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Abstract. Encryption and signature schemes based on worst-case lattice problems are
promising candidates for the post-quantum era, where classic number-theoretic assumptions
are rendered false. Although there have been many important results and breakthroughs
in lattice cryptography, the question of how to systematically choose secure parameters in
practice is still open. This is mainly due to the fact that most security proofs are essentially
asymptotic statements. In addition, the hardness of the underlying complexity assumption
is controlled by several interdependent parameters rather than just a simple bit length as in
classic schemes.

With our work, we close this gap by providing a handy framework for estimating secure
parameter sets by relating the hardness of practical lattice basis reduction to symmetric
“bit security”. Our approach takes various security levels, or attacker types, into account.
Moreover, we use it to predict long-term security in a similar fashion as the results that are
collected on www.keylength.com.

While we restrict the discussion to encryption and signature schemes, our result is applicable
to almost all lattice-based cryptosystems. More precisely, on those that are based on the
learning with errors problem (LWE) or the small integer solution problem (SIS).
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1 Introduction

Lattice-based cryptography has received a lot of attention in the last couple of years. Not only
because Gentry solved the long-standing problem of fully homomorphic encryption [Gen09], but
mainly because people were, for the first time, able to base security on worst-case assumptions
rather than on average-case assumptions. This was first pointed out by Ajtai [Ajt96] in a worst-
case to average-case reduction. In other words, successfully attacking a random instance of a
cryptosystem immediately implies being able to solve all instances of the underlying problem,
such as finding short vectors in a lattice.

In addition, these lattice problems are considered to withstand quantum-computer attacks,
whereas factoring or discrete-logarithm-based systems are rendered insecure by the work of Shor
[Sho97]. Another desireable trait of lattice problems is that they, unlike factoring, withstand
subexponential-time attacks.

However, the above advantages come at a price. Usually, the bit lengths of the involved keys
are at least O(n2 log(n)) with rather large constants, where n is the natural system parameter.
Fortunately, we can use ideal lattices, introduced by Micciancio [Mic07] and Peikert and Rosen
[PR06], that reduce the key size to O(n log(n)) bits. Thus, in practice, choosing n as small as
possible is crucial. To the best of our knowledge, there is no work that systematically deals with
selecting secure parameters for lattice-based cryptography. Indeed, the task is more involved
than in the case of RSA or symmetric ciphers. Lattice cryptosystems have more than one
parameter that affects security and dealing with n alone is not sufficient.

So far, only Micciancio and Regev [MR08] and Lyubashevky [Lyu09] have proposed secure
parameters for their schemes based on an interesting observation by Gama and Nguyen [GN08b].
They consider the Hermite Short Vector Problem HSVP with parameter δ ≥ 1 in lattices L
of dimension m. There, the task is to find a vector v with 0 < ‖v‖2 ≤ δdD(L)1/d, where
D(L) is a lattice constant. In [GN08b], the authors analyze “random lattices” according to
the Goldstein and Mayer distribution [GM03] that are considered to provide hard instances of
HSVP. Their observation is that δ is the dominating parameter and n only plays a minor role.
They conjecture, that HSVP is infeasible for δ < 1.01 and “totally out of reach” for δ < 1.005
in dimensions d ≥ 500 if the lattice does not have a special structure.

The good news is that, given d, δ can be determined from the security proof for the cryp-
tosystem. The bad news is that cryptographic, typically called q-ary, lattices have a particular
structure that can be exploited in attacks. Micciancio and Regev describe this sublattice attack
in [MR08]. The bottom line is that solving ζ-HSVPq in a q-ary lattice of dimension m is only
as hard as solving δ-HSVP in dimension d, where d < m and δ > ζ. Thus, HSVP becomes
strictly easier in q-ary lattices because there is some “slack” in the required attack dimension.
Moreover, the numbers involved are bounded by q ≤ poly(n), whereas random Goldstein-Mayer
lattices require that q is exponential in n.

With this knowledge, two options remain. The first involves Ajtai’s worst-case to average-
case reduction or its improvements [MR07, GPV08]. One could interpret the results of Gama
and Nguyen as observations about the worst-case problem. Ajtai’s worst-case problems are in
dimension n, while the typical attack against the cryptosystem needs to work in dimension
O(
√
n log(n)). Hence, this approach would work but it is overly conservative and the resulting

parameters would be impractical. The second possibility is using the results of Gama and
Nguyen in dimension d, while demanding that δ < 1.01 for security against current means.
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Basically, this is the methodology in [MR08, Lyu09] but it only offers a yes/no certificate, i.e.,
the parameter set is either secure or insecure. In particular, it does not offer security levels, such
as 100 bits, meaning that the attack effort should be close to 2100 storage times computations
units.

With our work, we focus on lattice-based encryption [Reg09, GPV08, Pei09, SSTX09] and sig-
nature schemes [GPV08, SSTX09, Lyu08, LM08, CHKP10] because they are the main building
blocks of public-key cryptography. Our results can be easily applied to more advanced schemes,
such as identity-based encryption [GPV08], oblivious transfer [PW08, PVW08], collision resis-
tant hashing [LM06, ADL+08], secret key delegation [CHKP10], and others. We do not consider
schemes like NTRU [HPS98] that come without a security proof because secure parameters for
this efficient scheme are already known and standardized. With our work, we rather demonstrate
how practical (or impractical) certain provably secure schemes currently are.

Our Contribution. Inspired by the works of A.K. Lenstra and Verheul [LV01] and the subse-
quent update by Lenstra [Len05], we propose a methodology for selecting secure parameters for
lattice-based cryptography. To this end, we adopt the handy notion of dollar-days, i.e., equip-
ment cost in dollar times running time in days, as introduced in [Len05]. Our methodology also
includes 3 different attacker types, ranging from a resource-constrained Hacker to an all-powerful
intelligence agency.

We conduct experiments on a wide range of cryptographic lattices. Like Gama and Nguyen,
we observe that the complexity of lattice-based attacks is mainly governed by δ. Therefore, we
propose a function T (δ) that estimates the attack complexity in dollar-days for δ ∈ (1, 1.02] in
Section 3. Moreover, we assume that both, technological and algorithmic progress, follow the
“double Moore Law”, i.e., the required attack effort decreases by a factor 2 every 9 months.
Putting this assumption and T (δ) together, we suggest secure parameter sets for the above en-
cryption and signature schemes in Section 4. Here, we also provide a comprehensive comparison
of the state-of-the-art in lattice cryptography. For each scheme, we deal with all attacker types
and present parameters that are secure for the next 10, 20, . . . , 100 years. Our extrapolation
is quite conservative and overestimates the attacker to account for algorithmic improvements
beyond our “double Moore law”.

Interestingly, our estimation shows that, today, δ = 1.01 seems reachable with an effort of 40
million dollar-days. However, even a powerful intelligence agency with over 100 billion dollar-
days of resources should not be able to reach δ = 1.005 before the year 2050.

2 Preliminaries

We denote log x the logarithm to base e, all other logarithms are marked, e.g., log2 x. Vectors
and matrices are written in bold, e.g., v and M.

2.1 Lattices

A lattice in Rn is a discrete subgroup Λ = {
∑d

i=1 xi bi |xi ∈ Z}, generated by a matrix B =
[b1, . . . ,bd] ∈ Zn×d of R-linearly independent vectors (d ≤ n). The matrix B is a basis of the
lattice Λ and we write Λ = Λ(B). For d ≥ 2, there are infinitely many bases for the same lattice.
The number of linearly independent vectors in any such basis is the dimension dim(Λ) of the
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lattice. Given any basis B of the lattice Λ, the determinant det(Λ) of the lattice is
√

det(BtB).
It is an invariant of the lattice. Another invariant is the first successive minimum λ1(Λ), which
is the Euclidean length of the shortest, non-zero vector in Λ. For a lattice Λ(B) with B ∈ Rn×n

define the dual lattice as the set of all x ∈ Rn with 〈x,y〉 ∈ Z for all y ∈ Λ(B). We know that
(Λ(B))∗ = Λ((B−1)T ).

Problems One of the main computational problems in lattices is the approximate shortest
vector problem (SVP). Given a basis B of Λ and an approximation factor γ ≥ 1, the task is
to find a non-zero vector v ∈ Λ with ‖v‖2 ≤ γλ1(Λ). For approximation factors exponential in
dim(Λ), the problem is solvable in polynomial time (in dim(Λ)) by the LLL algorithm [LLL82]
for approximation factors bigger than (4/3)dim Λ. Using the block-wise algorithms of [Sch87,
GHGKN06, GN08a], even sub-exponential approximation factors are reachable in polynomial
time.

For polynomial approximation factors, which are relevant for cryptography, the best known
algorithm is exponential (space and time) [AKS01]. The algorithm mostly used in practice is
the BKZ algorithm [SE94].

In cryptography, we use lattices of special structure, which we call q-ary : let q ∈ N, A ∈ Zn×mq ,
we define Λ⊥q (A) = {v ∈ Zm : Av ≡ 0 (mod q)}. Its, up to scaling, dual lattice Λq(A) is defined
as {w ∈ Zn : ∃e ∈ ZmAte ≡ w (mod q)}, i.e., it is 1/q · Λ⊥q (A) = (Λq(A))∗. The determinant
of a q-ary lattice is qn.

The main computational problem in Λ⊥q (A) is the “small integer solution” problem (SIS):
given n,m, q,A ∈ Zn×mq , and a norm bound ν, find v ∈ Λ⊥q (A) with ‖v‖2 ≤ ν. Basically, the
SIS was introduced and analyzed by Ajtai [Ajt96] but there are numerous improvements to the
analysis in, e.g., [MR07, GPV08]. For Λq(A), we consider the “learning with errors“ problem
(LWE): given n,m, q,A ∈ Zn×mq , and m ”noisy“ inner products b = Ats + e mod q, where
the components of e are chosen from a centered, rounded normal distribution χα over Zq with
standard deviation αq/

√
2π. The task is to recover s ∈ Znq . Stated differently, given A,b, solve

the bounded distance decoding problem that is similar to finding the closest lattice vector to
b because w = Ats is a lattice vector that is close to b. Given w, one can easily recover s by
linear algebra. This search version of LWE is at least as hard as solving the decision problem, i.e.,
distinguish (A,b) from uniform. Finally, the Shortest Independent Vectors Problem SIVP asks
to find n linearly independent vectors in a lattice, that minimize the quantity ‖V‖ = maxi ‖vi‖2.

Algorithmic View In order to grasp lattice reduction algorithmically, the notion of Hermite-
SVP (HSVP) approximation seems more adequate than that of approximate SVP. In practice, it
is unlikely that λ1 is known, therefore it is impossible to check the SVP-condition ‖v‖2 ≤ γλ1(Λ).
HSVP asks for a non-zero vector that satisfies ‖v‖2 ≤ δdim(Λ) det(Λ)1/ dim(Λ) for a given δ ≥ 1.

Concerning the hardness of this problem, the lattice dimension certainly plays a role but
Nguyen and Gama show that δ is the dominating parameter. For random Goldstein-Mayer
lattices Gama and Nguyen argue that solving the problem for δ ≥ 1.01 may be possible even in
high dimensions. For smaller δ, the problem is intractable. For every ε, δ-HSVP is solvable for
all δ = 1 + ε in time polynomial in the lattice dimension and in 1/ε [Sch87, GHGKN06, GN08a].
This shows that, from a theoretical point of view, δ can be considered to be the main parameter
controlling the hardness of HSVP. However, in cryptanalysis, we do not deal with random
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Goldstein-Mayer lattice bases that have very large entries of bit length O(2dim(Λ)). We rather
have bases with entries of bit length log2(q) = O(log2(n)). Here, lattice reduction is potentially
easier as we will discuss in the following.

Average-case Hardness Both, LWE and SIS, are treated as average-case problems that are
directly related to cryptographic schemes with a randomly chosen matrix A. By a worst-case to
average-case reduction they are provably at least as hard as all instances of SIVP in dimension
n. In Section 4.2, we discuss how LWE can be interpreted SIS in a related lattice.

Each instance of SIS can be naturally interpreted as an instance of the Hermite-SVP. Given
SIS with (n,m, q, ν), we compute ζ = m

√
ν/qn/m and ask the Hermite-SVP solver to find v with

0 < ‖v‖2 ≤ ζmqn/m. We write HSVPq for this direct translation from SIS to HSVP.
Micciancio and Regev demonstrate that ζ-HSVPq is typically easier that ζ-HSVP in arbitrary

lattices because it is possible to solve HSVPq in a sublattice [MR08]. Their approach involves
removing random columns from A such that the resulting lattice has a lower dimension and still
contains short vectors. For a given A ∈ Zn×mq they find that the optimum dimension for solving
ζ-HSVPq is d = min{

√
n log(q)/ log(ζ),m}. Now, one removes m − d random columns from A

to obtain A′, reduce the d-dimensional lattice bases of Λ⊥q (A′), and pad a short vector therein
with zeros. The result is a rather sparse vector of norm smaller than ν in Λ⊥q (A).

In consequence, this allows us to normalize ζ-HSVPq by removing the ”slack“ in the dimension
parameter. We end up with an instance of δ-HSVP with δ = d

√
ν/qn/d > ζ. The resulting

distribution of lattices is what we will analyze by directly applying lattice basis reduction.
Notice that the bases of ideal lattices have essentially the same structure. However, there is

no lattice basis reduction algorithm that can take significant advantage of the ideal structure.
Therefore we can adapt our analysis to the ideal lattice case.

Worst-case Hardness One might argue that, since there is a worst-case to average-case reduc-
tion, one might simply treat Goldstein-Mayer lattices as worst-case lattices, apply the reduction,
and analyze the hardness of HSVP in dimension n in Goldstein-Mayer lattices with an appropri-
ate ζ. However, this leads to security estimates that are too conservative because the worst-case
to average-case reduction seems far from tight, with respect to the involved lattice dimension
and the approximation factor. Therefore we perform new experiments using q-ary lattices Λ⊥q
to get a better estimate of the worst-case hardness of those lattices that are really used in
cryptography.

2.2 Lenstra’s Heuristic

The authors of [ECR09] describe an attacker model with attacker classes according to [BDR+96];
a subset of these classes is shown in Table 1. We add an attacker called “Lenstra”, with an
amount of 40M dollar-days, which was the value for a suitable attacker proposed by Lenstra in
[Len05]. Following the work of A.K. Lenstra and Verheul in [LV01], A.K. Lenstra proposed a
slightly simplified framework to choose secure cryptographic parameters in [Len05]. Let k be the
security parameter and assume the best attack against a given cryptosystem takes t(k) seconds on
a machine that costs d dollars. Then, the total ”cost“ of the attack is T (k) = d t(k)/(3600 · 24)
dollar-days (DD). This notion is particularly interesting when estimating attack cost against
lattice cryptography, where attacks may be parallelized with a time-money tradeoff.
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Attacker class Budget Time Dollar-days
Hacker $400 1 d 400 DD
Lenstra 40M DD
Intelligence agency $300M 360 d 108B DD

Table 1: Attacker classes and corresponding budget for each attacker.

Assume we have an estimate for the function T (k) for attacks against lattice-based cryp-
tosystems. Then, we can find the optimum k∗ such that T (k∗) ≥ T2009, where T2009 is chosen
according to the last column of Table 1. We choose 2009 as a reference date here because our
experiments were conducted in that year.

Estimating Future Developments. First of all, we consider Moore’s Law, which states that
computing power doubles every 18 months. Secondly, we want to take cryptanalytic develop-
ments against asymmetric primitives into account. Thus, we apply a combined degradation
function 2−12/9 that Lenstra calls ”double Moore Law“. This is motivated by the algorithmic
progress in the area of integer factorization. As for lattice basis reduction, the algorithmic
progress for practical strong algorithms, such as BKZ, is hard to judge. While, there are recent
results by [GN08a] and [GHGKN06] showing that progress is indeed possible, there are no public
implementations that beat BKZ in practice.

The above condition only yields secure parameters for the year 2009, the time of conducting
the experiments. For year y, we need to satisfy the inequality T (k) ≥ T2009 · 2(y−2009)·12/9 to
obtain a secure k until year y.

Asymmetric primitives are often combined with symmetric ones. Hash functions are necessary
to sign long documents and block ciphers allow efficient hybrid encryption. We assume that these
primitives are available at any given time in the future and that they are only affected by Moore’s
Law. Unlike public-key primitives, block ciphers and hash functions can be easily replaced if
there is a new attack.

3 Analysis

Before we can propose actual parameters, we need to assess the practical hardness of the under-
lying problem. As we will see in Section 4, the best known attacks against the most recent sig-
nature and encryption schemes involve a q-ary lattice Λ = Λ⊥q (A) of dimension m = Ω(n log(n))
and the SIS problem with a scheme-specific norm bound ν. The required norm bound can be
obtained by studying the security reductions. Thus, the main goal of this section is to determine
the effort T2009 (in dollar-days) that is required today for mounting these attacks. From there,
we can apply Lenstra’s Heuristic to estimate parameters for the future.

In order to grasp the hardness of most of these problems, we have conducted experiments on
10-100 random q-ary lattices per dimension m ∈ {100, 125, 150, 175, 200, 225, 250, 275, 300} and
exponent c ∈ {2, 3, 4, 5, 6, 7, 8} for the relation q ≥ nc. The number of experiments per dimension
is adaptive to focus on the interesting invervals. These parameters also determine n if we demand
that m > n log2(q). In this setting, we know that (1 + ε)-HSVPq has a solution for any ε > 0.
This is because the function fA(v) = Av (mod q) admits a collision (v,v′) ∈ {0, 1}m×{0, 1}m
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and therefore v − v′ ∈ Λ⊥q (A) with ‖v − v′‖2 ≤
√
m. The corresponding ζ quickly tends to 1

with increasing n. We use ζ ∈ [1.01, 1.04] to bootstrap and then normalize the resulting problem
instances by reducing the dimension. We assume the following conjecture.

Conjecture 1 For every n ∈ N>0, constant c ≥ 2, prime q ≥ nc, and m > n log2(q), the best
known approach to solve SIS with parameters (n, q,m, ν) involves solving δ-HSVP in dimension
d =

√
n log(q)/ log(ζ) for ζ = m

√
ν/qn/m ≤ δ = d

√
ν/qn/d.

In our experiments, we have analyzed the running time of BKZ [SE94] with double floating-
point precision, a scalable HSVP-solver, as implemented in Shoup’s NTL [Sho] on a $1, 000
machine.1 We apply BKZ with an increasing block size parameter until a vector of the desired
length is found. Our first observation is that q plays a minor role if δ ∈ (1, 1.02]. To see this,
compare Figures 2(a) (q ≈ n2) and 2(c) (q ≈ n8) in Appendix A. For δ ≤ 1.02, the graphs show
the same shape. This also holds for n2 ≤ q ≤ n8. Observe that the timings are in log-scale.
Although the dimension plays a noticeable role, the hardness of HSVP is mainly governed by δ
and different dimensions result in slightly shifted cost functions. To arrive at very conservative
estimates, we use SIS instances with a fix m = 175 and n, q accordingly as our reference.2 For
similar reasons, we choose a fix relation q ≈ n3 because all cryptosystems in Section 4 require
q > n2. Thus, from now on, we can treat δ as the main security parameter and consider the
cost function in dollar-days to be

T (δ) = a2−(log2(δ)b) + c (1)

for real constants a, b, c. We use the (averaged) data samples in Figure 2(d) to find parameters
a, b, c for (1) by a least-squares approximation. Now, we can draw our main conjecture, where
n ≥ 100 rules out unnaturally easy cases in small lattice dimensions.

Conjecture 2 Let all other parameters and relations as in Conjecture 1. For n ≥ 100 and any
δ ∈ (1, 1.02], solving δ-HSVP (in normalized q-ary lattices) of dimension d involves an effort of
at least T (δ) = 10−152−(log2(δ)1.001) + 0.005 dollar-days.

Extrapolating T for smaller δ yields Figure 1. The horizontal bars correspond to today’s
capabilities of the attacker types in Table 1. Notice that the extrapolation has moderate slope
for δ < 1.01 when compared to the

Applying Lenstra’s Heuristic. Fix an attacker type A and let δA be infeasible for A today.
Assuming the Lentra Heuristic in conjunction with the “double Moore Law”, which takes algo-
rithmic and technological advancement into account, the inequality T (δ) ≥ T2009 · 212(y−2009)/9

for T2009 = T (δA) can be used in both directions, i.e., compute a δ such that i is infeasible
until the end of a given year y and vice versa. Note that the inverse function is T−1(t) =
2(1/(log2(t−0.005)·1015))1/1.001

, where t is the amount of dollar days available. For example, let
A = “Int. agency”. Compared with the year 2009, it can manage t = 108 · 2124/3 billion dollar-
days in 2040. Thus, we require δ ≤ T−1(t) = 1.00548 for infeasibility until the end of 2040. Vice

1An AMD Opteron, running at 2.4 GHz.
2Choosing a rather small problem dimension m, and therefore a small attack dimension d, is very conservative

but it also guarantees that we can average over many data samples for small δ. Our choice was also influenced
by the fact that the BKZ algorithm tends to behave badly in large dimensions for block size parameters bigger
than 30. With our experiments we avoid this potential bias.
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Figure 1: Estimated time complexity of δ-HSVP for δ ∈ [1.003, 1.02]. The plots include hori-
zontal lines, illustrating today’s power of different attacker types.

year 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
bit security 75 82 88 95 102 108 115 122 128 135
λ 225 246 264 285 306 324 345 366 384 405
κ 150 164 176 190 204 216 230 244 256 270
Hacker 1.01177 1.00965 1.00808 1.00702 1.00621 1.00552 1.00501 1.00458 1.00419 1.00389
Lenstra 1.00919 1.00785 1.00678 1.00602 1.00541 1.00488 1.00447 1.00413 1.00381 1.00356
Int. agency 1.00799 1.00695 1.00610 1.00548 1.00497 1.00452 1.00417 1.00387 1.00359 1.00336

Table 2: Infeasible parameters δ for HSVP. The upper rows present recommended post-quantum
secure symmetric key size κ and hash function length λ. Each of the lower cells contains
an upper bound for the HSVP-parameter δ, such that this problem is computationally
hard for the given attacker (row) until the end of a given year (column).

versa, if an attack requires δ ≤ 1.00548, the corresponding lattice problem is at least intractable
until the end of 2040. Table 2 provides an overview of hard values for δ for the different attacker
types until 2100. This table also allows a mapping between symmetric security and security
parameters for lattice cryptography.

Post-quantum Secure Hash Functions and Symmetric Key Size. Encryption schemes and
hash functions are rarely used without block ciphers and collision resistant hash functions,
respectively. Since we want to propose parameters for the post-quantum era, we also want the
symmetric ciphers and hash functions to be secure in this setting. In consequence, we need to
take Grover’s search algorithm for quantum computers into account [Gro96]. Basically, its effect
is that we have to double the key length of block ciphers that would be required in the non-
quantum setting for symmetric ciphers. The output length of hash functions has to be multiplied
with 3/2. According to the recommendations in [Len05] in conjunction with this doubling-law,
we use the following formula that computes the required key length for security until the end
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of a given year y. As a simplification, we choose the symmetric parameters independently of
the attacker type. A natural extension of our work would be to let λ and κ be functions of
the attacker’s resources. Here, we use the simple Moore Law and the assumption that DES was
secure in the year 1982, even against the strongest attacker. Then, κ ≥ 2 d56 + 12(y − 1982)/18e
is the proposed symmetric key length and λ ≥ 3κ/2 is the proposed output length for hash
functions. Using these formulae, we obtain the recommendations in Table 2. Notice that some
of the schemes require the hash function to act as a random oracle. One scheme [Lyu09] even
relies on “rewinding” the adversary to extract the solution to a hard problem. Generally, this
is not possible with quantum adversaries due to the no-cloning theorem. Hence, we implicitly
assume a stronger, quantum definition of the random oracle model or restrict the adversary to
classical random oracle queries.

This concludes the analysis. Table 2 and Conjecture 2 provide all the necessary tools for
estimating secure parameters for all SIS and LWE-based cryptosystems in the next section. It
also shows the equivalent level of symmetric security, sometimes referred to as “bit security”.

4 Estimating Secure Parameters

In this section we analyze the individual signature and encryption schemes.

4.1 Signature Schemes

All lattice-based signature schemes are based on the hardness of the SIS problem. In other
words, for each scheme, we can easily describe an equivalent instance of SIS in terms of the
parameters n,m, q, ν (sometimes we need more parameters, but those are the most important)
that also fully determines the hardness estimate δ for HSVP. For our choices of n,m, and q, by
worst-case to average-case reduction, the SIS instances in dimension m are provably at least as
hard as all instances of the shortest vector problem in dimension n.

Using the attacker dimension d =
√
n log(q)/ log(ζ) we can compute δ = d

√
ν/qn/d. Having

these relations at hand, we can also fix a δ and find suitable n,m, q, ν such that they are
valid parameters that guarantee security until the desired year. Combined with the infeasible
values for δ for each year and attacker type (Table 2) we generate tables that present suitable
parameters for each signature scheme. In this chapter, for each signature scheme we present
an extract of the complete parameter tables, which are given in Appendix C. More precise, we
present the signature scheme of GPV [GPV08], the Bonsai tree scheme [CHKP10], the one-time
signature scheme of [LM08], and Lyubashevsky’s treeless signature scheme [Lyu09].

GPV Signatures. The GPV signature scheme [GPV08] is due to Gentry, Peikert, and Vaikun-
tanathan. It benefits from the improved trapdoor generation algorithm in [AP09], which de-
mands m1 ≥ (1 + ϕ)n log2(q), m2 ≥ (4 + 2ϕ)n log2(q), m = m1 + m2, and odd q ≥ 3 (q has to
satisfy q ≥ ω(

√
n log n) · poly(n), for that the hardness of breaking the scheme can be reduced

to a hard worst-case problem). For our choices of n (n ≥ 100), m (m ≥ 1000), and q (q ≥ n3),
ϕ = 0.1 is a suitable choice. For ϕ = 0.1, the statistical distance from uniformity, m2 · q−ϕn/2 in
[AP09] is smaller than 2−80.

The GPV scheme is strongly unforgeable (in the random oracle model) as long as the respective
instance of SIS with norm bound ν = 2s

√
m is hard, for Gaussian parameter s ≥ (1 + 20

√
m1) ·
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ω
(√

log(n)
)

. Choosing log(n) for ω
(√

log(n)
)

we get ν = 2(1 + 20
√
m1) log(n)

√
m. This

choice is suitable for all dimensions m ≥ 83; for those m, the smoothing parameter index ε
(see [MR07, Pei07, GPV08] for more details) is smaller than 2−79. This renders the statistical
distance between a uniform distribution and the “blurred” lattice negligible (i.e., 2−80). This
is due to the fact that log(m) ≥

√
log(2m(1 + 1/ε))/π for m ≥ 83 and λ∞1 (Z∗) = 1 (a lattice

constant) in [GPV08, Lemma 4.3], using [Pei07, Lemma 3.5].
We choose m1 = d(1 + 0.1)n log2(q)e and m2 = d(4 + 0.2)n log2(q)e. An attacker would only

use the first m1 columns of A for an attack, therefore when calculating ζ we only consider
those first columns: ζ = (ν/qn/m1)1/m1 . For q we choose q = nt for the smallest t such that
q ≥ 2ν

√
n log2(n) (worst-case to average-case reduction). Messages are mapped to Znq via a

full-domain hash. This set is always bigger than 2λ.
Here we describe the structure of the scheme, in order to compute the key and signature sizes.

The parameters for GPV are presented in Table 3.

Secret Key: S ∈ Zm×m with ‖S‖ ≤ 20n log(q), i.e, m2 log2(20n log(q)) bits.

Public Key: A ∈ Zn×mq , i.e, nm log2(q) bits.

Signature: σ ∈ Zm with ‖σ‖2 ≤ s
√
m, i.e., m log2(s

√
m) bits.

year 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
λ 225 246 264 285 306 324 345 366 384 405

Lenstra n
q
m1

m
|sk|
|pk|
|σ|

186
1.20e+09
6171
29730
1.75e+06
20356.39
74.16

216
2.18e+09
7371
35512
2.54e+06
29045.2
89.87

249
3.84e+09
8721
42020
3.61e+06
40666.67
107.77

279
6.06e+09
9974
48054
4.77e+06
53183.9
124.56

310
9.24e+09
11289
54392
6.18e+06
68138.69
142.35

342
1.37e+10
12668
61034
7.86e+06
85796.45
161.16

373
1.94e+10
14021
67556
9.71e+06
105112.61
179.76

402
2.61e+10
15302
73728
1.17e+07
125198.02
197.48

435
3.58e+10
16776
80830
1.41e+07
150479.54
218.0

464
4.64e+10
18085
87135
1.65e+07
174870.04
236.32

Table 3: Recommended parameters for GPV signatures. The rows correspond to attacker types
and the columns correspond to security until a given year. Sizes are in kilobytes (kB).

In [SSTX09], the authors explain how to create an ideal-lattice variant of the GPV signature,
in order to reduce the key sizes of the secret and public key. This variant comes with Õ (n)
verification time and signature length. We do not examine this variant here, but we expect that
we can apply the same parameters as in the original GPV case.

Bonsai Trees. In [CHKP10], Cash, Hofheinz, Kiltz, and Peikert introduce a tree based sig-
nature scheme. It does not require random oracles for the security proof of existential un-
forgeability. A modified version by Rückert [Rüc10] with the same efficiency supports strong
unforgeability. The Bonsai tree scheme makes use of the [AP09] trapdoor, which was used in
the GPV case as well.

The parameters are: m1 = d(1 + ϕ)n log2(q)e ,m2 = d(4 + 2ϕ)n log2(q)e, hashed message
length λ, total dimension m = m1 + (λ + 1)m2.3 Again, we can use ϕ = 0.1. We choose the
Gaussian parameter s = (1 + 20

√
m1) log(n). q is chosen the same as in the GPV case. If

3We apply the original construction due to Peikert, as mentioned in a footnote in [CHKP10].
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there exists an attack against unforgeability on the signature scheme, then there is a PPT oracle
algorithm attacking SIS for ν = 2s

√
m. The same as in the GPV case, an attacker would only

use the first m1 columns of A, therefore we take this prefix-attack into account when calculating
ζ. For the overview of the parameters, refer to Table 4.

Here we describe the keys and the signature of the scheme, in order to derive the key and
signature sizes.

Secret Key: S ∈ Zm×m with ‖S‖ ≤ 20n log(q), i.e, m2 log2(20n log q) bits.

Public Key: A0 ∈ Zn×(m1+m2)
q ,Ak

j ∈ Zn×m2
q , 2k many, i.e., n(m1 +m2) log2(q)+2k ·nm2 log2(q)

bits.

Signature: σ ∈ Zm with ‖σ‖2 ≤ s
√
m, i.e., m log2(s

√
m) bits.

year 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
λ 225 246 264 285 306 324 345 366 384 405

Lenstra n
q
m1

m2

m
|sk|
|pk|
|σ|

197
2.97e+11
8259
31533
7134717
15949.16
1.30e+07
21436.57

229
6.30e+11
9874
37699
9321527
22507.89
2.04e+07
28419.02

264
1.28e+12
11681
44599
11830416
31136.82
3.06e+07
36545.11

296
2.27e+12
13365
51030
14607945
40397.03
4.32e+07
45621.8

328
3.80e+12
15078
57567
17688147
51005.06
5.91e+07
55782.97

363
6.30e+12
16978
64825
21085103
64184.71
7.93e+07
67106.78

395
9.62e+12
18740
71551
24775386
77709.88
1.03e+08
79480.99

427
1.42e+13
20522
78355
28776807
92669.11
1.31e+08
92992.88

462
2.10e+13
22493
85880
33086293
110702.84
1.65e+08
107668.03

494
2.94e+13
24313
92831
37713699
128743.86
2.03e+08
123491.47

Table 4: Recommended parameters for Bonsai signature scheme. The rows correspond to at-
tacker types and the columns correspond to security until a given year. Sizes are in
kilobytes (kB).

LM-OTS. The one-time signature scheme of [LM08] does not require random oracles, and
it is asymptotically optimal (almost linear in the lattice dimension) in concerns of key size
and signature/verification time. It is equipped with a security proof of worst-case complexity
assumptions. Using a tree construction it can be transformed into a regular signature scheme,
with logarithmic overhead [Mer89]. The LM-OTS scheme is based on the collision resistant hash
function of [LM06, Mic07, PR06]: H ∈ HR,m = {Ha : a ∈ Rm} that maps elements from Rm to
R. For a λ-bit message signing and verification take time Õ(λ) + Õ(n), signature size is Õ(n).

We fix the ring defining polynomial and operate in R = Zq[x]/〈xn+1〉. We choose q = n3 and
m = dlog(n)e, as proposed in the original work [LM08]. Messages are encoded in {−1, 0, 1}n,
but |{−1, 0, 1}n| ≥ 2λ does not introduce an additional constraint here.

An attacker that, after seeing a signature/message pair, can output a valid signature of another
message, can use a polynomial-time algorithm to find a collision in the underlying hash function
and from this we derive ν = 20q1/mn log2(n)

√
m for SIS. As we operate in ideal lattices, we

have ζ = (ν/q(nm)/m)1/m. See Table 5 for the proposed LM-OTS parameters.

Secret Key: k ∈ Rm, l ∈ Rm with ‖k‖∞ ≤ 5 blog2(n)c q1/m, ‖l‖∞ ≤ 5n blog2(n)c q1/m, i.e,
mn log2(5 blog2(n)c q1/m) +mn log2(5n blog2(n)c q1/m) bits.

Public Key: H ∈ HR,m,H(k),H(l), i.e., mn log2(q) + 2 · n log2(q) bits. H is shared among all
users and generated from a trusted source of random bits, e.g., from the random bits of π.
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Signature: σ ∈ Rm with ‖σ‖∞ ≤ 10q1/mn log2(n), i.e., m log2(10q1/mn log2(n)) bits.

year 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
λ 225 246 264 285 306 324 345 366 384 405

Lenstra n
q
m
|sk|
|pk|
|σ|

512
1.34e+08
7
4.11
15.19
9.39

512
1.34e+08
7
4.11
15.19
9.39

512
1.34e+08
7
4.11
15.19
9.39

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

Table 5: Recommended parameters for LM-OTS signature scheme. The rows correspond to
attacker types and the columns correspond to security until a given year. Sizes are in
kilobytes (kB).

Lyubashevsky Treeless Signatures. In [Lyu09] Lyubashevsky presents a signature scheme se-
cure in the random oracle model with key generation, signing, and verification time Õ(n). Its
security is based on the hardness of approximating the shortest, non-zero vector to within a
factor of Õ

(
n2
)

in lattices corresponding to ideals in R = Z[x]/〈xn + 1〉.
The parameters involved are: n, a power of 2, an integer m, an integer dc such that 2dc

(
n
dc

)
≥ 2λ

(for encoding messages), and an integer q ≈ (2ds + 1)m · 2−128/n.
If the scheme is not strongly unforgeable, then there exists a polynomial time algorithm that

solves SIS in every lattice corresponding to ideals in R for ν = 2
√
m · nmdsdc.

We choose m = dlog2(n)e and compute the smallest dc such that 2dc
(
n
dc

)
≥ 2λ holds. Further,

for ds we choose the smallest value such that q ≥ 4m2n2.5dsdc log(n) andm > log(q)/ log(2mndsdc)
hold because of the worst-case to average-case reduction. This choice of parameters implies that
finding collisions in the underlying hash function is hard. As the determinant in the ideal lattice
case is qnm, we calculate ζ = (ν/q(nm)/m)1/m. Notice that the scheme allows various trade-offs.
For example, a larger ds increases the key size but allows for smaller m, as demonstrated in
[Lyu09].

The scheme has the following structure. See [Lyu09] for a full description of the numerous
parameters. Our proposed parameter sets are in Table 6.

Secret Key: s ∈ Rm with ‖s‖∞ ≤ ds, i.e, m log2(ds) bits for a typicalyl small ds.

Public Key: H ∈ HR,m, s = H(s), i.e., mn log2(q) bits. H is again global.

Signature: σ ∈ Rm with ‖σ‖∞ ≤ nmdsdc, i.e., m log2(nmdsdc) bits.
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year 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
λ 225 246 264 285 306 324 345 366 384 405

Lenstra n
q
m
κ
σ
|sk|
|pk|
|σ|

256
1.76e+12
8
48
18
1.3
1.27
5.44

512
7.25e+12
9
41
14
2.73
2.67
12.56

512
1.32e+13
9
45
15
2.79
2.72
12.69

512
1.32e+13
9
50
15
2.79
2.72
12.78

512
1.32e+13
9
55
15
2.79
2.72
12.86

512
1.32e+13
9
60
15
2.79
2.72
12.93

1024
1.03e+14
10
52
13
5.94
5.82
29.65

1024
1.03e+14
10
56
13
5.94
5.82
29.79

1024
1.03e+14
10
59
13
5.94
5.82
29.88

1024
1.03e+14
10
60
13
5.94
5.82
29.91

Table 6: Recommended parameters for treeless signatures. The rows correspond to attacker
types and the columns correspond to security until a given year. Sizes are in kilobytes
(kB).

4.2 Encryption Schemes

In contrast to lattice signatures that rely on (search) SIS, lattice-based encryption schemes are
usually based on the decision LWE problem. After pointing out the relation of these two prob-
lems, we have a close look at LWE, its parameters, and properties. Then, we discuss the param-
eter choices for the multi-bit variant of Regev’s cryptosystem [Reg09, KTX07, PVW08, MR08],
the dual-LWE cryptosystem [GPV08, Pei09], and the trapdoor-LWE scheme [RS09, Pei09]. As an
aside, we also deal with chosen ciphertext secure encryption [RS09, Pei09] and possible improve-
ments with ideal lattices [SSTX09] in Appendix B. We assume that one uses hybrid encryption
in practice. The employed block cipher has key length κ and we want it to remain secure in the
presence of quantum computers (see Table 2).

In the following, we only show selected parameter sets. The full tables are in Appendix D.

The LWE Assumption. Let n ∈ N, m ≤ poly(n), q ≤ poly(n), and α > 0. Furthermore, let

A $← Zn×mq , s $← Znq , and e $← χmα with χα being a Gaussian distribution with standard deviation
αq/
√

2π and mean zero. A theorem in [Reg09] states that v← Ats+e is indistinguishable from
uniform if α >

√
n/q by a worst-case to average-case reduction, i.e., solving decision LWE

implies solving several worst-case lattice problems in dimension n with approximation factors in
Õ(n/α). Thus, choosing a large α ensures worst-case hardness but it increases the probability of
a decryption error. We let this reduction govern the choice of α but there are further restrictions,
coming from the individual cryptosystems. Regev’s reduction relies on quantum computation
but it was “dequantized” by Peikert in [Pei09]. Although Peikert requires q = 2O(n) for the
dequantization to work, we stick to q = poly(n). It is more practical and, similar to SIS, the
worst-case to average-case reduction should not be more than a guideline for choosing actual
parameters.

The assumption that (A,v) is close to uniform helps in proving CPA security of all subsequent
constructions, except in the ideal lattice case. In Regev’s LWE construction it is used to show
indistinguishability of the public key from uniform, while dual-LWE and trapdoor-LWE rely on
this assumption for proving the same for the ciphertexts. The uniform distribution of ciphertexts
(Regev) and keys (dual, trapdoor) is ensured by the particular choice of m by the leftover-hash
lemma [HILL99].
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Attacking LWE. As pointed out by Micciancio and Regev in [MR08], the most natural ap-
proach to distinguish (A,v) from uniform is solving an instance of the SIS problem. An even
more compelling reason for this approach is the quantum reduction from SIS to search-LWE in
[SSTX09]. We can interpret the decision-LWE problem as an instance of SIS in the dual lattice
1/qΛ⊥q (A) because finding a short vector w ∈ 1/qΛ⊥q (A) and checking whether 〈v,w〉 is close
to Z solves the decision problem. If v is close to Λq(A), its inner product with w will be close
to an integer. To see this, consider 〈v,w〉 =

〈
Ats + e,w

〉
=
〈
Ats,w

〉
+ 〈e,w〉. Now, the first

part of the sum is an integer because Aw ≡ 0 (mod q). As for the second part, we have to
consider | 〈e,w〉 |. The length of e in the direction of w is short by design because we need to be
able to decode and because it is drawn from a relatively tight Gaussian with standard deviation
αq/
√

2π in each direction. However, the attack only works if both vectors are short. The length
of w depends on how well we can cryptanalyze the lattice 1/qΛ⊥q A. Following the reasoning in
[MR08], we require ‖w‖ ≥ 1.5

√
2π/(αq) for the attack to fail.

For concreteness, we will replace ‖w‖ with ν = ζmqn/m and require that no adversary can
solve SIS in 1/qΛ⊥q (A) with ν in dimension d = min{

√
n log(q)/ log(ζ),m}. Recall that now, the

adversary has to attack SIS with ν = δdqn/d in dimension d. Again, we typically have δ > ζ, i.e.,
the lattice problem becomes easier when reducing the dimension. Thus, for concrete parameter
choices, we require that δ falls below feasible levels according to our hardness estimation in
Section 3.

Decryption Errors. For the decryption process to work, we need to bound the errors that are
induced during encryption. In each cryptosystem, the error comes from two sources. Firstly,
a rounding error that can be bounded with certainty by choosing a q that is sufficiently large.
Secondly, there is an error x that follows a normal distribution with parameter s. Thus, in
principle, the error can be arbitrarily large. However, there is a tail bound for Prob[ |x| ≥ ts],
t ≥ 1. It states that e−πt

2
is a very good approximation (see, e.g., [Pei07]). We want the

error probability to be less than 2−80 in all ` components of the ciphertext. Thus, we need
1− (1− e−πt2)` < 2−80.

For all relevant ` (` ≤ 270), setting t = 5 is sufficient. Moreover, we typically have ts < 1/c
for some constant c ≥ 2. Consequently, we need to ensure that the error is distributed with
s = 1/(5c).

Multi-bit LWE. The multi-bit version of Regev’s LWE cryptosystem looks as follows.

Secret Key: S $← Zn×`q , i.e, n` log2(q) bits.

Public Key: A $← Zn×mq , P = AtS + E ∈ Zm×`q for E ← χm×`α . The matrix A can be the
same for all users, e.g., generated from the random bits of π. Using the HNF technique of
[Mic01], the key is reduced to (m− n)` log2(q) bits.

Plaintext: k ∈ Z`t, i.e., κ ≤ ` log2(t).

Ciphertext: u = Aa ∈ Znq , c = Pta + f(k), where f encodes k into Z`q and a $← {−r, . . . , r}m1 ,
r ≥ 1. The ciphertext has ` log2(q) bits.

We want t to be a power of two, which makes message encoding easy. A large t reduces the
public-key size but introduces decryption errors. We fix t = 4 and encrypt ` = κ/2 letters.
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Having fixed t, we need to set set α = 1/(40
√
m+ 1) to eliminate decryption errors because

then the error is distributed as a Gaussian with parameter s = 1/40 and correctable error is 1/8
per component. Alternatively, this can be verified by applying the error estimation formula in
[MR08] to ` letters. Another simplification is that we set r = 1, which speeds up encryption.
We let q = q(n) be the smallest prime between 2n2 and 4n2 to resolve a circular dependency.
Then, we set m = m(n) = d((n+ `) log2(q) + 2κ)/ log2(3)e to tie the probability of being able
to distinguish ciphertexts from uniform to the symmetric security level, i.e., the probability is
at most

√
qn+`/(2r + 1)m =

√
qn+`/3m <

√
qn+`/(qn+`22κ) = 2−κ. After taking all this into

account, we propose various parameter sets in Table 7. Our parameters differ from the proposed
sets of parameters in [MR08] as they are chosen via a completely different methodology. In
addition, our parameters do not yield decryption errors but with negligible probability, whereas
in [MR08] the error probability is only guaranteed to be ≤ 1/100 without an additional error
correcting code.

year 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
κ 150 164 176 190 204 216 230 244 256 270
(`, t) (75, 4) (82, 4) (88, 4) (95, 4) (102, 4) (108, 4) (115, 4) (122, 4) (128, 4) (135, 4)

Lenstra n
q
α
m
|sk|
|pk|
EPF

158
49937
5.02e-04
2484
22.6
332.4
24.24

183
67003
4.65e-04
2888
29.4
434.1
25.91

211
89051
4.34e-04
3324
37.3
549.8
27.93

237
112339
4.08e-04
3755
46.1
684.5
29.32

262
137303
3.87e-04
4178
55.7
832.2
30.45

290
168211
3.67e-04
4632
66.4
993.7
31.99

315
198461
3.51e-04
5065
77.8
1173.5
32.9

340
231223
3.37e-04
5502
90.2
1369.8
33.74

368
270859
3.24e-04
5971
103.8
1580
34.97

392
307337
3.12e-04
6402
117.8
1805.5
35.58

Table 7: Recommended parameters for multi-bit LWE. The rows correspond to attacker types
and the columns correspond to security until a given year. Sizes are in kilobytes (kB)
and EPF is the ciphertext expansion factor.

Dual-LWE. Gentry, Peikert, and Vaikuntanathan proposed a dual version of Regev’s cryp-
tosystem in [GPV08]. It is “dual” in the sense that public keys and ciphertexts are essentially
exchanged. Therefore, the LWE assumption ensures that ciphertexts are indistinguishable from
random. The keys are unconditionally random for the proposed parameters. We use a variant
of the scheme in [Pei09].

Secret Key: X $← Zm×κ2 , i.e, mκ bits.

Public Key: A $← Zn×mq , U = AX ∈ Zn×κq . Again, A is global. The key requires nκ log2(q)
bits.

Plaintext: k ∈ Zκt .

Ciphertext: c1 = Ats + x1 ∈ Znq , c2 = Uts + x2 + k bq/2c ∈ Zκq , where x1 ← χmα , x2 ← χκα and

s $← Znq . The ciphertext has (n+ κ) log2(q) bits.

We do not explicitly consider the dequantization of LWE in [Pei09] as it requires q = 2O(n),
which dramatically increases the public-key size. Moreover, by choosing q ≤ poly(n), the en-
cryption process is slightly simpler. Here, we let q = q(n) be the smallest prime between
2n2 and 4n2 to resolve a circular dependency. To ensure that the public key is within dis-
tance 2−κ from uniform, we set m = dn log2(q) + 2e. Then, the statistical distance is at most
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√
qnκ/2mκ <

√
qnκ/(qnκ22κ) = 2−κ. As for α, we need to ensure that the induced errors, dis-

tributed according to a Gaussian with parameter at most α
√
m+ 1, are less than 1/8. Thus,

setting α = 1/(40
√
m+ 1) is sufficient for all relevant n and `. Given these relations among the

parameters, we propose secure parameter sets in Table 8.

year 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
κ 150 164 176 190 204 216 230 244 256 270

Lenstra n
q
α
m
|sk|
|pk|
EPF

158
49937
5.03e-04
2469
2.9
45.2
272.51

183
67003
4.61e-04
2936
3.7
58.7
303.04

210
88211
4.25e-04
3453
4.5
74.1
338.75

234
109517
3.99e-04
3920
5.4
90.9
362.13

259
134171
3.76e-04
4414
6.4
109.9
385.6

285
162451
3.56e-04
4936
7.5
130.1
412.87

310
192229
3.39e-04
5444
8.7
152.8
433.01

334
223129
3.24e-04
5937
9.9
176.8
450.09

360
259201
3.11e-04
6477
11.3
202.3
472.99

384
294919
2.99e-04
6980
12.7
230
487.9

Table 8: Recommended parameters for dual-LWE. The rows correspond to attacker types and
the columns correspond to security until a given year. Sizes are in kilobytes (kB) and
EPF is the ciphertext expansion factor.

Trapdoor-LWE. The trapdoor-LWE cryptosystem [GPV08, Pei09] is similar to dual-LWE. The
main difference is that the secret key is a trapdoor T for the lattice Λ⊥q (A), i.e., a short basis
thereof. It is generated via [AP09]. The secret key X in dual-LWE disappears and we cannot
share the matrix A among all users. The scheme comes in two flavours. The first uses what
is called “rounding-off” for decryption and the second involves Babai’s nearest plane algorithm
[Bab86]. The advantage of Babai’s algorithm is that we can correct bigger errors compared to
rounding-off. However, rounding-off is more efficient. We describe both in the following.

Let L = ‖T‖ = maxi(‖ti‖2) be the basis length, where the ti are the columns of T. Similarly,
we denote the basis length of the Gram-Schmidt orthogonalization T̃ of T with L̃.

Secret Key: T ∈ Zm×m such that AT ≡ 0 mod q. It has at most m2 log2(L) bits.

Public Key: A ∈ Zn×mq , U $← Zn×κq . Notice that A cannot be global here as it contains a
trapdoor. Fortunately, U can be the same for all users. Thus, |pk| = nm log2(q) bits.

Plaintext: k ∈ Zκt .

Ciphertext: c1 = Ats + x1 ∈ Znq , c2 = Uts + x2 + k bq/2c ∈ Zκq , where x1 ← χmα , x2 ← χκα and

s $← Znq . The ciphertext has (n+ κ) log2(q) bits.

The parameters m = m1 + m2 is determined by the trapdoor algorithm in [AP09]. The algo-
rithm requires m1 = d(1 + ϕ)n log2(q)e and m2 = d(4 + 2ϕ)n log2(q)e, where q depends on the
decryption method as we will see below and ϕ is chosen 0.1 as explained in the GPV signature
case.

In both variants, decryption recovers s from c1 and then k from c2. The induced error is
a rounding error ≤ 1/4 if q ≥ 2L

√
m (q ≥ 2L̃

√
m) and a Gaussian with parameter ≤ αL

(rounding-off) or ≤ αL̃ (Nearest plane). The Gaussian error needs to be < 1/4, i.e., setting
α = 1/(L20) or α = 1/(L̃20) is sufficient. The advantage of the “nearest plane” approach
becomes obvious as we can have a bigger α and with that a harder worst-case problem. This
also affects q because we require q >

√
n/α in the worst-case to average-case reduction. An
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admissible q is the smallest prime between n4 and 2n4 (rounding-off), or between n3 and 2n3

(nearest plane). Table 9 shows the resulting parameter sets for “nearest plane”. See Appendix
D for “rounding-off”.

year 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
κ 150 164 176 190 204 216 230 244 256 270

Lenstra n
q
α
m
|sk|
|pk|
EPF

165
4492157
3.94e-05
19326
736509
8602
46.41

191
6967897
3.61e-05
23013
1060620
12197
49.21

218
10360241
3.34e-05
26927
1472135
16699
52.17

242
14172493
3.14e-05
30472
1905490
21385
54.01

267
19034173
2.96e-05
34221
2427138
26972
55.83

293
25153763
2.81e-05
38178
3048981
33570
57.93

318
32157451
2.68e-05
42033
3725735
40691
59.42

341
39651823
2.57e-05
45618
4418381
47930
60.52

368
49836043
2.46e-05
49875
5320559
57291
62.33

391
59776477
2.37e-05
53535
6165845
66009
63.24

Table 9: Recommended parameters for trapdoor-LWE with “nearest-plane”. The rows corre-
spond to attacker types and the columns correspond to security until a given year.
Sizes are in kB and EPF is the ciphertext expansion factor.
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[AP09] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lat-
tices. In Susanne Albers and Jean-Yves Marion, editors, STACS, volume 09001 of
Dagstuhl Seminar Proceedings, pages 75–86. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany Internationales Begegnungs- und Forschungszentrum
fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2009.
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A Experimental Data

The Figures 2(a) and 2(c) show that the running time of BKZ behaves quite similar for various
q and small δ. Here, we compare q ≈ n2 with q ≈ n8, whereas Figure 2(b) shows the averaged
samples for q ≈ n3 that were used for the interpolation in Section 3. It appears that the impact
of q is negligible, the graphs in the three figures are comparable. The impact of the dimension
m is noticeable, but the slope of all graphs seems to be the same. The impact of the Hermite
factor δ is compelling. Thus, we can consider δ to be the main security parameter. The fitting
curve of Figure 2(d) was used to determine the key sizes in this paper.
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n3 and selected 100 ≤ m ≤ 300 and 1.01 < δ ≤ 1.04.
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(c) Logarithmic running time in seconds for prime q ≈
n8 and selected 100 ≤ m ≤ 300 and 1.01 < δ ≤ 1.04.
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Figure 2: Logarithmic time complexity for solving δ-HSVP in different dimensions and for dif-
ferent moduli q. The x-axis corresponds to the Hermite factor δ.
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B Extensions for Encryption Schemes

There are two particularly interesting extensions: using ideal lattices to reduce the key size and
making the cryptosystem secure against chosen ciphertext attacks (CCA2).

Ideal Lattices So far, the only work on encryption with ideal lattices is that of Stehlé, Steinfeld,
Tanaka, and Xagawa [SSTX09]. They adapt the trapdoor generation algorithm of Alwen and
Peikert to work with ideal lattices and propose an ideal version of trapdoor-LWE. The resulting
trapdoor T is a full-rank set of short lattice vectors. Although, it can be converted into a
lattice basis via a generic method [MG02, Lemma 7.1], the basis length increases by a factor
of O(

√
mn). Therefore, we recommend using the full-rank set in conjunction with the “nearest

plane” approach. The parameter sets remain almost the same as in Table 9. However, they
need to assume subexponential hardness of search LWE. If this assumption holds, their scheme
can encrypt bn/ log2(n)c bits with the Goldreich-Levin hardcore function [Gol04, Section 2.5].
To encrypt κ = 150 (κ = 270), this would imply n ≥ 1597 (n ≥ 3136). This would result in
a large q and big keys, which is exactly what we wanted to avoid by using ideal lattices in the
first place. The better approach is using parameters close to the ones in Table 9 and encrypt
the symmetric key of length κ in dn/ bn/ log2(n)ce chunks. This increases ciphertext expansion
by a small factor.

The significant advantage of using ideal lattices is that the bit lengths of public and secret
keys are essentially reduced to a 1/n fraction. We leave the detailed discussion of schemes based
on ideal lattices to a later report.

CCA Security Achieving CCA2 security involves almost the same parameters as in Tables
16 or 9. Let k be the bit length of a verification key in a one-time signature scheme. Then,
the ciphertext comprises a “correlated product”, i.e, k independent trapdoor functions that
are evaluated on the same s. As in trapdoor-LWE, one of the trapdoor evaluations hides the
symmetric key k, the others and a one-time signature are merely used as a proof of “well-
formedness” to make the scheme CCA2 secure. For the details, refer to [PW08, RS09, Pei09].

For the construction in [Pei09] to work, each user needs two matrix-trapdoor pairs (A(0)
1 ,T(0)

1 )
and (A(1)

1 ,T(1)
1 ). The remaining (public) trapdoor descriptions A2, . . . ,Ak and U can be shared

among all users. Thus, the key sizes are doubled. The ciphertext requires (kn + κ) log2(q) + k
bits, compared to (n+ κ) log2(q) bits in the CPA secure version.

In practice, it is widely accepted to use random oracles and generically transform a CPA
secure scheme into a CCA2 secure one [BR93]. The schemes remain largely unchanged, except
for the ciphertext. The random oracle is used to append a hash proof of “well-formedness” of
the ciphertext. This is very efficient compared to the standard model approach. However, it
may be dangerous as all proofs in the random oracle model are only heuristic because random
oracles do not exist. Canetti, Goldreich, and Halevi show that proofs in the random oracle model
can actually be wrong [CGH04] and Leurent and Nguyen [LN09] demonstrate some practical
problems.
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C Secure Parameters for Lattice-based Signature Schemes

year 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
λ 225 246 264 285 306 324 345 366 384 405

Hacker n
q
m1

m
|sk|
|pk|
|σ|

122
2.70e+10
4651
22408
9.71e+05
11564.38
54.45

178
1.00e+09
5855
28211
1.57e+06
18329.99
70.07

211
1.98e+09
7169
34539
2.40e+06
27475.23
87.21

241
3.37e+09
8391
40429
3.33e+06
37645.68
103.38

271
5.39e+09
9638
46435
4.45e+06
49660.56
120.04

304
8.54e+09
11033
53157
5.89e+06
65080.21
138.87

334
1.24e+10
12321
59364
7.42e+06
81166.28
156.41

364
1.76e+10
13627
65654
9.15e+06
99277.22
174.32

397
2.48e+10
15081
72660
1.13e+07
121595.48
194.41

426
3.29e+10
16373
78886
1.34e+07
143327.01
212.37

Lenstra n
q
m1

m
|sk|
|pk|
|σ|

186
1.20e+09
6171
29730
1.75e+06
20356.39
74.16

216
2.18e+09
7371
35512
2.54e+06
29045.2
89.87

249
3.84e+09
8721
42020
3.61e+06
40666.67
107.77

279
6.06e+09
9974
48054
4.77e+06
53183.9
124.56

310
9.24e+09
11289
54392
6.18e+06
68138.69
142.35

342
1.37e+10
12668
61034
7.86e+06
85796.45
161.16

373
1.94e+10
14021
67556
9.71e+06
105112.61
179.76

402
2.61e+10
15302
73728
1.17e+07
125198.02
197.48

435
3.58e+10
16776
80830
1.41e+07
150479.54
218.0

464
4.64e+10
18085
87135
1.65e+07
174870.04
236.32

Int. agency n
q
m1

m
|sk|
|pk|
|σ|

213
2.06e+09
7249
34927
2.45e+06
28096.68
88.27

243
3.49e+09
8474
40827
3.40e+06
38389.53
104.48

276
5.80e+09
9847
47445
4.65e+06
51845.54
122.86

306
8.77e+09
11118
53568
5.99e+06
66090.58
140.03

336
1.27e+10
12408
59781
7.53e+06
82310.34
157.6

368
1.83e+10
13802
66499
9.40e+06
101848.37
176.74

398
2.51e+10
15125
72873
1.14e+07
122310.52
195.02

428
3.36e+10
16462
79317
1.36e+07
144898.68
213.62

461
4.52e+10
17949
86480
1.62e+07
172251.23
234.41

491
5.81e+10
19314
93055
1.89e+07
199438.19
253.6

The rows correspond to attacker types and the columns correspond to security until a given
year. Sizes are in kilobytes (kB).

Table 10: Recommended parameters for GPV signatures.

year 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
λ 225 246 264 285 306 324 345 366 384 405

Hacker n
q
m1

m2

m
|sk|
|pk|
|σ|

157
9.54e+10
6299
24051
5441825
9467.4
7.59e+06
16048.59

189
2.41e+11
7861
30015
7421566
14502.51
1.29e+07
22281.62

224
5.64e+11
9619
36726
9742009
21400.34
2.07e+07
29709.39

256
1.10e+12
11265
43009
12311839
29028.26
3.07e+07
38024.21

288
1.98e+12
12942
49412
15182426
37957.52
4.35e+07
47411.64

323
3.52e+12
14808
56539
18389983
49256.98
6.03e+07
58021.51

355
5.64e+12
16541
63157
21868863
61025.02
8.01e+07
69606.72

387
8.68e+12
18297
69862
25657651
74194.71
1.04e+08
82320.89

422
1.34e+13
20242
77287
29775737
90235.93
1.34e+08
96264.2

454
1.93e+13
22040
84153
34188158
106425.08
1.67e+08
111273.91

Lenstra n
q
m1

m2

m
|sk|
|pk|
|σ|

197
2.97e+11
8259
31533
7134717
15949.16
1.30e+07
21436.57

229
6.30e+11
9874
37699
9321527
22507.89
2.04e+07
28419.02

264
1.28e+12
11681
44599
11830416
31136.82
3.06e+07
36545.11

296
2.27e+12
13365
51030
14607945
40397.03
4.32e+07
45621.8

328
3.80e+12
15078
57567
17688147
51005.06
5.91e+07
55782.97

363
6.30e+12
16978
64825
21085103
64184.71
7.93e+07
67106.78

395
9.62e+12
18740
71551
24775386
77709.88
1.03e+08
79480.99

427
1.42e+13
20522
78355
28776807
92669.11
1.31e+08
92992.88

462
2.10e+13
22493
85880
33086293
110702.84
1.65e+08
107668.03

494
2.94e+13
24313
92831
37713699
128743.86
2.03e+08
123491.47

Int. agency n
q
m1

m2

m
|sk|
|pk|
|σ|

225
5.77e+11
9670
36921
8353816
21619.72
1.79e+07
25367.95

257
1.12e+12
11316
43207
10683445
29286.71
2.68e+07
32867.15

292
2.12e+12
13153
50221
13321718
39167.13
3.88e+07
41472.33

324
3.57e+12
14862
56745
16243932
49604.35
5.35e+07
51079.84

356
5.72e+12
16596
63365
19469651
61415.37
7.16e+07
61778.34

390
9.02e+12
18463
70495
22929338
75502.61
9.38e+07
73363.75

422
1.34e+13
20242
77287
26761544
90235.93
1.20e+08
86267.89

454
1.93e+13
22040
84153
30906191
106425.08
1.51e+08
100317.27

489
2.80e+13
24028
91741
35344313
125827.14
1.88e+08
115484.2

522
3.88e+13
25920
98964
40205304
145764.2
2.31e+08
132165.77

The rows correspond to attacker types and the columns correspond to security until a given
year. Sizes are in kilobytes (kB).

Table 11: Recommended parameters for Bonsai signature scheme.
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year 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
λ 225 246 264 285 306 324 345 366 384 405

Hacker n
q
m
|sk|
|pk|
|σ|

512
1.34e+08
7
4.11
15.19
9.39

512
1.34e+08
7
4.11
15.19
9.39

512
1.34e+08
7
4.11
15.19
9.39

512
1.34e+08
7
4.11
15.19
9.39

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

Lenstra n
q
m
|sk|
|pk|
|σ|

512
1.34e+08
7
4.11
15.19
9.39

512
1.34e+08
7
4.11
15.19
9.39

512
1.34e+08
7
4.11
15.19
9.39

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

Int. agency n
q
m
|sk|
|pk|
|σ|

512
1.34e+08
7
4.11
15.19
9.39

512
1.34e+08
7
4.11
15.19
9.39

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

2048
8.59e+09
8
19.83
82.5
48.62

The rows correspond to attacker types and the columns correspond to security until a given
year. Sizes are in kilobytes (kB).

Table 12: Recommended parameters for LM-OTS signature scheme.

year 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
λ 225 246 264 285 306 324 345 366 384 405

Hacker n
q
m
κ
σ
|sk|
|pk|
|σ|

256
1.76e+12
8
48
18
1.3
1.27
5.44

256
1.76e+12
8
56
18
1.3
1.27
5.49

512
1.32e+13
9
45
15
2.79
2.72
12.69

512
1.32e+13
9
50
15
2.79
2.72
12.78

512
1.32e+13
9
55
15
2.79
2.72
12.86

512
1.32e+13
9
60
15
2.79
2.72
12.93

512
1.32e+13
9
60
15
2.79
2.72
12.93

512
1.32e+13
9
60
15
2.79
2.72
12.93

1024
1.03e+14
10
59
13
5.94
5.82
29.88

1024
1.03e+14
10
60
13
5.94
5.82
29.91

Lenstra n
q
m
κ
σ
|sk|
|pk|
|σ|

256
1.76e+12
8
48
18
1.3
1.27
5.44

512
7.25e+12
9
41
14
2.73
2.67
12.56

512
1.32e+13
9
45
15
2.79
2.72
12.69

512
1.32e+13
9
50
15
2.79
2.72
12.78

512
1.32e+13
9
55
15
2.79
2.72
12.86

512
1.32e+13
9
60
15
2.79
2.72
12.93

1024
1.03e+14
10
52
13
5.94
5.82
29.65

1024
1.03e+14
10
56
13
5.94
5.82
29.79

1024
1.03e+14
10
59
13
5.94
5.82
29.88

1024
1.03e+14
10
60
13
5.94
5.82
29.91

Int. agency n
q
m
κ
σ
|sk|
|pk|
|σ|

512
7.25e+12
9
37
14
2.73
2.67
12.48

512
7.25e+12
9
41
14
2.73
2.67
12.56

512
1.32e+13
9
45
15
2.79
2.72
12.69

512
1.32e+13
9
50
15
2.79
2.72
12.78

512
1.32e+13
9
55
15
2.79
2.72
12.86

512
1.32e+13
9
60
15
2.79
2.72
12.93

1024
1.03e+14
10
52
13
5.94
5.82
29.65

1024
1.03e+14
10
56
13
5.94
5.82
29.79

1024
1.03e+14
10
59
13
5.94
5.82
29.88

1024
1.03e+14
10
60
13
5.94
5.82
29.91

The rows correspond to attacker types and the columns correspond to security until a given
year. Sizes are in kilobytes (kB).

Table 13: Recommended parameters for treeless signatures.
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D Secure Parameters for Lattice-based Encryption Schemes

year 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
κ 150 164 176 190 204 216 230 244 256 270
(`, t) (75, 4) (82, 4) (88, 4) (95, 4) (102, 4) (108, 4) (115, 4) (122, 4) (128, 4) (135, 4)

Hacker n
q
α
m
|sk|
|pk|
EPF

123
30259
5.52e-04
2049
16.8
262.5
19.65

149
44417
5.04e-04
2458
23
356.8
21.75

177
62659
4.65e-04
2887
30.3
463.9
23.99

203
82421
4.34e-04
3311
38.4
588.6
25.61

229
104891
4.09e-04
3741
47.6
729.3
27.06

256
131101
3.87e-04
4177
57.4
878.8
28.65

281
157931
3.68e-04
4605
68.1
1048.2
29.73

306
187273
3.52e-04
5038
79.8
1234.3
30.72

334
223129
3.37e-04
5503
92.7
1435
32.06

359
257783
3.24e-04
5944
106.3
1654.5
32.89

Lenstra n
q
α
m
|sk|
|pk|
EPF

158
49937
5.02e-04
2484
22.6
332.4
24.24

183
67003
4.65e-04
2888
29.4
434.1
25.91

211
89051
4.34e-04
3324
37.3
549.8
27.93

237
112339
4.08e-04
3755
46.1
684.5
29.32

262
137303
3.87e-04
4178
55.7
832.2
30.45

290
168211
3.67e-04
4632
66.4
993.7
31.99

315
198461
3.51e-04
5065
77.8
1173.5
32.9

340
231223
3.37e-04
5502
90.2
1369.8
33.74

368
270859
3.24e-04
5971
103.8
1580
34.97

392
307337
3.12e-04
6402
117.8
1805.5
35.58

Int. agency n
q
α
m
|sk|
|pk|
EPF

181
65537
4.75e-04
2774
26.5
379.8
27.31

207
85703
4.42e-04
3195
34
490.1
28.88

235
110459
4.14e-04
3637
42.3
612.2
30.75

260
135209
3.92e-04
4058
51.4
750.7
31.85

286
163601
3.73e-04
4498
61.7
908.3
32.94

313
195967
3.56e-04
4943
72.5
1073.1
34.27

338
228509
3.41e-04
5379
84.5
1259.8
35.06

363
263561
3.28e-04
5819
97.4
1463.2
35.79

390
304211
3.16e-04
6276
111
1675.2
36.86

416
346117
3.05e-04
6738
126.1
1917.1
37.55

The rows correspond to attacker types and the columns correspond to security until a given
year. Sizes are in kilobytes (kB) and EPF is the ciphertext expansion factor.

Table 14: Recommended parameters for multi-bit LWE.

year 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
κ 150 164 176 190 204 216 230 244 256 270

Hacker n
q
α
m
|sk|
|pk|
EPF

126
31769
5.75e-04
1887
2.3
34.5
203.09

151
45613
5.17e-04
2340
3
46.8
236.31

178
63377
4.69e-04
2842
3.8
61
273.53

203
82421
4.34e-04
3318
4.7
76.9
301.52

228
103969
4.05e-04
3802
5.7
94.6
327.27

254
129037
3.81e-04
4315
6.7
113.7
356.13

278
154571
3.61e-04
4795
7.8
134.5
376.61

303
183637
3.43e-04
5301
9
157.8
397.39

329
216493
3.27e-04
5834
10.3
182.2
421.64

353
249229
3.14e-04
6331
11.6
208.6
438.28

Lenstra n
q
α
m
|sk|
|pk|
EPF

158
49937
5.03e-04
2469
2.9
45.2
272.51

183
67003
4.61e-04
2936
3.7
58.7
303.04

210
88211
4.25e-04
3453
4.5
74.1
338.75

234
109517
3.99e-04
3920
5.4
90.9
362.13

259
134171
3.76e-04
4414
6.4
109.9
385.6

285
162451
3.56e-04
4936
7.5
130.1
412.87

310
192229
3.39e-04
5444
8.7
152.8
433.01

334
223129
3.24e-04
5937
9.9
176.8
450.09

360
259201
3.11e-04
6477
11.3
202.3
472.99

384
294919
2.99e-04
6980
12.7
230
487.9

Int. agency n
q
α
m
|sk|
|pk|
EPF

180
64811
4.66e-04
2880
3.3
52.7
322.88

205
84053
4.31e-04
3356
4.1
67.1
351.12

231
106727
4.02e-04
3861
5
82.9
383.14

256
131101
3.79e-04
4355
5.9
100.9
406.67

280
156817
3.59e-04
4835
7
120.3
426.31

307
188519
3.41e-04
5382
8.1
141.9
454.17

331
219133
3.26e-04
5875
9.3
164.9
470.92

355
252079
3.13e-04
6372
10.6
189.7
486.53

381
290327
3.01e-04
6917
11.9
216.1
508.48

406
329677
2.90e-04
7445
13.4
245.3
523.78

The rows correspond to attacker types and the columns correspond to security until a given
year. Sizes are in kilobytes (kB) and EPF is the ciphertext expansion factor.

Table 15: Recommended parameters for dual-LWE.
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year 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
κ 150 164 176 190 204 216 230 244 256 270

Hacker n
q
α
m
|sk|
|pk|
EPF

165
7.41e+08
5.14e-07
25768
1342990
15293
61.88

198
1.54e+09
4.14e-07
32026
2113786
23622
67.36

234
3.00e+09
3.39e-07
39044
3194896
35110
73.34

267
5.08e+09
2.90e-07
45628
4420390
47950
77.55

300
8.10e+09
2.53e-07
52337
5882053
63087
81.32

335
1.26e+10
2.22e-07
59572
7701655
81737
85.59

367
1.81e+10
2.00e-07
66287
9618429
101201
88.46

399
2.53e+10
1.81e-07
73087
11784915
123029
91.08

434
3.55e+10
1.64e-07
80615
14449838
149678
94.46

466
4.72e+10
1.51e-07
87572
17163278
176628
96.65

Lenstra n
q
α
m
|sk|
|pk|
EPF

208
1.87e+09
3.90e-07
33957
2388260
26557
73.51

240
3.32e+09
3.29e-07
40231
3400645
37278
77.91

276
5.80e+09
2.79e-07
47445
4794946
51846
83.3

308
9.00e+09
2.45e-07
53980
6273024
67110
86.67

341
1.35e+10
2.18e-07
60824
8042334
85208
89.91

376
2.00e+10
1.94e-07
68191
10202109
107099
93.78

408
2.77e+10
1.77e-07
75014
12440335
129602
96.23

440
3.75e+10
1.62e-07
81913
14937797
154539
98.47

475
5.09e+10
1.48e-07
89541
17975165
184661
101.56

507
6.61e+10
1.37e-07
96584
21038503
214853
103.44

Int. agency n
q
α
m
|sk|
|pk|
EPF

236
3.10e+09
3.36e-07
39440
3262791
35825
81.14

269
5.24e+09
2.88e-07
46031
4502102
48801
85.24

305
8.65e+09
2.48e-07
53363
6124674
65585
90.22

337
1.29e+10
2.21e-07
59990
7814536
82886
93.16

369
1.85e+10
1.99e-07
66710
9746558
102496
95.81

404
2.66e+10
1.79e-07
74157
12146578
126658
99.41

436
3.61e+10
1.63e-07
81047
14611315
151288
101.56

468
4.80e+10
1.51e-07
88009
17341794
178396
103.54

503
6.40e+10
1.38e-07
95701
20640753
210941
106.43

535
8.19e+10
1.29e-07
102798
23948764
243388
108.09

The rows correspond to attacker types and the columns correspond to security until a given
year. Sizes are in kilobytes (kB) and EPF is the ciphertext expansion factor.

Table 16: Recommended parameters for trapdoor-LWE with “rounding-off”.

year 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
κ 150 164 176 190 204 216 230 244 256 270

Hacker n
q
α
m
|sk|
|pk|
EPF

133
2352641
4.49e-05
14921
428881
5127
39.93

158
3944329
4.05e-05
18350
660921
7755
43.02

186
6434861
3.67e-05
22297
992883
11450
46.52

211
9393949
3.41e-05
25905
1357931
15455
48.89

236
13144259
3.19e-05
29580
1790990
20152
51.01

262
17984749
3.00e-05
33466
2316825
25795
53.33

286
23393659
2.85e-05
37107
2873417
31713
54.92

311
30080233
2.71e-05
40949
3528329
38619
56.51

337
38272757
2.59e-05
44992
4293021
46623
58.35

361
47045897
2.48e-05
48767
5077380
54774
59.57

Lenstra n
q
α
m
|sk|
|pk|
EPF

165
4492157
3.94e-05
19326
736509
8602
46.41

191
6967897
3.61e-05
23013
1060620
12197
49.21

218
10360241
3.34e-05
26927
1472135
16699
52.17

242
14172493
3.14e-05
30472
1905490
21385
54.01

267
19034173
2.96e-05
34221
2427138
26972
55.83

293
25153763
2.81e-05
38178
3048981
33570
57.93

318
32157451
2.68e-05
42033
3725735
40691
59.42

341
39651823
2.57e-05
45618
4418381
47930
60.52

368
49836043
2.46e-05
49875
5320559
57291
62.33

391
59776477
2.37e-05
53535
6165845
66009
63.24

Int. agency n
q
α
m
|sk|
|pk|
EPF

188
6644681
3.65e-05
22583
1019662
11746
51.07

213
9663629
3.39e-05
26196
1389964
15805
53.34

239
13651943
3.16e-05
30025
1847655
20763
55.89

264
18399749
2.98e-05
33768
2360630
26262
57.67

288
23887933
2.84e-05
37413
2923025
32238
59.11

314
30959167
2.70e-05
41412
3611972
39499
61.06

339
38958229
2.58e-05
45305
4355466
47274
62.38

362
47437961
2.48e-05
48924
5111489
55128
63.33

388
58411097
2.38e-05
53056
6051544
64832
64.9

413
70445017
2.30e-05
57066
7042658
75003
65.95

The rows correspond to attacker types and the columns correspond to security until a given
year. Sizes are in kilobytes (kB) and EPF is the ciphertext expansion factor.

Table 17: Recommended parameters for trapdoor-LWE with “nearest-plane”.
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