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A Note on the Geography of Symplectic Manifolds

Andrds Stipsicz

1. Introduction

Based on recent developments in gauge theory — the introduction of Seiberg-Witten
invariants and results of Taubes — our understanding of the differential topology of sym-
plectic manifolds improved by a margin in the past year. In this note we would like to
discuss some existence problems of minimal simply connected symplectic manifolds; in
particular we would like to compare the ” geography” of symplectic manifolds and complex
surfaces.

Let us first briefly recall the geography of simply connected compact complex surfaces.
Since X is simply connected, bt is odd (by the Noether formula 12 | 2(X) + c2(X)),

and the holomorphic Euler characteristic x(X) is l*%. Also note that ¢?(X) = 30(X) +
2e(X), here o(X) denotes the signature, e(X) the Euler characteristic of X.

Let us associate these two integers to a complex surface X
X = (x(X), (X))
For example (x(CP?), ¢}(CP?)) = (1,9); (x(5%x8?), c}(52x5?%)) = (1,8) and (x(E(n)),
c3(E(n))) = (n,0) (E(n) is the regular elliptic surface with section and e(E(n)) = 12n,
in particular F(2) is the K3 surface). Note also that if X’ is the blow up of X, then
(x(X"), 2(X")) = (x(X), 2(X) ~1).

By the classification result of Kodaira we know that a simply connected compact com-
plex surface is either rational, elliptic or a surface of general type. If X is rational (meaning
birationally equivalent to CP?), then bt = x(X) = 1, and the simply connected minimal
rationals are diffeomorphic to CP?, $2 x S? or CP2#CP” (the Hirzebruch-surfaces).

If X is minimal elliptic (so X admits a holomorphic map = : X — CP! with a smooth
elliptic curve as a generic fiber), then (x(X), ¢?(X)) = (n,0) for some n € N. For surfaces
of general type we know that c¢3(X) > 0, and the two famous inequalities (the Noether
inequality and the Bogomolov-Miyaoka-Yau inequality) give constraints for ¢3(X) in terms
of x(X):

2x(X) — 6 < ¢}(X) < 9x(X).

Most of the points of this region (like 2x(X) — 6 < c2(X) < 4x(X)) is known to

correspod to a minimal surface of general type (see [P] or [BPV] for further details).
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The same geography question makes sense for symplectic manifolds as well — namely
which points (a,b) € Z? can be realized as (x(X) = %, c2(X) =30(X) +2¢e(X)) of a
minimal simply connected symplectic manifold X. Note that 12 | ¢2(X)+c2(X) holds for
an almost complex manifold, and so in particular for a symplectic manifold as well, so b}
is odd for a symplectic manifold X. Since blow up and blow down of a symplectic (—1)-
sphere makes sense in the symplectic category, minimality can be defined for symplectic
manifolds in the same way.

A simply connected complex surface is Kdhler, hence symplectic; so the regions pop-
ulated by complex surfaces are already covered by symplectic manifolds as well. In the
following we will show, that a big part of the region under the Noether-line can be popu-
lated by minimal symplectic manifolds, more precisely if D = {(a,b) € Z?| 0 < b < 2a—6},
then

Theorem 1.1. If (a,b) € D and b is even, then there is a minimal symplectic manifold
X such that (x(X), c2(X)) = (a,b).

Remark 1.2. e Note that — by recent result of Taubes — c2(X) > 0 for a minimal
symplectic manifold.

e Using slightly different construction Fintushel and Stern gave irreducible symplectic
examples populating the region D. Our theorem represents only points (a,b) € D
with even b as (x(X), c2(X)) of a minimal symplectic manifold X, although most
probably the same argument works for every point in D.

e The region D above was already populated by examples of Gompf ([G]) which were
symplectic, but it is not clear yet whether those examples are minimal — although
they very likely are.

e Note also that the examples given by Theorem 1.1 do not carry complex structure.

Acknowledgement: We would like to thank the Max-Planck-Institute for their hos-
pitality and Bob Gompf for the many helpful discussions.

2. Donaldson series

Let us briefly recall the rudiments of Donaldson series (see also [KM], [DK]).
For a simply connected manifold X with b* > 3 and odd an analytic function

Dx,.: Ho(X;R) - R

can be defined. The definition of Dx . uses the ASD equation for connections on auxiliary
principal SO(3)-bundles P over X with wz(P) = ¢ (mod 2) (c € H2(X;Z) is fixed).

Remark 2.1. To define Dx . one needs an additional property of X — it has to be of sim-
ple type (see [KM]). Also the definition of Dx . needs a choice of a homology orientation

of X (see [D]).
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The beautiful structure theorem of Kronheimer-Mrowka and Fintushel-Stern ([KM],
[FS1]) states that

Dx,c = exp(%) - Z azef
i=1

where a; € Q\ {0} and K; € H3(X;Z) (i =1,...,5). {K;}{_, is the set of (KM)-basic
classes of the manifold X, these classes satisfy the following properties:
o K;=wy(X) (mod 2);
e if K is a basic class, then —K is a basic class as well;
e if ¥ C X is a smoothly embedded surface with [£]? > 0 and genus g(X), then for
any basic class K

29(%) — 2 > [ + |K([Z))].

Theorem 2.2. (Blow up formula)
If {K;};_, is the set of basic classes for X, then {K; = E};_, is the set of basic classes
for X #@P2 (E is the Poincare dual of the exceptional fiber). O

More generally if X = X;#X, where b7 (X3) = 0 (so the intersection form of X, is
n(—1) spanned by {eq, ...,en}), then the set of basic classes of X is {K; + F; + ...+ E,}
where {K;} is the set of basic classes of X; (and E; is the Poincare dual of e;).

By the connected sum theorem of Donaldson we know, that if X has non-zero series,
then X cannot admit a decomposition X = X;#X, with b7(X;) > 0 (i = 1,2). A de-
composition with b1 (X3) = 0 however is possible, so irreducibility doesn’t follow directly
from the non-vanishing of the invariants.

Proposition 2.3. Assume that the set of basic classes {K;}5_, of the manifold X satis-
fies
(K; — K;)*# —4 for all 1<i,j <s.

In this case X is irreducible.

Proof: The existence of basic classes insure, that Dx # 0, so if X is reducible, then
X = X #X5 with b*(X3) = 0 is the only possibility. By the previous remark however in
this case there are basic classes K;, Kj, such that K; — K; = 2E4, so (K; — K;)? = —4
contradicting our assumption. O

Assume that the manifold X has only 2 basic classes £K € H%(X;Z) and K? > 0.
Assume also that X contains a torus f with square 0 lying in a cusp neighborhood. In
this case one can take the fiber sum of X with the reular elliptic surface E(n) along f.

Proposition 2.4. X#;E(n) is an irreducible manifold.

Proof: Applying the computations presented in [S] (Proposition 3.3), the set of basic
classes of X#E(n) is

{£K +k-F | k=n (mod 2), |kl <n}
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(F is the Poincare dual of the homology class represented by f). The difference of two
basic classes is either k; - F' or £(2K + ko - F'); the squares of these elements are at least
0 so by Proposition 2.3 X# ¢FE(n) is irreducible. a

3. Irreducible symplectic manifolds

Let us take the set = of simply connected symplectic manifolds X having the following
properties:

1. X has exactly two basic classes (£K) and K2 > 0;

2. X contains a torus f with f2 = 0 such that f is lying in a cusp neighborhood and

f is a symplectic or lagrangian submanifold of X.

By the construction of Gompf X#¢E(n) is symplectic; by Proposition 2.4 it is irre-
ducible as well. Note that (x(X#;E(n)), c2(X#sE(n))) = (x(X) +n, c3(X)). So to
prove Theorem 1.1 we only have to show, that for every even b > 0 = contains an element
X such that (x(X), ¢3(X)) = (a,b) with b > 2a — 6. As Fintushel and Stern observed
([FS]), complete intersections, Moishezon surfaces and Salvetti surfaces are elements of
Z (note that in these cases the torus f is a lagrangian submanifold). Also by analyzing
the effect of rational blowdown, Fintushel and Stern realized ([FS2]) that surfaces on the
Noether-line ¢? = 2y — 6 (the Horikawa surfaces) can be constructed by blowing down
rationally elliptic surfaces E(n). Since E(n) contains lagrangian tori disjoint from the
configurations one blows down to get the Horikawa surfaces, we have

Theorem 3.1. The Horikawa surfaces constructed by rationally blowing down the elliptic
surfaces E(n) are in E.

In this way we have an element of = with ¢ = 2x — 6 for every even c2, and this proves
Theorem 1.1.

Remark 3.2. e By performing a logarithmic transformation of multiplicity 2 on f —
which is known to be a symplectic operation — we can turn a spin manifold into a
non-spin one; the resulting manifold remains irreducible.

e Most probably the surfaces on the "next Horikawa line” c? = 2x —5 contain also the
required symplectic or lagrangian torus in the cusp neighborhood, so we can relax the
assumption on the parity of b in Theorem 1.1. This issue will be discussed elsewhere.
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