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A PROPERTY OF MELDRUM GROUPS

A.O. Asar & S. Atlihan

Abstract

In this work it is shown that the direct product of two Meldrum groups does not
satisfy the normalizer condition. It is not known yet if the same result holds true
for any two HM-groups.

Introduction

Let G be the direct product of two groups H and K each satifying the normalizer
condition. In Lemma 4 of [4] of a necessary and sufficient condition is given for G to
satisfy the normalizer condition. In particular if H and K are isomorphic, then this
the case if and only if H and K are hypercentral. However it is not known yet wether
the direct product of two HM groups (for a prime p) satisfy the normalizer condition
or not. In this work this question is answered negatively for Meldrum groups which are
HM-groups (see [5]).

Theorem. Let H=G x G, where G and G are Meldrum groups for a prime p. Then
H does not satisfy the normalizer condition.

By definition a group G satisfies the normalizer condition if for all H < G, H <
Ng(H). It is well-known that the normalizer condition is subgroup inherited.

2. Some Properties of HM*-Groups

A locally nilpotent p-group T is called an HM™*-group if 7" is nilpotent and T'/T’
is isomorphic to a finite direct product of Cpoo groups (see [2]). If T/T" = Cpoo and
T satisfies the subnormality condition but is not nilpotent, then T is called a group of
Heineken-Mohammed type (HM-group). (It can be shown easily that if T is an
HM-group, then 7" is not properly supplemented in T' and every proper subgroup of T
is nilpotent as well as subnormal.

The proof of the following lemma is essentially contained on p. 120 of [2].
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Lemma 2.1. Let X be an HM?* -group for a prime p. Then X' = [X, X']. Furthermore
X contains no proper normal subgroup N such that X/N has finite exponent.

Proof. Let X = X/[X,X’]. Then X’ < Z(X) and so X is nilpotent. Hence X is
abelian by Theorem 9.23 of [6] which implies that X' = [X, X'].

Next let N be a normal subgroup of X such that X/N has finite exponent. Then
it is easy to see that X = NX’ since X/NX' is both radicable abelian and has finite
exponent. So now by the first part of the proof

X'=[NX',X'] = (N, X')X")n X’
<N

since X' is nilpotent. Hence X’ < N and so it follows that X = N. O

Lemma 2.2. Let H be a locally nilpotent p-group such that H = ST, [S,T] = 1
and S'T’ is abelian of finite exponent p™ for some m > 1, where S and T are HM* -
subgroups with S/S’ = T/T' = Cpoo. Let S/S’ and T/T' have generating sets {s;S’}
and {t;T'} such that.

s1¢ 95,87 €850 € forall i > 1 and the t; obey the same rules in T .
Then

R =< (Siti)pm 21>

is an HM™ -subgroup of H .
Proof. For each i > 1 there exist a; € S’ and b; € T' such that

P o Pt}
Si11 = SiQ; and tiJrl—t,bZ

Put v; = s;t;,¢; = a;b; and define

V=<uvy:121>.
Then v}, = vic; foralli > 1. Let V = V/V'. Then since
[0i+1,7;] = 1 and Efm =1, we get

pm+1 m

— __p .
Uy =09 ,i21

So if we put 7; = #°  for all i > 1, then

)

_p — = .
Tip1 = Tiyt >1

210



ASAR & ATLIHAN

Define R = R/V' =< 7 : 1 > 1 >. Then R & Cpoo. But also V/V n H' =
VH'/H'" = Cpoo by definition of V. Hence it follows that V = R(V N H'). Next let
V =V/R'. Then V = R(VN H') Clearly V' < Z(V) since it is contained in the inter-
section of the abelian subgroups R and VN H " Therefore V is nilpotent which implies
that R° < Z(V) by Lemma 2.2 of [1]. But also R = R°V’ by Lemma 3.1 of [2] hence it
follows that R < Z(V) and so V is abelian. Consequently V' = R’ and so R/R’ = Cpoo.
Therefore it follows that R is an HM™*-group and generated by {r; :1 > 1}. O

Lemma 2.3. Let H, R, S, T be defined as in Lemma 2.2 If R is normal in H, then
R =5'T'.

Proof. Since R is normal in H, R’ is also normal in H. Let H = H/R'. Then
R = Cpoo and so T/Cy(R) is finite by Theorem 3.29(2) of [6] which implies that
T = C;(R) by Lemma 2.1. Thus T centralizes

2" =)

for all > 1. Hence < t*" :i>1>< Z(T) which implies that T/Z(T) has finite expo-
nent < p™ and so T = Z(T) by Lemma 2.1 Similarly S = Z(5). Therefore H = ST is
abelian and so S'T' = R’ which was to be shown. o

3. Proof of the Theorem

First we briefly summarize the construction of a Meldrum group G given in [5].
We use exactly the same notations used by Meldrum. For each k > 3 an integer z; is
chosen such that
Pl +p<a<pF-1

and an elementary abelian p-group Aj; with basis elements a(i,k) for 1 < i < z3 is
defined such that Ay has an automorphism by of order p* with the property that

[bk,a(i, k)] = a(i —1,k) fori>1

=1 for i =1 (1)

Let By =< by >. In the group algebra Z,[By] the basis elements corresponding to

1,--- ,bﬁkhl are denoted by 1,--- ,ﬁzk_l to avoid confusion. Now for all integers s > 1,
a(i, k)(1 — Br)® = ali — s, k) (2)
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where a(i, k) =1if i <0.
Next we define the semidirect product Cy = Ay By . Let
Dy =< a(wk - 1,k),bk > and Ej = D N Ag.
Then

Ek=<a(i,k):1§i_<_:ck—1>.

Now C}, is embedded in Cry;1 by 8 as follows.

Or(be) = Be ya(@ret, b+ 1)(1 = Berr)P ™
= b ja(zey —p+ 1L,k +1) (3)

O(G(i, k)) = a’(m —p+ Tk, b+ 1)

where 1 < 741 < p. Indentifying the elements with their images in all the groups Cj
gives Cy < Ciy41 for all k > 3. Thus the groups

are well-defined. In fact it is easy to see that
H =G =UZX,E;.

Furthermore since G is a group of HM -type, G' cannot be properly supplemented in G
which yields immediately that

G=<b:k>23>.

Also it can be shown that the sequence (zj) can be defined such that

Th+1 = PTk — P+ Th+1 (4)
for all £ > 3. In the rest of this paper it is assumed that (xy) is defined by the above
equality.

Lemma 3.1. The following hold in G for all k> 3.
] s+1
(i) B = By alwes —p* 4+ Lk + 1)
forall s > 0.

s—1
(i) by = b£+sHa(a:k+s_j —p I+ 1,k+s—3)
j=0
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forall s> 1.
(iii) The image of a (Tk+s—j —t,k+5—j) in Diys is

a(xk+3 _pjta k+ S)

Proof. We prove (i) by induction on s. Of course each element is identified by its image
in the various groups Dy . Thus by (3)

bk = b£+1a(xk+1 — D + 1, k + 1) (5)
so (i) holds for s = 0. Assume that it holds for s =¢ > 0. Thus

t t41
b = b a(er — "+ 1,k +1)

Hence

t4+1

t4+1 y4
B = [ al@ees — o + Lk +1)]
t42

apttlipn
— b£+1 [a(xk+1 _pt+1 + 1,k+ 1)] (1 bi+1 )

t+42

= bi-f—l a($k+1 - pt+2 + 1, k + 1)

which completes the induction and verifies (i).

Next we show (ii). For s = 1 this follows from (5). Assume that it holds for
s=1t>1. Then

by =b£11a(wk+1 -p +Lk+1t)--a(@ke —p+ 1,k +1)

Also by (i)

t t41

bi+t = bz+t+1a($k+t+1 —p L k4+t41)

So substituting this above completes the induction and the proof of (ii).
(ii1) is an easy consequence of the second equality in (3) and equality (4). i

Lemma 3.2. For all integers i,n,s with n >3, s > 1 the following holds

s -1 )
a(i,n)’» = [[a(i - j,n) J .

=0

Proof. For s =1, it follows from (1) that
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a(i,n)’ = a(i,n)a"1(i —1,n)
So we assume that the assertion is true for s =¢ > 1 and show it for s = ¢+ 1. Thus

.t
t =0’C . )

a(i,n)’ = [[a(G - 5,n)

=0

Hence

j=0
: t .
(=1)77( 1) (=1°(C . )
= a(i,n) H a '(i—j,n) J a(i — j,n) J
=0
a(i—t—1 n)(_l)t+1
o t+1
t (=1)’( * ) 1
= a(i,n)[] |aé —4,n) Joai—t—1,n)Y
j=0
t+l (=1)°( t * ! )
= Ha(i —j,n) J
j=0
which was to be shown. a

Proof of the theorem. Let G and G be two Meldrum groups with defining sequences
(zx), (rx) and (Z), (7x) respectively. Let H = G x G. By the remark in the introduction
we may suppose that G and G are not isomorphic. Assume that H satisfies the
normalizer condition. Since G and G are not isomorphic, the sequences (z;) and (Zx)
are distinct (see pages 442-443 of [5]). Thus there exists a ko > 3 such that zp, # Tk, .
Without loss of generality we may suppose that zg, > Ty, .
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First we show that xy > Zx for all & > kyg. For k = kg this is obvious. Now
assume that zp > T for some k > ky. Then zx > Z; + 1. Using this is in (4) we get

v

Tk +1) —p+ T4

= PpTx +Pp— P+ Tht1 = Tht1 + Tht1
= Zg41+P— Tht1 + Tk41

2 Tk41 + Th+1

Tre+1

> Tkt

since 1 <7, and 7, < p for all £ > 3.

Now let R =< (bxbg)? : k > ko >. Then R is an HM™*-subgroup of H by Lemma
2.2 In fact R is an HM -group by Lemma 3.6 of [2] since G and G are HM -groups and
H satisfies the normalizer condition. Moreover Nz (R) = H by Lemma 3.2 of [2] and so
R is normal in H. In particular R’ = G’ x G’ by Lemma 2.3.

Let dy = (bgby)P for all k > ko. Then by Lemma 3.1(i) we have

d = di , 0(Tet1 — P’ + 1L,k + 1)a(Zr41 —p° + 1,k +1) (6)
Hence
/= —drt1
i1, di] = [a(@esr — P + 1,k + 1)a(@rsr —p* + 1,k + 1)) 7%
= a(@p1 —p* —p+ Lk +1)a(Zry —pPp+ 1,k + 1) (7)
Now let

X = ([dk-f-ladk]r ‘T E R’k > k0>

We claim that X = R'. Put R = R/X . (Note that “” is also used to denote the second
Meldrum group but it causes no problem here). Since di and dx+; commute we get from
(6) that.

2
J’,; = JiH
for all £ > kg which implies that
Y=<(zzik2k0>gcpoo
This implies that R = YR, and hence R = Y since R is an HM-group. In

particular it follows from this that R’ =1 and so R’ = X as claimed. Now let u > k.
Then
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(T, —Lu) €@ <GG=FR

Therefore there exist positive integers n > e > kg such that

ATy — 1,u) = [dro 41, dio] ™0 -+ - [dey1, de] ™ (8)

where vg,, -+, ve € Zp[(dn)R']
Let kg < ¢ < e. Then by (7) and Lemma 3.1 (iii) we get

u;+1 _ u;+2 _puH-l _pui

n)  (9)

where u; =n — (i +1). Now it is easy to see from (9) and Lemma 3.2 that the element

[dit1,di] = a(zy —p“t? —p p",n)a(Zn —p

[dit1,di]"
is a product of powers of certain elements from the set

{a(zn — j,n)a(Zy — j,m) 1§ > 1}

Since this is true for any kg < 7 < e we can find positive integers 1 < m < x,.
1<t <--- <ty and z1,- -, zy such that (8) can be written as

a(Z, — 1L,u) = (a(zn — t1,n)a(z, — t1,n))** - -

(a(zn — tm, n)a&(Tn — tm, 1)) 2m

which is equivalent to
1=a(z, —t1,n)* - a(zy — tym,n)*™
a(Zy — 1,u) = a(Zp — t1,n)21 - - &(Tp — tm, )™
However it follows from the definition of A4, that the elements

a(z, —1,n),---,a(l,n)

are linearly independent over Z,. Therefore for ech 1 <4 < m the following holds in the
first equality of (10). Either

a(zy, —t;,n) =1

or p|z;. But in the first case also
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a(ZTp — tiyn) =1

since Ty < zy for all k > ko. Thus in any case

(T —ti,n)* =1

for all 1 <4 < m. This a contradiction since a(Z, — 1,u) # 1 This completes the proof
of the theorem.

1]
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MELDRUM GRUPLARININ BiR OZELLiGi

6zet

Bu galigmada iki Meldrum grubunun direkt ¢arpiminin normalleyen gartini sagla-
madig1 gosterilmigtir. Bu sonucun herhangi iki HM-grubu igin dogru olup olmadig:
heniiz bilinmemektedir.

A.O. ASAR & S. ATLIHAN Received 1.5.1995
Gazi Universitesi,

Gazi Egitim Fakiiltesi,

Teknikokullar, Ankara-TURKEY

217



