construction. The security ofthe hash function is based on
the difficulty of thesmall integer solutionproblem (SIS):

Definition 2 (Problem SISp,m,β) Let k be the security parameter. Given an integerp, a matrixF ∈ Z
k×m
p

and a realβ, find a non-zero integer vectorz ∈ Z
m\{0} such thatFz = 0 mod p and‖z‖ ≤ β.

Note that at least one solution to the above problem exists whenβ ≥ √mpk/m and m > k [26].
Moreover, ifp ≥ 4

√
mk1.5β, we will see that such a solution is difficult to find. We continue with the

definition ofSIS′, where the solution vector is required to have at least one odd coordinate:

Definition 3 (Problem SIS′
p,m,β) Let k be the security parameter. Given an integerp, a matrixF ∈ Z

k×m
p

and a realβ, find an integer vectorz ∈ Z
m\2Z

m such thatFz = 0 mod p and‖z‖ ≤ β.

Micciancio [26] showed that ifp is odd, there is a polynomial time reduction fromSIS′
p,m,β to SISp,m,β :

Lemma 1 (Reduction fromSIS′
p,m,β to SISp,m,β [26]) For any odd integerp ∈ 2Z + 1, andSIS′ instance

I = (p, F, β), if I has a solution as an instance ofSIS, then it also has a solution as an instance ofSIS′.
Moreover, there is a polynomial time algorithm that on input a solution to aSIS instanceI, outputs a
solution to the sameSIS′ instanceI.

As proved by Micciancio [26], under a certain choice of parameters,GAPSVPγ can be reduced toSIS′

(this can be derived as a combination of Lemma 5.22 and Theorem 5.23 of [26]):

Lemma 2 (Reduction fromGAPSVPγ to SIS′
p,m,β [26]) For any polynomially boundedβ, m, p = kO(1),

with p ≥ 4
√

mk1.5β and γ = 14π
√

kβ, there is a probabilistic polynomial time reduction from solving
GAPSVPγ in the worst case to solvingSIS′

p,m,β on the average with non-negligible probability.

A direct application of Lemma 1 and Lemma 2 gives the following result.

Theorem 1 Let p = kO(1) be an odd positive integer. For any polynomially boundedβ, m = kO(1),
with p ≥ 4

√
mk1.5β and γ = 14π

√
kβ, there is a probabilistic polynomial time reduction from solving

GAPSVPγ in the worst case to solvingSISp,m,β on the average with non-negligible probability.

In other words, Theorem 1 states that if there is an algorithm that solves anaverage instance ofSISp,m,β

(an average instance refers to the fact that the matrixM ∈ Z
k×m
p is chosen uniformly at random), for an

oddp, p ≥ 4
√

mk1.5β andγ = 14π
√

kβ, then, this algorithm can be used to produce a solution to any (the
worst) instance ofGAPSVPγ .

Lattice-based hash function. Let m = 2k2 andβ = δ
√

m whereδ is poly(k) andp be a polynomially
bounded odd integer such thatp ≥ 4

√
mk1.5β. It is easy to see that givenk and δ there is always a

p = O(k3.5δ) to satisfy the above constraints. The collision resistant hash function that we are using is a
generalization of the function presented in [26], whereδ = O(1) (in the security parameter) is used instead.
In our construction we use bigger values forδ. Namely the value that we use to bound the norm of the vector
can be up topoly(k). This was observed in the original definition of Ajtai’s one-way function [1], i.e., that
the input vector can contain larger values (but not so large), and was also noted in its extension that achieves
collision resistance [17]. This remark is very useful in our context and implies that, the larger value one
picks forβ, the larger the modulusp should be so that security is guaranteed.

2In specific, as outlined in [32], the current state of knowledge indicates that for factors beyond
p

k/ log k, it is unlikely that
this problem isNP-hard and no efficient algorithm is known to date.
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Our hash function construction, however, uses a different modulusq (notp) that hask bits instead (note
that thatp hasO(log k log δ) bits): Letq be ak-bit modulus that is divided byp, i.e.,q = Θ(2k) andp|q.
Let alsoλ be a value satisfying

λ =
q

p
= Θ

(

2k

k3.5δ

)

. (1)

We sample a matrixF ∈ Z
k×m
p uniformly at random. After that we compute the matrixM = λF. Note that

the elements of matrixM have entries inZq. Also note thatλ defines aninjective homomorphismfrom Zp

to Zq. We can now define the functionhM : Z
m → Z

k
q ashM (x) = Mx mod q, where‖x‖ ≤ β and the

modulo operation is taken component-wise. The above function can be proved to be collision resistant (with
some constraint on the input’s coordinates) based on the difficulty of the problemGAPSVP14π

√
kβ :

Theorem 2 (Strong collision resistance)Letm = 2k2, β = δ
√

m andp ≥ 4
√

mk1.5β be an odd positive
integer. Let alsoF ∈ Z

k×m
p be a k × m matrix that is chosen uniformly at random andM = λF ∈

Z
k×m
q whereq and λ are defined in Equation 1. If there is an algorithm that finds two vectorsx, y ∈
{0, 1, . . . , δ}m andx 6= y such thatMx = My mod q, then there is an algorithm to solve any instance of
theGAPSVP14πδ

√
km problem.

Proof: Suppose there is an algorithm that findsx, y ∈ {0, 1, . . . , δ}m with x 6= y such thatMx = My
mod q ⇒ M(x− y) = 0 mod q. This, by the definition ofq andM can be written as

λF(x− y) = 0 mod λp⇒ ∃r ∈ Z
k : λF(x− y) = rλp⇒ F(x− y) = rp⇒ F(x− y) = 0 mod p .

Therefore the non-zero vectorz = x − y, which also has norm‖z‖ ≤ β, since its coordinates are between
−δ and+δ, comprises a solution to the problemSISp,m,β (note that matrixF by construction is chosen
uniformly at random). By Theorem 1, this can be used to solveGAPSVPγ for γ = 14π

√
kβ. Setting

β = δ
√

m we get the desired result.2
Therefore we have just presented a collision-resistant hash function the security of which is based on

the difficulty of the problemGAPSVPγ . Note that as long asδ = poly(k), γ is alsopoly(k) and therefore
the hash function is secure since for polynomialγ (even forγ slightly smaller than exponential), no efficient
algorithm to solveGAPSVPγ is known to date [32].

We can now extend the functionh to accept two inputs as follows: Denote withT
δ,+ the set of allm×1

(m = 2k2) vectors such that their lastk2 entries are zero and the remaining entries are in{0, 1, . . . , δ} and
analogously withTδ,− the set of allm× 1 vectors such that their firstk2 entries are zero and the remaining
entries are in{0, 1, . . . , δ}. For ak×m matrixM sampled uniformly at random we can define the function
h : T

δ,+ × T
δ,− → Z

k
q

hM (x, y) = M(x + y) mod q , (2)

wherex, y ∈ {0, 1, . . . , δ}m. Similarly as in Theorem 2, this function is strong collision resistant, i.e., if
someone can find(x1, y1) ∈ (Tδ,+ × T

δ,−) and(x2, y2) ∈ (Tδ,+ × T
δ,−) with (x1, y1) 6= (x2, y2) such that

M(x1 + y1) = M(x2 + y2) mod q then one can solve the problemGAPSVPγ for polynomialγ. To see
that, note that the vectorx1 − x2 + y1 − y2 has coordinates in{0, 1, . . . , δ}, since, by the definition ofTδ,+

andT
δ,−, the entries ofx1 − x2 andy1 − y2 do not overlap.

Authenticated data structures. As we mentioned in the introduction, there are three entities participating
in the authenticated data structures computational model [24, 36]. A trustedsourcethat owns, updates and
outsources his data structureDi, along with a signed, timestamped, collision resistant digest of it,di, to the
untrustedserversthat respond to queries sent by theclients. The serversshould be able to provide with
proofs to the queries and theclientsshould be able to verify these proofs based on their trust to the source,
by basically using the correct and signed digestdi. Complexities relevant to the source are thesource update
time (time taken for the source to compute the updated digest),source spaceandupdate information(size
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of information sent to the servers per update, i.e., the signed digest). Relevant to the servers areserver
update time(time taken by the server per update),server space, query time(time taken by the server to
compute a proof for a query) andproof size. Finally, relevant to the client areverification timeandclient
spacewith obvious meaning. The client verification is performed using an algorithm{accept, reject} ←
verify(q, Π(q), di), whereq is a query on data structureDi andΠ(q) is a proof provided by the server. Note
that the digestdi, the digest ofDi, is an input as well. All these complexity measures are listed in Table 1.

Let now{reject, accept} ← check(q, α(q), Di) be an algorithm that, given a queryq on data structure
Di and an answerα(q) checks to see if this is the correct answer to queryq. We can now present the
formal security definition, which states that it should be difficult (except with negligible probability) for a
computationally bounded adversary to produce verifying proofs for incorrect answers, even after he brings
the data structure to a state of his liking:

Definition 4 (Security) Supposek is the security parameter andA is a computationally bounded adversary
that is given the public key of the sourcepk. Our data structureD0 is in the initial state with digestd0. The
adversaryA issues an updateupdi in the data structureDi for i = 0, . . . , h = poly(k) and therefore
computesDi+1 and di+1. Suppose now the source is givendh and issues a number of updates (sayu
updates), bringing the data structure to the stateDh′ , whereh′ = h + u + 1. Then the adversary enters the
attack stage where he chooses a queryq and computes an answerα(q) and a verification proofΠ(q). We
say that the authenticated data structure is secure if

Pr

[

{q, Π(q), α(q)} ← A(1k, pk); accept← verify(q, Π(q), dh′);
reject← check(q, α(q), Dh′); digest(Dh′) = dh′

]

≤ ν(k) ,

whereν(k) is negligible in the security parameterk.

3 Main construction
Suppose we are given a table that consists ofn indices1, 2, . . . , n. In each indexi we can store a value
xi from the setS = {0, 1, . . . , C} where|S| = O(1). In this section we describe the application of the
lattice-based hash function on top of a structure ofn indices, in the model described in the introduction.

Without loss of generality assume thatn is a power of two so that we can build a complete binary tree
on top of the table. LetT be that tree and letx1, x2, . . . , xn be the original values of the table. Assume each
of the elements in{0, 1, . . . , C} can be represented with a vector of sizek that has entries inZq. Namely
x1, x2, . . . , xn ∈ Z

k
q . We are going to use the hash functionhM (x, y) defined in Equation 2 in a recursive

way to define the digest of the structure. We recall thatk is the security parameter,M is ak × m matrix
with elements sampled uniformly at random fromZp and then multiplied withλ, m = 2k2, β = δ

√
m,

p ≥ 4
√

mk1.5β andq = λp. We now prove some useful properties:

Definition 5 (Radix-2 representation) Letx ∈ Zq. We definef(x) ∈ Z
k
q to besomeradix-2 representation

of x. Namely iff(x) = [f0 f1 . . . fk−1]
T then it holdsx =

∑k−1
i=0 fi2i mod q.

By “some” radix-2 representation we mean that the functionf : Zq → Z
k
q is “one-to-many”. For

example, forq = 16, x = 7, possible values forf(x) can be[1 1 1 0]T (the usual binary representation),
[−1 0 2 0]T or [−5 − 2 0 4]T (and many more). When the representationf(.) is the binary representation,
we will explicitly denote it withfbin(.). We can now prove the following:

Lemma 3 For anyx, y ∈ Zq there exist radix-2 representationsf(.) such thatf(x + y mod q) = f(x) +
f(y) mod q.

Proof: Let x = f(x) be a radix-2 representation ofx and y = f(y) be a radix-2 representation ofy.
Thenx + y = [x0 + y0 x1 + y1 . . . xk−1 + yk−1]

T mod q. The resulting vector is a radix-2 representation
of (x0 + y0) × 20 + (x1 + y1) × 21 + . . . + (xk−1 + yk−1) × 2k−1 mod q which can be written as
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x0× 20 + x1× 21 + . . . + xk−1× 2k−1 + y0× 20 + y1× 21 + . . . + yk−1× 2k−1 mod q = x + y mod q.
Thereforef(x) + f(y) = x + y = f(x + y mod q) mod q. 2

Note that Lemma 3 is useful in the following sense. It tells us that if one has anf(.) representation of
x + y mod q (i.e.,f1) and picks anf(.) representation ofx mod q (i.e.,f2), one can always find anf(.)
representation fory mod q, namelyf1 − f2. Definition 5 can be naturally extended for vectors:

Definition 6 Let x ∈ Z
k
q . We definef(x) ∈ Z

k2

q to besomeradix-2 representation ofx. Namely everyxi,
for i = 1, . . . , k, is mapped to the respectivek entriesf(xi) in the resulting vectorf(x).

We can analogously generalize Lemma 3 as follows:

Corollary 1 For any x, y ∈ Z
k
q there exist radix-2 representationsf(.) such thatf(x + y mod q) =

f(x) + f(y) mod q.

Finally, letU = [Ik2 Ok2 ]T (U stands for “up”) andD = [Ok2 Ik2 ]T (D stands for “down”) bem × k2

matrices, whereIt denotes the square unit matrix of dimensiont andOt denotes the square zero matrix
of dimensiont. It easy to see that for allx ∈ {0, 1, . . . , δ}k2

it is Ux ∈ T
δ,+ andDx ∈ T

δ,−. Namely
multiplying matricesU andD with a vector in{0, 1, . . . , δ}k2

doubles the dimension of the vector by shifting
its entries accordingly and by filling the vacant entries with zeros. This operation will be used to prepare the
vectors in the appropriate input format for the hash function.

Digest definition. As we mentioned in the beginning of Section 3, we build a binary tree ofℓ levels on
top of ourn-index table. For each nodev of the tree, we are going to define a collision resistant digestd(v),
based on the lattice-based hash function we introduce in Section 2. The digest of the root will serve as the
digest of the whole structure.

For every leaf nodevi of the tree,i = 1, . . . , n (note that at nodevi we store the valuexi) we define the
leaf digestd(vi) simply asd(vi) = xi mod q. For an internal nodeu, with left child left(u) and right child
right(u), we define theinternal digestas

d(u) = M [Uf(d(left(u))) + Df(d(right(u)))] mod q , (3)

where, by the constraint of the inputs in the definition of the hash function in Equation 2, it must be

f(d(left(u))), f(d(right(u))) ∈ {0, 1, . . . , δ}m/2 . (4)

We note here that when the table is built for the first time (initial state), the radix-2 representationf(z)
used is thek2-bit binary representation ofz, i.e., the entries off(z) are in{0, 1}. Note that the binary
representation satisfies the constraints of Equation 4 since{0, 1} ⊂ {0, 1, . . . , δ}. Part of the challenging
job would be to ensure that whenever we perform an update the constraints of Equation 4 are in place.

The flow of the computation in Equation 3 is as follows (see Figure 1): Given an internal nodeu, with
children left(u) andright(u), digestsd(left(u)), d(right(u)) ∈ Z

k
q . By applyingf(.) we transform them

into vectors ofk2 “small” entries. By multiplying withU andD we “prepare” them to be input to the hash
function, as defined in Equation 2. Thelattice digestof a tablex1, x2, . . . , xn ∈ Z

k
q is defined as follows:

Definition 7 Let n = 2ℓ, x1, x2, . . . , xn ∈ Z
k
q be the values of the table that is to be authenticated andT

be the complete binary tree of rootr and heightℓ that is built on top of the table. Suppose we compute the
digestsd(u) of the nodesu of the tree as above (Equation 3). We define thelattice digestof a nodeu to be
the valued(u) and thelattice digestof the table to be the valued(r).

We now present the main result of this section, namely the fact that the lattice digest can be expressed
as a sum ofn terms, which will eventually allow for more efficient updates. Letbin(x) denote the binary
representation ofx− 1 andbin(x)i thei-th bit of bin(x):

7



Theorem 3 Letn = 2ℓ, x1, x2, . . . , xn ∈ Z
k
q be the values of the table that is to be authenticated andT be

the complete binary tree ofℓ levels that is built on top of the table. Letz be an internal node ofT at level
0 ≤ t < ℓ, T (z) be the subtree rooted atz andrange(z) be the range of successive indices contained in the
leaves ofT (z). Then thelattice digestd(z) of z can be expressed as

d(z) =
∑

i∈range(z)

MA i(t+1)fi(t+1)(MA i(t+2)fi(t+2)(. . . fi(ℓ−1)(MA iℓfiℓ(xi)) . . .)) mod q ,

whereAij = U if bin(i)j = 0, Aij = D if bin(i)j = 1 andfij are somef(.) representations.

Proof: (sketch) By induction on the levels of the tree: We use the definition of the digest (Equation 3)
recursively on all the nodes of the tree and start applying Corollary 1. Then we can express the digest as a
sum of terms that are functions of the specific values stored in the table (fullproof in the Appendix).2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

r

r
24

r
12

r
21 r

22

r
11

x
1

x
2

x
3

x
4

x
6

x
5 x

7
x

8

r
23

+

+

M × M × M × M ×

M ×M ×

M ×
+

+

+ + +

Uf(x
5
) Df(x

8
)Uf(x

1
) Df(x

2
) Uf(x

3
) Df(x

4
) Df(x

6
) Uf(x

7
)

Uf(d(r
21

)) Df(d(r
22

))

Uf(d(r
11

)) Df(d(r
12

))

Uf(d(r
23

)) Df(d(r
24

))

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x
4

x
3

x
2

r
21

r
11

f(d(r
21

)) f(d(r
22

))
+

r
22

+

+
+ +

MUf
41

(MDf
42

(MDf
43

(x
4
)))

r

f(d(r
11

))

MUf
21

(MUf
22

(MDf
23

(x
2
)))MUf

11
(MUf

12
(MUf

13
(x

1
))) MUf

31
(MDf

32
(MUf

33
(x

3
)))

Figure 1: (Left) Tree T built on top of a table with 8 valuesx1, x2, . . . , x8. After producing anf(.)
representation (with entries in{0, 1, . . . , δ}) of the child digests, we multiply with eitherU or D, then we
add the two resulting digests and we compute the hash function on them by multiplying with M . (Right)
Left part of the tree and relation (indicated with dash lines) between specific fij(.) representations of the
additive terms computed by Theorem 3 and thef(.) representation of the internal nodes. Note that thef(.)
representations of the internal nodes are the sum of those specificfij(.) representations of the leaves, for
example,f(d(r11)) = f11 + f21 + f31 + f41 mod q.

For example, suppose we have a table of eight valuesx1, x2, . . . , x8. Rootr lies at level 0 and the leaves
lie at levelℓ, as in Figure 1. Letrij be thej-th node at leveli for i = 1, . . . , ℓ, with the numbering going
also from the left to the right. Thelattice digestof the table can be expressed as follows (see Figure 1),
according to Theorem 3 and by setting the internal node in Theorem 3 to be the root of the tree:

d(r) = MUf11(MUf12(MUf13(x1))) + MUf21(MUf22(MDf23(x1))) + MUf31(MDf32(MUf33(x3))) +

MUf41(MDf42(MDf43(x4))) + MDf51(MUf52(MUf53(x5))) + MDf61(MUf62(MDf63(x6))) +

MDf71(MDf72(MUf73(x7))) + MDf81(MDf82(MDf83(x8))) mod q .

Here it is very important to say that the abovefij(.) expressions are somef(.) representations that arenot
the binary representations(although it can happen sometimes, in the absence of carries). We recall that
the binary representation is only used in theinitial computation of the digest of the table. The flow of the
computation of the digests is depicted in Figure 1.

Digest security. We now give the main security claim for the strong collision resistance of thelattice
digest, given the results from Merkle [25] and Naor and Nissim [27]. In fact,Naor and Nissim [27] and
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Merkle [25] used exactly the same algorithmic construction (i.e., a binary tree)to provide a solution for an
authenticated dictionary, generalizing their result for every strong collision resistant hash functionh:

Remark 1 (Naor and Nissim [27]) Possible choices forh include the more efficient MD4 [33], MD5 [34]
or SHA [38] (collisions for MD4 and for the compress function of MD5 were found by Dobbertin [12, 13])
and functions based on a computational hardness assumption such as thehardness of discrete log [3, 8, 11]
and subset-sum [17, 21] (these are much less efficient).

The importance of the above remark is that essentially, one can use any strong collision resistant hash
function h(x, y) for a Merkle tree construction, given the hash functionh(x, y) is secure according to a
widely acceptable computational assumption. Namely, it should be difficult (i.e.,it should happen with
negligible probabilityν(k)) for a computationally bounded adversary to find(x, y) 6= (x′, y′) such that
h(x, y) = h(x′, y′). We therefore have the following result:

Theorem 4 (Strong collision resistance of the lattice digest)Let k be the security parameter,m = 2k2,
β = δ

√
m andp ≥ 4

√
mk1.5β be an odd positive integer. Let alsoF ∈ Z

k×m
p be ak ×m matrix that is

chosen uniformly at random andM = λF ∈ Z
k×m
q whereq andλ are defined in Equation 1. Let alson = 2ℓ,

x1, x2, . . . , xn ∈ Z
k
q be the values of the table that is to be authenticated, having alattice digestequal to

d. It is computationally infeasible, i.e., it happens with negligible probabilityν(k), for a computationally
bounded adversary to find a different tabley1, y2, . . . , yn ∈ Z

k
q of lattice digest equal tod, unless there is a

polynomial-time algorithm for any instance of the problemGAPSVPγ for γ = 14πδ
√

km.

Proof: By Remark 1 we can use any strong collision resistant hash function to recursively define a digest
of a Merkle tree. Here we are using the function of Equation 2 which is strong collision resistant according
to Theorem 2, unless there is a polynomial-time algorithm for any instance of theproblemGAPSVPγ for
γ = 14πδ

√
km. 2

Digest update. Suppose now thatx1, x2, . . . , xn ∈ Z
k
q are the values of the table and that thelattice digests

have been computed. Letd be the initiallattice digestof the table. The objective of the update is to compute
the newlattice digestof the table, in constant time, whenever the content of some index changes.We show
how an update at index1 ≤ w ≤ n can be performed, which applies for all indices. Note that for indexw,
where the valuexw is stored, the additive term from Theorem 3 is

term(xw) = MA w1fw1(MA w2fw2(. . . fw(ℓ−1)(MA wℓfwℓ(xw)) . . .)) mod q , (5)

wherefwi(.) (i = 1, . . . , ℓ) are the suitablef(.) representations (Definition 5) after thelattice digests
have been computed and Corollary 1 has been applied andAwj are eitherU or D according to the binary
representation ofw (see Theorem 3). Let nowqwℓ = xw be the content of thefwℓ(.) representation in
Equation 5 and

qwi = MA w(i+1)fw(i+1)(MA w(i+2)fw(i+2)(. . . fw(ℓ−1)(MA wℓfwℓ(xw)) . . .)) mod q , (6)

for i = 1, . . . , ℓ− 1 be the content of thefwi(.) representation in Equation 5. Note thatxw does not appear
in any other additive termterm(xj) for all j 6= w (see Theorem 3). Suppose now we update indexw and we
replacexw with yw. The new digest, by Theorem 3, can be computed as

d′ = d− term(xw) + term(yw) mod q . (7)

where
term(yw) = MA w1f

′
w1(MA w2f

′
w2(. . . f

′
w(ℓ−1)(MA wℓf

′
wℓ(yw)) . . .))) mod q , (8)

and where now the updatedq′wi values are defined as in Equation 6. Note however that one cannot use any
radix-2 representationf ′

wi(.) (i = 1, . . . , ℓ) during the update (Equation 8). One has to be careful to use
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such a representation that does not violate the “small input” requirement (i.e., vector entries in{0, 1 . . . , δ})
for the hash function, after the update takes place. The newf ′

wi(.) representations, in order to satisfy that,
crucial for the security (see Definition 2), requirement, are computed according to the following definition:

Definition 8 (Updated radix-2 representations) Suppose the value of indexw is xw. An update is is-
sued and the value of indexw changes toyw. Let q′wℓ = yw. Then, fori = ℓ, . . . , 1 the updatedq′wi

and f ′
wi(.) values are computed as follows, (a)f ′

wi(q
′
wi) = fwi(qwi) + fbin(q

′
wi − qwi) mod q, and (b)

q′w(i−1) = MA wif
′
wi(q

′
wi) mod q, whereq′w0 = term(yw) and Awj are eitherU or D according to the

binary representation ofw.

The representationf ′
wi(q

′
wi) computed in Definition 8 is a correctf(.) representation ofq′wi, since, as

fbin(q
′
i − qi) is anf(.) representation, by Corollary 1 we havef ′

wi(q
′
wi) = f(qwi + q′wi − qwi) = f(q′wi)

mod q, which is a correctf(.) representation ofq′wi. We now present the main theorem of this section:

Theorem 5 Let n = 2ℓ, x1, x2, . . . , xn ∈ Z
k
q be the values of the table that is to be authenticated andT

be the complete binary tree ofℓ levels that is built on top of the table. Fori = ℓ, . . . , 1, let {vi} be the
logarithmic-sized path from some indexw to the root’s childv1, d(vi) be the respectivelattice digestsand
f(d(vi)) ∈ {0, 1, . . . , δ}m/2 be thef(.) representations of them. An update is issued and the value of index
w changes toyw. If f(d′(vi)), i = ℓ, . . . , 1 are the updatedf(.) representations of the path nodes, then
for everyi = ℓ, . . . , 1, after the update, it holdsf(d′(vi)) ≤ f(d(vi)) + [1 1 . . . 1]T , where inequality is
defined component-wise and[1 1 . . . 1]T has sizem/2.

Proof: (sketch) The relation between anf(.) representation of a nodevt lying at levelt and thefij represen-
tations of the leaf nodes isf(vt) =

∑

i∈range(v) fit(qit), whereqit are defined in Equation 6 (see Figure 1).
If we update thefij(.) representations according to Definition 8, the entries of thef(.) representations of
the internal nodes can be increased by at most 1 (a binary vector is added) (full proof in Appendix). 2

Note that the above theorem is very important for proving the desired update complexity (see Theorem 6)
since it ensures, that even after updates, the security of the hash function (small inputs) is maintained.

4 Authenticated data structure
In this section we describe how exactly the lattice-based construction is usedin a three-party authenticated
data structure model, which consists of three entities, thetrustedsource, theuntrustedservers and the clients.
Let 1, . . . , n be the indices of the table andx1, x2, . . . , xn ∈ Z

k
q are theinitial values of the table. Due to

space limitations, all the proofs in this section appear in the Appendix.

System setup. We fix the parameters that we are using in our construction as follows: We recall that
k is the security parameter,M is a k × m matrix with elements sampled uniformly at random fromZq,
m = 2k2, β = δ

√
m, p ≥ 4

√
mk1.5β, q is a k-bit modulus andλ = q/p. It is easy to see that given

k andδ there is always ap = O(k3.5δ) to satisfy the above constraints. Let’s setp = ⌈c1k
3.5δ⌉ + 1 or

p = ⌈c1k
3.5δ⌉ such thatp is an odd positive integer, as required by Theorem 1, for some suitable constant

c1. Finally we setδ = n, wheren is the size of our structure, which is a polynomially bounded value (we
are in the computational model). This setup, by Theorem 2, will give a construction that is secure based
on the difficulty ofGAPSVPγ for γ = 14πδ

√
km. In specific, sincem = 2k2 andδ = n we have that

γ = O(nk
√

k) = O(kc) for somec = O(1).

Source. We recall that in each index in{1, . . . , n} the source can store one of the values of the set
S = {0, 1, . . . , C}. Each element of the setS is represented with a distinct element ofZ

k
q and |S| =

O(1). Note that the possible states of the table is therefore|S|n, exponentially large. Suppose now that
x1, x2, . . . , xn ∈ Z

k
q are theinitial values of the table and that thelattice digestshave been computed using

the binary representations in Equation 3. The source, for each indexw ∈ {1, . . . , n} does the following
precomputations: For each valueywj ∈ S − {xw} (j = 0, 1, . . . , C) it computes andstoresterm(ywj) as
defined in Equation 5 and by using Definition 8 to compute the updatedf ′

wi(.) representations. The initial
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qwi values that appear in Definition 8 are the ones derived byterm(xw), the initial value of the index. These
initial qwi values are used for the computation of all the the updatedf ′

wi(.) representations that correspond
to termsterm(ywj). Note that the source does not have to store the tree and the digest of the internal nodes,
since the source is only interested in correctly updating the lattice digest.
Theorem 6 The source update time isO(1) per update, the source performsO(1) group operations per
update and keepsO(n) space. Moreover, the update authentication information has sizeO(1) and consists
of O(1) group elements.

Servers. The servers, whenever an update at indexw is issued by the source, have to update thelattice
digest in the same way that the source did. Therefore they could achieve this task again in O(1) time.
However, since they have to provide proofs to the clients for future queries, they have to update the digests
of the internal nodes (the nodes belonging to the logarithmic-sized path fromindexw to the root of the tree)
that are influenced by the update and as a result theserversupdate time cannot beO(1):

Theorem 7 The server update time isO(log2 n) per update, the server performsO(log2 n) operations in
Z

k
q per update and keepsO(n) space. Also, the server query time isO(log n), the proof for a query has size

O(log n) and consists ofO(log n) group elements.

Clients. Suppose a client sends a query to the server for the value of indexw. After the client verifies the
freshness of the lattice digest sent by the source (which takes timeO(1)), it verifies the logarithmic sized
proof sent by the server by performing multiplications with matrixM , until the client computes the authentic
digest sent by the source. This verification is very similar (only the cryptographic primitive changes) with
the one performed when using a Merkle tree [25]. If there is a match with the signed digest, the client
accepts the answer, else it rejects. Each multiplication at every node of the path takes timeO(k4) and since
it is performedO(log n) times, the verification time isO(k4 log n) = O(log n). We give the following
result for the client:

Theorem 8 The client verification time isO(log n) per query, the client performsO(log n) operations in
Z

k
q per query and the client keepsO(1) local space.

Putting everything together we can state our main theorem for the three-partymodel:

Theorem 9 Let k be the security parameter. Then there exists a three-party authenticated data structure
for authenticating a dynamic table ofn indices such that: (1) It is secure according to Definition 4 and
assuming the hardness ofGAPSVPγ for γ = O(nk

√
k); (2) The source update time isO(1) and involves

O(1) group operations; (3) The server update time isO(log2 n) and involvesO(log2 n) group operations;
(4) The source space isO(n); (5) The server space isO(n); (6) The client space isO(1); (7) The server
query time isO(log n); (8) The client verification time isO(log n) and involvesO(log n) group operations;
(9) The proof has sizeO(log n) and consists ofO(log n) group elements; (10) The update authentication
information has sizeO(1) and consists ofO(1) group elements.

Proof: The security is proved from Theorem 4, i.e., we are using a provably secure collision resistant hash
function and we maintain its security under updates (by using Theorem 5). All the other points are due to
Theorems 6, 7 and 8. Also note thatγ = O(nk

√
k), since by Theorem 4 we needγ = 14πδ

√
km and,

m = 2k2 andδ = n. 2

5 Authenticated Bloom filters and discussion
In this section we show how we can use the lattice-based hash function to authenticate the Bloom filter func-
tionality, a space efficient dictionary data structure, originally introduced in[6]. The Bloom filter consists
of an array (table)A[0 . . . n− 1] storingn bits. All the bits are initially set to0. Suppose one needs to store
a setS of r elements. ThenK hash functionshi(.) with range{0, . . . , n− 1} are used and for each element
s ∈ S we set the bitsA[hi(s)] to 1, for i = 1, . . . , K. In this way, false positives can occur, i.e., even if an
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element does not belong to theS, it might be represented inA. The probability of a false positive can be
proved to be(1− p)K , wherep = e−Kr/n, which is minimized forK = ln 2(n/r) [6].

The Bloom filter above supports only insertions though. A deletion (i.e., settingsome bits to0) can cause
the undesired deletion of many elements. To deal with this problem,counting Bloom filterswere introduced
by Fan et al. [15]. In this solution, by keeping a counter for each index of A (instead of just0 or 1), we
can tolerate deletions by incrementing the counter during insertions and decrementing the counter during
deletions. However, the problem ofoverflowexists. As observed in [9], the overflow (at least one counter
goes over some valueC) occurs with probabilityn(e ln 2/C)C , for a certain set ofr elements. Setting
C = O(1) (e.g.,C = 16) is suitable for most of the applications [9].

By the above description, it is clear that we can use our lattice-based construction to authenticate the
Bloom filter functionality: Each index of our table can take values from the set {0, . . . , C}, whereC =
O(1). Note that constant update complexity in this application is very important giventhat a Bloom filter
is anupdate-intensivedata structure (i.e., an insertion or deletion of an element involvesK operations).
Therefore we have the following result:

Theorem 10 Let k be the security parameter. Then there exists a three-party authenticated data structure
for authenticating a Bloom filter of sizen, storingr elements and usingK hash functions such that: (1) It
is secure according to Definition 4 and assuming the hardness ofGAPSVPγ for γ = O(nk

√
k); (2) The

source update time isO(K) and involvesO(K) group operations; (3) The server update time isO(K log2 n)
and involvesO(K log2 n) group operations; (4) The source space isO(n); (5) The server space isO(n);
(6) The client space isO(1); (7) The server query time isO(K log n); (8) The client verification time is
O(K log n) and involvesO(K log n) group operations; (9) The proof has sizeO(K log n) and consists of
O(K log n) group elements; (10) The update authentication information has sizeO(1) and consists ofO(1)
group elements.

It is safe to assume the hardness ofGAPSVPγ , for γ = O(nk
√

k). This is because we are in the
computational model, thereforen has to be polynomial in the security parameter andGAPSVPγ is assumed
to be hard for anyγ polynomial in k [32]. For future work we envision reducing the complexities of
our construction (e.g., server update) and, more importantly, applying lattices to more authenticated data
structures problems, e.g., deriving a lattice-based cryptographic accumulator.
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6 Appendix
6.1 Proof of Theorem 3
We prove the claim by induction on the levels of the treeT . For any internal nodeu that lies at levelℓ− 1,
there are only two nodes (that store for example valuesxi (left child and odd indexi) andxj (right child and
even indexj) and belong torange(u)) in the subtree rooted onu, the root isu and therefore, by Equation 3
we indeed have

d(u) = M [Uf(xi) + Df(xj)] = MUfbin(xi) + MDfbin(xj) ,

whereAi1 = U andAj1 = D, sincei is odd andj is even. Assume the theorem holds for any internal node
v that lies at level0 < t + 1 ≤ ℓ. Therefore

d(v) =
∑

i∈range(v)

MA i(t+2)fi(t+2)(MA i(t+3)fi(t+3)(. . . fi(ℓ−1)(MA iℓfiℓ(xi)) . . .)) mod q ,

whereAij = U if bin(i)j = 0 andAij = D if bin(i)j = 1 andfij() are somef(.) representations. For any
internal nodez that lies at levelt, the new digest is produced by combining (see Equation 3) two digests that
correspond to two different trees rooted at levelt + 1 and of rootsleft(z) andright(z) (the left and the right
child of z respectively), i.e.,

d(z) = M [Uf(d(left(z))) + Df(d(right(z)))] mod q

= MUf





∑

i∈range(left(z))

MA i(t+2)fi(t+2)(MA i(t+3)fi(t+3)(. . . fi(ℓ−1)(MA iℓfiℓ(xi)) . . .))





+ MDf





∑

i∈range(right(z))

MA i(t+2)fi(t+2)(MA i(t+3)fi(t+3)(. . . fi(ℓ−1)(MA iℓfiℓ(xi)) . . .))



 mod q .
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By applying Corollary 1, we can break eachf(.) expression into multiplef(.) expressions and therefore we
have

d(z) =
∑

i∈range(z)

MA i(t+1)fi(t+1)(MA i(t+2)fi(t+2)(. . . fi(ℓ−1)(MA iℓf(xi)) . . .)) mod q ,

whereAij = U if bin(i)j = 0 andAij = D if bin(i)j = 1. This completes the proof.2

6.2 Proof of Theorem 5
Let vt be an internal node ofT at level1 ≤ t ≤ ℓ, T (vt) be the subtree rooted onvt andrange(vt) be its
range, wherew ∈ range(vt). By Theorem 3 we have that, before the update it is

d(vt) =
∑

i∈range(vt)

term(xi) = term(xw) +
∑

i∈range(vt)−{w}
term(xi) mod q .

After we apply Corollary 1 and by using the notation of Definition 8 we have

f(d(vt)) = f(term(xw))+f





∑

i∈range(vt)−{w}
term(xi)



 = fwt(qwt)+f





∑

i∈range(vt)−{w}
term(xi)



 mod q .

By the way updates are performed (see Definition 8) the quantityf(d(vt)) + fbin(q
′
t − qt) can be written as

f(d(vt)) + fbin(q
′
wt − qwt) = fbin(q

′
wt − qwt) + fwt(qwt) + f





∑

i∈range(vt)−{w}
term(xi)



 mod q

= f ′
wt(q

′
wt) + f





∑

i∈range(vt)−{w}
term(xi)



 mod q

= f(term(yw)) + f





∑

i∈range(vt)−{w}
term(xi)



 mod q

= f



term(yw) +
∑

i∈range(vt)−{w}
term(xi)



 mod q

= f(d′(vt)) mod q .

From the above argument and by the facts thatf(d(vt)) ∈ {0, 1, . . . , δ}m/2 and0 ≤ fbin(q
′
wt − qwt) ≤

[1 1 . . . 1]T , we have that

f(d′(vt)) = f(d(vt)) + fbin(q
′
wt − qwt)⇒ f(d′(vt)) ≤ f(d(vt)) + [1 1 . . . 1]T .

2

6.3 Proof of Theorem 6
Assume the setup of Section 4. Suppose the initial state of the table isx1, x2, . . . , xn ∈ Z

k
q and that the initial

digest of the table isd. As we showed before, for each indexw ∈ {1, . . . , n} the source does the following
precomputations: For each valueywj ∈ S − {xw} (j = 0, 1, . . . , C) it computes and storesterm(ywj) as
defined in Equation 5, whereS = {0, . . . , C}. Each termterm(ywj) is an element inZk

q and therefore the
source needsO(k2)×O(|S|) bits for each indexw. Therefore the space needed isO(n).
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The source issues an update that changes the value of indexw from xw to yw. Then the updated digest
d′ is computed by Equation 7 by setting

d′ = d− term(xw) + term(yw) mod q ,

which requires two additions (i.e.,O(1) operations) inZk
q , which take timeO(k2) = O(1) (k is a constant).

By using the precomputed table with theg(.) representations, this can be done isO(1) time, increasing the
space toO(nδ log δ), as shown in Section 4. We now prove that there is no internal node of the tree, whose
lattice digest has anf(.) that has coordinates not in{0, 1, . . . , δ = n}, and therefore during all the updates,
secure digests are being produced. Suppose in the worst case, thereis an internal nodev such that all the
logarithmic-sized paths of the updates cross through it. Letd0(v) be the digest ofv in the initial state. Then,
since the binaryf(.) representation is used in the beginning, we have that

f(d0(v)) ≤ [1 1 . . . 1]T ,

where[1 1 . . . 1]T has sizem/2. Suppose an update is issued which increases the Hamming distance by
one and which changes the digest tod1(v) (note that updates that do not increase the Hamming distance,
i.e., they update already updated indices do not increase the bound of Theorem 5). Then by Theorem 5 we
have

f(d1(v)) ≤ f(d0(v)) + [1 1 . . . 1]T ≤ 2[1 1 . . . 1]T .

Similarly, for thei-th update that increases the Hamming distance by one we have that

f(di(v)) ≤ f(di−1(v)) + [1 1 . . . 1]T ≤ (i + 1)[1 1 . . . 1]T .

This implies that while the table is kept in Hamming distanceδ, there cannot be any internal node, whose
f(.) representation has a coordinate greater thanδ, as required by the “small input” constraint (Equation 4).
Since we have setδ = n and the maximum Hamming distance isn, we can have unlimited updates. This
means that at any state of the table, there cannot be an internal node whose f(.) representation violates
Equation 4. As for the update authentication information, this is a signature of the lattice digest, which is
O(1) bits long and therefore the signature is alsoO(1) bits. 2

6.4 Proof of Theorem 7
Suppose the initial state of the table isx1, x2, . . . , xn ∈ Z

k
q . The server stores the binary tree on top of

the table, and at each internal nodev of the binary tree it also stores thef(.) representations of two lattice
digests: Firstly, it stores the binary representationf(d0(v)) of the lattice digestd0(v) ∈ Z

q
k of nodev that

corresponds to the initial state of the table. Secondly it stores thef(.) representationf(d(v)) of thecurrent
lattice digest of the table, denoted withd(v). Since eachf(.) representation requiresO(k3) bits (we recall
that eachf(.) representation hask2 entries inZq and thereforeO(k3) bits are needed) and the tree hasO(n)
nodes in total, the server needs spaceO(k3n) = O(n). Suppose now an update is issued, that changes the
value of the indexw from xw to yw. Let vℓ, vℓ−1, . . . , v1 be the path from the node of indexw to the child
v1 of the root of the tree. Let

term(xw) = MA w1fw1(MA w2fw2(. . . fw(ℓ−1)(MA wℓfwℓ(xw)) . . .)) mod q ,

and
term(yw) = MA w1f

′
w1(MA w2f

′
w2(. . . f

′
w(ℓ−1)(MA wℓf

′
wℓ(xw)) . . .)) mod q .

Let nowqij andq′ij be the contents of the representationsfij(.) andf ′
ij(), as defined in Equation 6. Note

that according to the proof of Theorem 5, we have that, fori = ℓ, . . . , 1

f(d′(vi)) = f(d(vi)) + fbin(q
′
wi − qwi) mod q .
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For i = ℓ, . . . , 1 all this computation can be performed inO(k3 log n) = O(log n) time, givenq′wi andqwi

are known. We show now how we computeqwi andq′wi. We first computeqwi andfwi(qwi). If we begin
from thef(.) representation ofd0(v1), which is actually a binary representation since it is refers to the initial
state of the table, we have that

fbin(d0(v1)) = fbin(M [Ufbin(d(left(v1))) + Dfbin(d(right(v1)))]) mod q .

Assume thatvi = left(vi−1) (the same applies for every other combination) for alli = 2, . . . , ℓ. Then the
above is written as

fbin(d0(v1)) = fbin(M [Ufbin(d0(v2)) + Dfbin(d0(right(v1)))])

= fbin(MUfbin(d0(v2)) + MDfbin(d0(right(v1))))

= f∗(MUfbin(d0(v2))) + f∗(Dfbin(d0(right(v1)))) mod q , (9)

wheref∗(.) are somef(.) representations that are computed deterministically, and, in the same way by the
source: For example, it can be the case that the leftf∗(.) expression is always a binary representation. But
how long does it take to implement the above “break-up” and compute thef∗(.) representations? First of
all, one needs to compute the productsMUfbin(d(v2)) andMDfbin(d(right(v1))), which take timeO(k4)
and then run the deterministic algorithm that computes the twof∗(.) representations inO(k3) time, since,
in order to compute a binary representationf∗(.) one needs timeO(k2) and the substraction to compute the
otherf∗(.) representation takes timeO(k3).

Note now that we are interested to continue this computation only for the left termof Equation 9.
Therefore

f∗(MUfbin(d0(v2))) = f∗(MUfbin(M [Ufbin(d0(v3)) + Dfbin(d0(right(v2)))]))

= f∗(MUfbin(MUfbin(d0(v3)) + MDfbin(d0(right(v2)))))

= f∗(MUf∗(MUfbin(d0(v3))) + MUf∗(MDfbin(d0(right(v2)))))

= f∗∗(MUf∗(MUfbin(d0(v3)))) + f∗∗(MUf∗(MDfbin(d0(right(v2))))) mod q .

Namely, at the second level, we have one more “break-up” and therefore, in this way, at theO(log n)-th
level we haveO(log n) “break-ups”. Therefore the time complexity of computingqwi andfwi(qwi) is

O(log n)
∑

i=1

O(ik4) = O(k4 log2 n) ,

which makes that time complexity of the update algorithm equal toO(log2 n) (we recall, that, in our setting,
k is a constant). The query time involves the computation of the proof, basically computing the collection of
f(.) representations along the path of the queried index. The proof is going to be the following logarithmic-
sized tuple:

{f(d(vℓ)), f(d(sib(vℓ))), f(d(vℓ−1)), f(d(sib(vℓ−1))), . . . , f(d(v1)), f(d(sib(v1)))} ,

exactly as is done in the computation of a Merkle tree proof. This takesO(k3 log n) = O(log n) time to
compute, since we have to collectO(log n) vectors ofO(k3) bits each, which makes the proof size also
O(k3 log n) = O(log n). 2
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6.5 Proof of Theorem 8
Suppose the client queries for indexw. Let vℓ, vℓ−1, . . . , v1 be the path from the node of indexw to the
child v1 of the root of the tree. The server computes the following proof

{f(d(vℓ)), f(d(sib(vℓ))), f(d(vℓ−1)), f(d(sib(vℓ−1))), . . . , f(d(v1)), f(d(sib(v1)))}

and also sends the answer “the value of indexw is rw”. The client checks to see iff(d(vℓ)) = f(rw) and
accordingly performs the following checks:

f(M [Ai1f(d(vi)) + Ai2f(d(sib(vℓ)))]) = f(d(vi−1)) ?

for i = ℓ, . . . , 2 and whereAi1 andAi2 are eitherU or D depending on the binary representation ofw.
During these computations the client should also check to see that the coordinates of thef(.) representations
are in{0, 1, . . . , n}, so that the constraint of Equation 4 is satisfied. Finally, ifd is the authentic digest
received by the source the client performs the final verification, i.e., he checks to see ifM [A11f(d(v1)) +
A12f(d(sib(v1)))] = d? If all the checks succeed, then the client accepts the answer, otherwise the client
rejects. Since the client has to doO(log n) checks, each one taking timeO(k4), since matrix multiplications
are involved, the verification time isO(k4 log n) = O(log n). Finally, the client needs only to locally store
the public key of the source, in order to verify the signature on the digest. Therefore the local space needed
is O(1). 2
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