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The Multi-monopole Equations for Kahler Surfaces

James A. Bryan and Richard Wentworth

1. Introduction

In the fall of 1994 Witten introduced invariants of a smooth four manifold using equa-
tions that arose in his work with Seiberg [Wi]. Since then a number of preprints on the
subject have emerged, many of which include good exposition of the basic equations and
results ([Br], [Sa],[Kr-Mr],[Fr-Mo)},[Fi-St1], [Fi-St2], [Mo],[Tal],[Ta2], [Ta3], etc ... ). Be-
cause of the extensive recent literature, we mostly refer the reader to the papers for (the
by now) standard results and limit ourselves to essentially new contributions.

The motivation for this work has been to construct topological invariants from the
gauge theoretic moduli spaces of various equations that generalize the Seiberg-Witten
equations. The particular equations we work with—the “multi-monopole” equations—
differ from the one monopole case in that the associated moduli spaces fail to be compact.
In this note we construct the moduli spaces explicitly for Kahler surfaces and we observe
that there is an obvious compactification for this case. It is a first step in a program to
find a compactification in a more general setting, particularly the case of almost Kéhler
surfaces.

The note is organized as follows. In the first section we introduce the multi-monopole
equations for a general four manifold and derive the basic gauge theoretic properties of
the moduli space and its configuration space. In the next section we specialize to the
case of interest—namely compact, simply connected K&hler surfaces, and we formulate
our main theorem constructing the moduli spaces (theorem 3.2). In the final section we
prove the main theorem. In the course of the proof we show that generally the equation

Au+ Ae* — Be ™ —w=0

has a unique smooth solution for suitable A, B, and w (lemma 3.4).

2. The Equations

Let X be a compact, oriented 4-manifold with a Riemannian metric g and let L be a
complex line bundle on X such that ¢;(L) = wo(TX) mod 2. L then defines a Spinc
structure on X consisting of a pair of U(2) bundles W and a Clifford multiplication map
c: QYX)T(W*) - T(WF).
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Let A € A(L) be a connection on L and let ®;,...,®y € T(WT) be N spinors.
Along with the Levi-Civita connection, A induces a connectlon V4 on W, which, when
composed with the map ¢, defines the Dirac operator ds : T(W*) —» T(W~). The map
c induces a map cAc: Qz(X C) ® (W) — T(W+). This map is zero on Q% (X) and
for any 2-form, the induced endomorphism of I'(W) is tracefree and skew-hermitian on
real forms and hermitian on pure imaginary forms. We call the resulting map

Q% (X,iR) — T(sl(W™)).
Let (A4, ®y,...,®y) be as above and define multi-monopole equations with perturbation

7 to be the system
Pa®; = 0 (1)

N
p(Ff+im) = > (®; 09 - 5%;°1)

where 1 denotes the identity endomorphism on W+ and 1 € Q3 (X) is a real self dual
two form.

These equations are invariant under the gauge group § = Map(X, S 1) of automor-
phisms of L and we define configuration space to be

C = (A(L) x ®nT(WT))/S.

We denote by Mz C € the moduli space of solutions to the multi-monopole equations
modulo gauge equivalence. (We will normally drop the explicit dependence on X, g, and
n.)

As in the one monopole case, one gets a good deformation theory. The linearized equa-
tions at a solution, along with a local gauge fixing condition give rise to local Kuranishi
model of Mz, and a model of the (virtual) tangent space at a solution (A, ®q,... ,®yN) as
the kernel of a first order elliptic operator. The operator is a coupled operator that is, to
first order, equal to the uncoupled operator:

Onda @ d* @ dt : enT(WH) @ QLX) —» enT(W ™) ® Q°(X) ® Q% (X).
The real index of this operator gives the virtual dimension of My, and it is given by
VirDim(Mz) = Z(e(L)?-0)-3(x+0) (2)
= %(Ncl(L)2 —(2x + (N + 2)0)).

Of course, in order to get a good local theory, one must complete the relevant function
spaces in the appropriate Sobolev norms. As in the one spinor case, everything works
with LY configurations and L} gauge transformations where p > 2 = dim X /2.

Solutions to equations 1 can be described as the minimum an energy functional on
configuration space. We define € : € — R by

N N
8<A,@1,...,¢N>=/4lp&+m S @ e 8o+ S ldai 2 (9)
X j=1 j=1
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where we have used the notation (-)o to indicate the traceless part of an endomorphism
s0 to abbreviate the right hand side of the last equation in 1. As in the one monopole
case, the Weitzenbock formula can be used to manipulate the integrand of the energy
functional. One gets

N
EA B ) = [ HFLvinl+ 30 VAR + 5l
X :
j=1
2
N
+1[S2(@; © 93)0 — plim)| — il (4)
j=1

where s is the scalar curvature.?

When N = 1, one can complete the square in the integrand of equation 4 to get the
famous a priori L? bound on the curvature and deduce the compactness of the moduli
spaces. For N > 1 the multi-monopole moduli spaces are not compact in general. We do
have, though, the following

Lemma 2.1. Let f : Mz — R* be the total L? norm of the sections, i.e.

N
F(A,@1,...,0n) =) |19
j=1

Then f is proper.

Proof. We wish to show that f~1([0, c]) is compact. Consider a configuration (4, ®y,... ,®y)
€ f71([0,c]). Equation 4 gives us a bound

ﬁFIP < C(s,n, volume(X), ¢).

Since ||F4||2 —||F 5 ||? is a topological constant proportional to ¢ (L) - c1(L), we get an a
priori bound on ||F4||?. Any sequence of solutions in f~1([0, c]) will have a subsequence
of connections that converge smoothly up to gauge by Uhlenbeck’s theorem (which is just
Hodge theory in this case). Then by standard elliptic regularity and bootstrapping, the
®’s will also have a smooth convergent subsequence. O

3. The Kahler Case

We restrict now to the case of interest. Assume that X is a simply connected Kahler
surface with Kahler form w. Let AP*? denote the bundle of differential forms of type

!The constants involved in this and similar formulas in the literature vary depending on various
conventions that are used. We use conventions with |12 = tr(1) = 2 and such that the map p is a
pointwise isometry.
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(p,q). There is a canonical Sping structure with connection on X associated to the
anti-canonical line bundle K—! = A%2. The associated Spinc bundles are

Wi = A° @ A%

and
Wy =2 A%,

and the canonical connection Vg is given by restriction of the Levi-Civita connection.
The following is well known ([Sa],[Br]):

Lemma 3.1. For every Spinc structure L and connection Ap, € A(L) there is a unique
pair E and Ag € A(E) such that the Spinc structure with connection is given by Wét QF
and Vo ® Ag.

We can thus rewrite a spinor ®; as a pair (;, 3;) where a; € Q°(E) and 3; € Q2(E).
Further we denote by 8 € Q29(E*) = I'(K ® E*) the E*-valued (2,0)-form such that
B: A B2 = |Bi|*vol and we denote by o} € Q°(E*) the section dual to a; .

It is convenient to rewrite the equations in terms of connections on E and the a and
B* variables. We redefine configuration space so that

[4,01,...,an,Bi,... ,By] € €= A(E) x (&n8T(E) &n T'(K ® E7))/S.
Now a gauge transformation A € § = Map(X, S!) acts on a configuration by
MA, a1, ... o5, B, By) = (A+ A1\ e, ... dan, A6, TIBY). (B)

On the canonical Sping structure, the canonical connection induces a canonical Dirac
operator & : Q°® Q%2 — Q%! which is given by V/2(8+8*). The self-dual two forms split
as 02 = |0 @ (020 @ Q%?)Rr and the map p maps the w factor into the diagonal and
the other factors into the off diagonal terms (explicitly, p(iw)a = o and p(iw)8 = —0.)
Consider the multi-monopole equations with perturbation rw where r is a real number.
With the above notation and identifications they can be rewritten

Onc; +0%8; = 0 (6)
2F3" = offi+-+akBy (7)
N
~2iA,Fa = 1D (lo5® = |85*) —iho Fy, — (8)
ji=1

Integrating the equation 8 over w A w we see that solutions to the multi-monopole
equations satisfy

N
2mer (L) - [w] + rlw] - [w] = D lleull® = 11:1° (9)
i=1
We see that if 7 is sufficiently large, then (aq,...,an) # (0,...,0).
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Remark 3.1. The decomposition of spinors into the alpha and beta components exist for
any almost complex structure. It was first observed by Taubes [Tal] that for almost
Kdhler manifolds, i.e. symplectic manifolds with a compatible almost complex structure,
the Seiberg-Witten equations are still given by equations 6-8.

The main result of this note is the explicit construction of the moduli space:

Theorem 3.2. Let X be a simply connected Kihler surface as above and let My be the
moduli space of solutions to the multi-monopole equations with perturbation rw (eq.’s 6-
8). If My # 0, then E is a holomorphic line bundle. Let Vi = &nyH(K ® E*) and
Vo = @y HP(E). For r large enough such that 2ncy(L) - [w] + r[w] - [w] > 0, M has the
following description:

Consider the affine variety Z C V1 @ Vo given by the zero set of the map S : V1@ V3 —
HO(K) defined by

S(ﬂ;a . . 7ﬂ1’:77a1a'°- )aN) = alﬂ; + - +aNﬂ;V

Let Z° C Z be the points with (a1, ... ,an) # (0,...,0).
Then My, = Z°/C* where A € C* acts on V} and Vo by multiplication by A and \~!
respectively.

Remark 3.2. A similar result holds for 27¢; (L) - [w] + r[w] - [w] < 0 with the roles of V;
and V5 reversing and the condition (a4,...,an) # (0,...,0) changing to (81, ... ,8n) #
(0,...,0).

Remark 3.8. My, is, by the theorem, a subvariety of the quotient
U=V (Vh-{0})/C".

U is the total space of the bundle
o-nHewn

P(V2).
Consider the bundle 77}(Op(1,)(1) ® H°(K)) — U. S defines a section of this bundle
and M, is the zero set of this section.

Remark 3.4. Since the manifold U of the above remark is the total space of a bundle,
it has a natural compactification U = P(O(-1) ® (V1 & C)). We can thus define a
compactification Mg of My by taking the closure of My, in U.

Remark 3.5. In the Kahler case, the virtual dimension of My, is even and can be computed
by rewriting equation 2 or applying the index formula to the equations 6-8:

VirDimg(Mz) = NE-(E-K)+ (N -1)(1+p,)
= N(h*(E) - h*(E) + h3(E)) — (1 + h*(K)).

We see from above that M, is smooth and has the expected dimension whenever h!(E) =
0 and 0 is a regular value of §.
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3.1. Proof of Theorem 3.2

The proof of theorem 3.2 is a fairly straightforward application of what has become
a common paradigm in gauge theory: generalizing the finite dimensional correspondence
between symplectic and algebraic quotients to the infinite dimensional setting. This is
formalized in lemma 3.3.

The moduli space is contained in the harmonic configurations which is defined to be
the (gauge invariant) subspace of A X @ N['(W™) defined by

H={(A,®&,...,0n) € Ax ONT(W):34®; = 0 for all 5}.

In the case of a Kahler metric we will show that the moduli space actually lies in the
holomorphic-harmonic configurations defined to be

HY = {(A, ®y,... ,Pn) € H : Fu is of pure type (1,1)}.

The standard proof that Seiberg-Witten solutions have vanishing Fg’z directly generalizes.
Applying 84 to equation 6 and taking the L? inner product with §; we get

/X<F2’20i,ﬂi> + (0484 8i, Bi) = 0.

Summing over i and applying the (0, 2) part of the curvature equation we get
N p—
[ Hais o aipal + Y1038 =0 (10)
i=1

so that Fg’z, 0% B:, and Oac; must all identically vanish.
We have thus shown that

M = K5 N {solutions to equation 8 and ;B =0}/8. 11
177
J

Now H1! is acted on by the complez gauge group which is defined to be G€ =
Map(X,C*). A complex gauge transformation el acts on configurations by

A — A+0f-0f

a; = efaj

ﬁj > e_fﬂj.
When f is pure imaginary this coincides with the usual action of G, and the induced
action 3} — et B; is the usual action of GC on K ® E~L. It is easy to verify that 1!

is preserved by this action.
The main lemma is

Lemma 3.3. Let K1 C HY! be the set with (aq,... ,an) #0. Then
HY! N {solutions to equation 8}/G = HL'/GC
= Vie(z—{0})/C”
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where Vi and V3 are defined as in theorem 3.2.

This lemma is an infinite dimensional analogue of a well understood finite dimensional
principle: suppose V' is a smooth projective variety with a (linearized) holomorphic action
of a reductive group GC and p is the (in this case uniquely determined) moment map for
the action of the compact group G, then

Vnu 1(0)/Gx=Ve/GC

where V? C V is a certain dense open set. Thus the “algebraic quotient” and the “sym-
plectic quotient” agree.

In the case of lemma 3.3, H{!'! is formally an algebraic variety and equation 8 is formally
the zero set of the moment map associated to the action of §. Theorem 3.2 follows directly
from the lemma.

Proof of lemma 3.3. The diffeomorphism H1!/G€ = V; @ (Vo — {0})/C* follows from
the fact that on a simply connected Kihler manifold A1/GC is a single point given
by the equivalence class of the unique holomorphic structure on E. The stabilizer of the
action of G€ on Al! is exactly the constant complex gauge transformations. Furthermore,
following the same argument that led to equation 10 we see that spinors in H1! actually
consist of holomorphic sections of E and K ® E*. Thus the projection of }!'! onto A%}
induces a map of 31!/GC to a point with fiber V; @ (V2 — {0})/C*.

To prove the first diffeomorphism of the lemma we must show that on every GC-orbit
in H!'! there is exactly one G-orbit of solutions to equation 8. (Equation 9 and the
assumption of the theorem guarantee that solutions to equation 8 will have ||a| # 0.)

If we fix an arbitrary member (4, a1,... ,an,B%,...,B%) of H11 we can write equa-
tion 8 for the gauge transformed solution and regard it as an equation for f. Since
equation 8 is invariant for ef € G (i.e. f is pure imaginary), we only consider e/ € GC
with f pure real. Equation 8 then becomes

N
~2iMFaipr-5; =3 > (¥ 0> — e72|B;?) — i, Fy, — .
j=1
If weset A = ||+ +|an|?, B=|61|>+ --+|8n|? and w = —4iA, Fy,+2iA,Fa+2r
and we use the Kahler identity —4iA,00f = d*df = Af, we can rewrite the above
equation as

2Af 4+ Ae*f — Be % —w=0. (12)

We need to show that there is a unique f solving equation 12. Observe that A and B
are non-negative functions and [ w = 2m¢;(L) - [w] +7[w] - [w] > 0. Also by equation 9 we
have [A— B > 0.

Recall that we have implicitly taken Banach space completions of the various configu-
ration spaces and gauge groups in the appropriate norms, and we would prove existence
and uniqueness of equation 12 in the Sobolev setting. However, by evoking the diffeo-
morphism H1!/GC =2 V; @ (V, — {0})/C* (which uses regularity for the & Laplacian) we
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can assume that our representative for the GC-orbit is smooth. Thus it only remains for
us to prove the following

Lemma 3.4. Let X be a compact Riemannian manifold (of any dimension) and let A,
B, and w be smooth functions with A and B non-negative, [ A~ B > 0, and [w > 0.
Let I\ = d*d be the positive definite Laplacian on X. Then the equation

Au+ Ae* —Be ™ —w=0 (13)
has a unique C* solution.

When B = 0, equation 13 reduces to the equation that arises in the usual Seiberg-
Witten theory and was studied by Kazdan and Warner in [Ka-Wa} (who were primarily
interested in the two dimensional case where the equation has geometric significance in
the prescribed curvature problem). When B # 0, the equation has somewhat different
characteristics, but. our proof is inspired by the methods of [Ka-Wal].

The outline of our proof is as follows:

1. We construct a sub-solution and a super-solution, i.e. smooth functions u_ and uy
such that u4 > u_ everywhere and

Au_ + Ae"- —Be ™™ —w < 0
Auy + Ae"t —Be ™™t —w > 0.

2. We define a sequence of functions inductively by setting ugp = u_ and defining wu; 1
to be the unique solution to

Luiy; = —Ae" + Be™ +w + ku; (14)

where L is the linear operator L¢ = A¢+k¢ and k is a suitably defined non-negative
function.

3. We show that u_ = up <wu3 <+ <w; <--- < uy and we show that {u;} converges
to a smooth unique solution of equation 13. 2

Av = f has a solution whenever [ f = 0. To construct u., let v; and vy be solutions
to Avy =w—wWand Avp=c— A+ B wherec= [A— B> 0and W= [w. Choose a
to be a constant large enough so that ac > w and then choose a constant b large enough
so that eV172%2+b _ g > 0 and a — e~ ¥17%27% > (. Let uy = v; + ave + b and we have

Auy + Ae*t — Be ™™ —w = (ac — @) + A(e"1 192 +® _ g) 4 B(a — e7¥17927%) > 0,

We can then simply define u_ = v; —n with n a large enough constant so that u_ < u4
and —w + Ae"*~™ < 0. u_ will then be a sub-solution.

We now wish to define our monotonic sequence of functions u;. Two fundamental facts
concerning the linear operator L(x) = A(x) + k - (*) when k is a smooth quasi-positive
function are:

2For a general theorem producing solutions to equations of the form Au = F(u,z) on compact
manifolds, given the existence of sub- and super-solutions, see Chapt. 5, Prop. 1.1 in [Sc-Ya]. Though
their method works in our case, our method will produce a solution to 13 in the non-compact case as well
(given the existence of sub- and super-solutions).
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e Bijection: For any given smooth function g the equation L(f) = g has a unique
smooth solution f.
e Maximum Principle: If L(f) > 0 then f > 0.

These are proven in section 3 of [Ka-Wa], though beware that our Laplacian has the
opposite sign as the one used in [Ka-Wa)].

Let k = Ae“+ + Be™*-. We define ug = u_ and inductively define u;+1 to be the
unique solution to equation 14. We will prove the monotonicity of the sequence {u;} by
inductively applying the maximum principle. We compute

L(U+ — ui) = A’U,+ + (A€u+ + Be_u_)(U+ - U,;_l)
+Ae* -1 — BeT%l —w
> A(e%i-! —e%t) 4 B(eTUt — 7% 1)
+(Ae*t + Be ™ ) (ug — uj—1)-

We rewrite this inequality in a convenient form and do similar computations and re-

arrangements to obtain the following inequalities:

L{uy —u;)) > Ae*t {e_(”+—”"—1) —e W) (g — ) — (uy — u+)}
+Be " {e“(“+_“—) —em (i1 (g —ul) — (w4 — u_)}
L(u; —u-) > Ae"+ {e_(“+_“—) —emwrmum) (g ) — (uy — ui_l)}
+Be "~ {e‘(“""l_”‘) —e M=) g (g —ul) — (ue — u_)}
L(uiyy —u;) > Ae"t {e_(““'""—l) —em () oy, — ui—1) — (ug — uz)}
+Be ¥~ {e“(“i_“*) — e (wiamuo) 4 (ug —u-) — (u—1 — u_)}

We will use the fact that e™* —e~9 + P — Q > 0 whenever P,Q > 0 and P > @ (all
the bracketed terms in the above inequalities have this form). It can thus be proven that
uy > u; and u; > u_ for ¢ simultaneously by induction on ¢ using the first two inequalities
and the maximum principle. u;41 > u; subsequently follows in the same manner.

Since we have uniform upper and lower bounds on u;, we additionally get a uniform
bound on the derivative of u; using the elliptic estimate for L and the Sobolev inequalities:
let p > 4 = dim X, then

Vuilloo < Cilluillp,2
< Co(llZuillp + lluillp)
= Coll — Ae™~* + Be™™ ' +w + kui—1lp + ||uillp)
< 03.

It then follows that the sequence {u;} converges uniformly to a smooth function us and
by construction it is a solution to equation 13.
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The solution must be unique: suppose there are two smooth solutions to equation 13,
u and u’. We have

0

IA

lld(u — )|
= / (A(u—u'),u—u)
X

= / —A(e* —e*Yu—u')+ Ble™ —e ) (u—u)
X

but both terms in the integral are everywhere non-positive so we can conclude that d(u —
u') = 0. But if u and «’ differ by a non-zero constant then the above integral is strictly
negative and thus it must be the case that u = v'.

a
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