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On Homotopic, non—isomorphic tight contact
structures on 3—manifolds

Paolo Lisca and Gordana Matié

1. Introduction

Let M be a smooth 3-dimensional manifold. A contact structure on M is a distribution
§ of tangent 2-planes locally defined by a 1-form a (¢ = {@ = 0}) such that a A da is
nowhere vanishing.

On a generically embedded surface S C M, ¢ induces a line field which integrates
to a foliation S, with isolated singularities at points where S is tangent to £, called
the characteristic foliation [Ae]. A contact structure is called overtwisted if there is
an embedded disc D C M such that its characteristic foliation contains a closed orbit
with exactly one singular point inside it. Otherwise the contact structure is called tight
([E13],[A¢])-

By a classical result of Gray [Gr] two contact structures £y and &; that are homotopic
through a family of contact structures are actually isotopic. FEliashberg proved that
two overtwisted contact structures which are homotopic as 2-plane fields are homotopic
through contact structures. Thus, the classification of overtwisted contact structures up to
isotopy coincides with their homotopy classification as 2—plane fields. On the other hand,
Eliashberg’s work implies that there are only finitely many Euler classes of tight contact
structures on a given 3-manifold M. In fact, given a tight oriented contact structure ¢
on M and a smoothly embedded 2-dimensional surface S C M, if e(£) denotes the Euler
class of £ as a 2-plane bundle over M, Eliashberg’s result says that either (i) the genus
of S is equal to zero and e(§) - [S] =0, or (ii) |e(&) - [S]] < —x(9).

It was conjectured (see e.g. 10.3 in [El2]) that on a given 3-manifold all tight contact
structures having the same Euler class are isotopic. This conjecture was disproved by
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Giroux [Gil, Gi2] who showed that T has at least countably many homotopic non-
isomorphic tight contact structures.

In this paper we describe new possible counterexamples to the conjecture for an infinite
family of homology 3-spheres, and we use Seiberg—Witten theory to prove a result (the-
orem 4.2) which seems to support our belief that they are honest counterexamples. The
construction goes roughly as follows. Our homology 3-spheres are oriented boundaries
of different Stein manifolds. Since Stein manifolds have naturally induced tight contact
structures on their boundaries this produces the contact structures. The particular choice
of the Stein manifolds allows us to prove that the resulting contact structures are homo-
topic as 2-plane fields. In the final argument we show that either there exist certain
exotic symplectic structures on collars around the boundary of our Stein manifolds, or an
isomorphism between the contact structures cannot exist. To do this, we prove that if the
first case does not occur and such a contactomorphism exists, then a certain cut-and-
paste operation is possible within the symplectic category. The cut—-and-paste operation
would produce closed manifolds with symplectic structures which are not allowed by re-
cent results in Seiberg-~Witten theory, in particular the remarkable new results of Taubes
concerning symplectic 4-manifolds [Ta2]. We finish the paper by motivating and then
stating the conjecture that our contact structures are all non-isomorphic.

2. Notation and background material

The standard contact structure & on S° is defined as the field of complex 2-planes
tangent to the unit sphere in C2. When restricted to R3 = §3\ p C §3 it is, in properly
chosen coordinates, given by the kernel of the 1-form o = zdy + dz (cf. [Be, Er]). The
planes in this field are all parallel to the z-axes and the slope of their projection in the
yz—plane is —z.

A knot K in a contact 3-manifold M is Legendrian if it is tangent to the contact plane
at every point. The projection of a generic Legendrian knot K C R? to the yz—plane is a
front Ck, i.e. a piecewise-smooth immersed curve with finitely many singularities which
are either ordinary double points or horizontal cusps, corresponding to the points on K
where the tangent vector is parallel to the z—axis. Thus, the cusps are exactly the local

d
extrema of y|Ck. The knot K can be uniquely reconstructed from Ck: since d—z =—x

the slope of the tangent lines to Cx give the z—coordinate of the corresponding point on
K. In particular, the diagram obtained from a front C' by letting the over—arc at any
double point be the one with the most negative slope is a knot diagram for the Legendrian
knot K¢ reconstructed from C.

Given a generic Legendrian knot K C R® C S3, its Thurston-Bennequin invariant
tb(K) (see e.g. [E12]) can be defined using such a projection in the following way. Let
w denote the writhe of K, namely the algebraic number of self-crossings. Let ¢ denote
the number of cusps. Then, the number tb(K) = w — %c can be shown to depend only
on the Legendrian isotopy type of K. Similarly, for an oriented generic Legendrian knot
K, the rotation number r(K) can be defined by r(K) = (d — a), where a is the number
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of ascending cusps and d the number of descending cusps in Ck. r(K) changes sign if
the orientation of K is reversed, but it is an invariant of the oriented Legendrian isotopy
class of K.

In figure 1 the diagram of a Legendrian right-handed trefoil is shown, and tb and r are
computed. ‘

FIGURE 1

Recall that a symplectic form on a smooth 4-manifold X is a closed, non-degenerate 2-
form w. If X has also an almost complex structure J, w is called J-positive if w(v, Jv) > 0
for every tangent vector v. An almost complex structure J is called w-compatible if w is
J-positive and w(Jv, Jv') = w(v,v’). The space of almost complex structures compatible
with a given symplectic form is well known to be contractible [Ae], so the first Chern class
of the almost complex structure is uniquely determined by the symplectic structure, and
sometimes called the first Chern class of w.

A vector field © on a symplectic manifold is called contracting if the Lie derivative
Lew = vw for a negative (locally constant) function v. For a domain W with smooth
boundary M contained in (X,w) we say that W is w — convez if there is a contracting
vector field which is transverse to M and pointing into W. An elementary argument shows
that there is a collar U inside W around M and an orientation—preserving diffeomorphism
¢ : U = M x R such that o(M) = M x {0}, ¢.(0) = —£, ©* (d(e!a)) = w|U, and
o*(a)|m = tew|m, where t € R, a € Q}(M).

Let X be a smooth 4-manifold with an almost complex structure J : TX — TX.
Any smooth hypersurface M C X has a canonically induced distribution of J—invariant
tangent 2-planes £ = TMNJ(TM). Suppose that M is defined as the zero set of a smooth
function f : X — R, with df|as # 0. Then ¢ is the kernel of the 1-form o = —J*df. M
is called J-convez if the quadratic form —da(v, Jv) restricted to ¢ is everywhere positive
definite. Note that X doesn’t necessarily have to be closed. For example, it makes sense
to talk about almost complex manifolds with J—convex boundary. When J is integrable
and M is J-convex the induced contact structure ¢ is called holomorphically fillable. By
a theorem of Gromov [Gro] a holomorphically fillable contact structure is tight.
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3. Legendrian knots and Stein manifolds

A Stein manifold is a complex manifold which can be embedded as a proper complex
submanifold of C*. Any Stein manifold X admits a (strictly) plurisubharmonic function
#, namely a function which is strictly subharmonic on any holomorphic disk in X. If we
denote by J multiplication by v/—1 in TX and by J* its dual, the 2-form wy = dJ*d¢ is
nondegenerate and closed, hence it defines a symplectic structure. X is therefore Kahler
with a Kéhler metric defined by g4(v,v’) = wg(v, Jv'). The gradient vector field of ¢ is
contracting for the symplectic form wy, and if we look at the domain W = {¢ < c} its
boundary is J-convex and wg-convex (see [EG]). The contact structure § = TMNJ(T'M)
is therefore holomorphically fillable, hence tight.

To construct our examples we shall need the following result, which was pointed out
to us by Bob Gompf, and is implicitly contained in [El1].

Theorem 3.1 ([Ell]). Let W be a smooth 4-manifold with boundary having a handlebody
decomposition B* U; H? with only 2-handles. Suppose that there ezists a Legendrian link
L = |J; K; in the framed isotopy class of the union of the attaching circles of the 2-handles
such that fr(K;) = tb(K;) — 1 for alli. Then, on W there is an almost complex structure
which restricts to a Stein structure on the interior of W and such that OW is J-convez.
Moreover, let h; denote the 2-homology class supported by H?. Then, (c1(W), hi) = 1(K;).

Notice that the contact structure induced on &W by the complex structure on W is
holomorphically fillable, and therefore by Gromov’s theorem it is tight.

Let W2 and W} be the smooth 4-manifolds obtained by attaching 2-handles to the
4-ball according to the framed links of figures 2(a) and 2(b) respectively (see e.g. [Kil).
A simple sequence of Kirby moves [Go] shows that 8W? = W,. On the other hand,
the intersection form of W2 is even if and only if n is even, while the intersection form
of W} is always even. Moreover, since the determinants of their intersection matrices are
+1, their common boundary is an integral homology 3-sphere. Thus, W0 and W} are
homeomorphic if and only if n is even [Fr].

The two links of figure 2 can be realized by the Legendrian links illustrated in figure 3.
Let T, S (T', S’ respectively) the generators of Ho(W2;Z) (Ha(W,;Z)) given by Seifert
surfaces of the knots union the cores of the 2-handles, so that T' (1") corresponds to the
0—framed knot. The links of figure 3 satisfy the hypothesis of theorem 3.1 for n > 2,
hence W2 and W} are Stein manifolds with tight contact structures on their boundaries.
Let us call these contact structures £2 and £}. Using theorem 3.1 we can easily compute
c1(W9) = (2 — n) PD(T) and ¢, (W,) = 0.

The statement of the following proposition was pointed out to us by Bob Gompf. A
simple proof can be given using some obstruction theory. Let x(X) and o(X ) denote,
respectively, the Euler characteristic and the signature of a 4-manifold X.

Proposition 3.2. Let M be an oriented integral homology 3-sphere, X;, 1 = 1,2 two
almost complex 4-manifolds with boundaries orientation—preservingly isomorphic to M.
Let &, i = 1,2 be the 2-plane fields induced on M by the almost complex structures on
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FIGURE 3

Xi. &1 and & are homotopic as 2—plane fields if and only if
c1(X1)? - 2x(X1) — 30(X1) = c1(X2)? — 2x(X2) — 30(Xa).
Corollary 3.3. For everyn > 2 €2 and £ are homotopic as 2-plane fields.

4. Main theorem

Recall that for a smooth 4-manifold X the Seiberg-Witten monopole equations ([SW1,
SW2, W]) give rise to invariants of the differentiable structure of X. When X is Kahler,
the set of Seiberg-Witten basic classes SWB C H?(X,Z) is invariant under change of
sign and contains the canonical class. Taubes proved [Tal] that, more generally, the
canonical class of a symplectic 4-manifold X belongs to the set of its Seiberg-Witten
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basic classes. Moreover, Seiberg-Witten basic classes satisfy the generalized adjunction
inequality [KM, MST]: for ¢ € SWB and a surface S embedded in X such that S-S >0
the genus of S is bounded from below, as 2¢g(S) —2>¢-S+S-8S.

The following lemma is needed for the proof of the main theorem.

Lemma 4.1. Let X be a smooth, closed 4—manifold containing a smoothly embedded
copy of the Milnor fiber M,,. Then, any Seiberg—Witten basic class K restricts trivially
to H*(M,;Z) C H*(X;Z).

Proof. M, can be described by the framed link of figure 4(a) or, after cancelling two
1 — —2-handle pairs, by the framed link of figure 4(b) (see e.g. [Go]). It is clear from the
cyclic and symmetric nature of the first link that there is a diffeomorphism taking any of
the (—2)-spheres in one half of the picture in figure 4(b) to any other (—2)-sphere in the
same half.

all framings =-2

(®)

FIGURE 4

Inside the link of figure 4(b) we can clearly find the configuration in figure 5(a).

We can realize the class T = a + b+ ¢+ A+ B + C by band connect-summing as in
figure 5(b). It is not hard to see that the pair T, S of figure 5(b) isotopes to the link
of Wl. Hence we have a O-torus T intersecting transversally the (—2)-sphere S in one
point.

The generalized adjunction formula for Seiberg-Witten basic classes implies that K -
T =0and K - (S+T) = 0 since both classes are represented by 0-tori. Hence, K-S = 0.
Arguing by symmetry as suggested above, one can easily conclude from this that K
restricts trivially to the Milnor fiber. O

Let E,, be a smooth Kéahler simply connected elliptic surface with geometric genus
n— 1. By a result of Gompf [Go] there is a smooth decomposition E,, = N, |J M, where
N,, is the nucleus introduced in section 3, realized here as a regular neighborhood of the
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FIGURE 5

union of a cusp fiber with a section of the elliptic fibration, while the complement M,, is
diffeomorphic to the Milnor fiber of the Brieskorn singularity (2, 3,6n — 1).

It is an easy exercise in Kirby calculus [Ki] to show that the 4-manifold W2 defined in
section 3 embeds smoothly inside N,,iCP", and therefore that there is a smooth embedding
i W0 E, = E,J@Z (cf. lemma 2.2 in [Li]). This embedding sends the class T' (see
section 3) to the pull-back in E‘; of the class F' of a generic fiber in E,, and S to the
pull-back of the class of a section. It follows that there is an orthogonal decomposition
H*(E,) = H2(i(W?)) @ (o) ® H2(M,,), where « is the exceptional class. Denote by w?,
1 = 1,2, the Kahler forms induced on W}, by their Stein structures. Let w denote a Kihler
form on E:,

Theorem 4.2. For every odd n > 2, one of the following holds:

1. There is no smooth embedding j : W0 — En, j homotopic to i, such that it is
possible to find two neighborhoods VO, V1 C W2 of OW?, and a diffeomorphism
©: VO > V1 such that p*(5*(w)) = °.

2. €2 and &L are non—isomorphic contact structures.

Proof. Suppose the first case does not hold. Then, there exist a smooth embedding j, two
neighborhoods V° and V!, and a diffeomorphism ¢ : V° — V1 as in the statement. Up to
cutting and regluing symplectically j(W?) back into E,, we may assume that (") 1w
extends to a symplectic form & on the closed manifold 1/47; so that W0 is G—convex. Next,
we shall argue that if there is a diffeomorphism ¢ : 9W? — dW! which sends £ to &1,
then one can cut j(W2) out of E, and glue back in W} so that the resulting manifold is
symplectic.

Let us observe the following. By the w'-convexity of W} inside W: there are two
collars U* C Wi, i = 0,1 around OW; and diffeomorphisms g; : U; — W} x R such that
¢} (d(e’o;)) equals the restriction of the symplectic form w® on W2, and o; € Q' (dW})
defines the J;-invariant 2-plane distribution &,. £2 and &1 are isomorphic if and only if
there is an orientation-preserving diffeomorphism f : W2 — W, such that f*(oy) =
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Aag, where X\ : W2 — R is a non-vanishing function. Define the diffeomorphism F :
OW?2 x R — W]} x R by F(p,t) = (f(p),t —InA(p)). Then,

F*(d(e'a1)) = d (F*(e'anr)) =d (e *Xap) = +d (') -

Up to changing w! into —w! (and a; into —ay), we conclude that ¢ extends to a sym-
plectomorphism between two collars around W_ and OW}.
Hence, since j* (&) = w?, if there exists a contactomorphism ¢ then there is a symplectic

structure on X = W} Uso o oF 1o, (E; \j (WS)), and we may choose a compatible

almost complex structure. Since X = W} U(Na \ (W)U M, and j is homotopic to 4,
the cohomology of X decomposes as H2(X) = H*(W}) @ (o) ® H?(M,), with a? = —1.
It is evident from figure 2(b) that the generators T’ and S’ of Ho(W,) are represented
by an embedded O-torus and a (—2)-sphere respectively, intersecting geometrically in
one point. Thus, T'+ S can also be represented by an embedded O-torus. Since by the
generalized adjunction formula any Seiberg-Witten basic class K is orthogonal to both
T and T + S, K restricts trivially to H2(W,!). Hence, by lemma 4.1 we can conclude
that any Seiberg-Witten basic class for X is a multiple of a. Observe that (see e.g. [Go])
x(X) = X(E‘;) =12n+1, and o(X) = U(E’\n) = —8n — 1. Thus any Seiberg-Witten class
K satisfies K? = 2x(X) + 30(X) = —1, which implies K = *a.

By Taubes’ recent results [Ta2] ¢;(X)? = —1 < 0 implies X = X’ ﬁ@2, where X’
is again symplectic. The blow—up formula for Seiberg-Witten invariants (see e.g. [F'S])
tells us that +c;(X’) £ E are basic classes for X. Since *oa are the only two possible
basic classes for X, this implies ¢;(X’) = 0. Thus w1(X') = wa(X’) = 0. But by
Rohlin’s theorem this implies o(X’) = 0 mod 16, which is impossible if n is odd, since
o(X') = —8n. O

Remark 4.3. The proof of the theorem shows that if the embedding i : W2 —» E, could
be homotoped to an embedding j such that j(OWY?) is w—convex with respect to the Kahler
form w on En, the second case in the statement would have to hold. The authors were
able to show that i can be isotoped to a holomorphic embedding j such that j(OWY) is
J—-convez, but are unable, at present, to achieve w—convexity.

Finally, here is what we think is reasonable to expect.

Conjecture 1. For everyn > 2 €2 and £} are homotopic, non-isomorphic tight contact
structures.
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