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With the possible exception of gambling, meteorology, particularly pre-
cipitation forecasting, may be the area with which the general public is most
familiar with probabilistic assessments of uncertainty. Despite the heavy use
of stochastic models and statistical methods in weather forecasting and other
areas of the atmospheric sciences, papers in these areas have traditionally
been somewhat uncommon in statistics journals. We see signs of this chang-
ing in recent years and we have sought to highlight some present research
directions at the interface of statistics and the atmospheric sciences in this
special section.

Two of the papers in this section relate to statistical approaches to pre-
cipitation modeling. The stochastic modeling of precipitation goes at least
back to the introduction of Markov chains by Quetelet (1852) to describe
dependent events of daily rainfall. In modern precipitation modeling there
are three major strands: extensions of the Markov chain structure to hid-
den Markov models, a point process approach and spatial models based on
Gaussian processes. Among these, the point process approach is most closely
related to the physical structure of cyclonic storms.

The structure of cyclonic storms was studied in detail by Hobbs and
Locatelli (1978). Each frontal system contains a sequence of rain bands,
each containing rain cells of higher local precipitation intensity. In northern
mid-latitudes the frontal systems in winter arrive at about a three day time
scale. The systems are of a synoptic spatial scale of order of magnitude 103

km, while the ensuing precipitation occurs on a mesoscale, 102 km or less.
Le Cam (1961) assumed a directing measure M that generates the ran-

dom rate of another random measure N . The actual rainfall is then taken
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as a smoothing of the measure N . The point process approach was applied
(in less generality than that of Le Cam) to precipitation data by Rodriguez-
Iturbe, Cox, Foufoula-Georgiou and others in the 1980s. A more general
approach was developed by Phelan (1996), who considered a stochastic flow
to represent the atmosphere, within which rain cells were born and died ac-
cording to birth and death processes. While this approach has the potential
to describe precipitation on a synoptic scale, the statistical tools (as well as
the appropriate data) were not available at the time. Generally, the lack of
precise estimation tools for most cluster point processes has been hampering
(and may have choked) developments in this area.

The Markov chain approach has been extended to spatial networks of
stations by Zucchini, Hughes, Bellone and others. Here, a hidden Markov
approach has been found an improved fit, and the hidden states can be
thought of as precipitation regimes. Atmospheric covariates are allowed to
affect transition probabilities, but there is no true spatial model that extends
the network to a full spatial area. While the precipitation regimes often
have a reasonable meteorological interpretation, the model lacks basis in
hydrometeorology.

For fully spatial models one approach has been to use a Gaussian field for
some transformation of rain measurements, while the negative part of the
distribution gets truncated and corresponds to zero rain. Again, this model
lacks physical basis. The paper by Berrocal, Raftery and Gneiting (2008)
in this issue generalizes this approach by using an independent Gaussian
process, the sign of which indicates precipitation occurrence, while the paper
by Fuentes, Reich and Lee (2008) uses a gridded latent process.

It may be time to combine aspects of these different approaches into phys-
ically realistic descriptions of precipitation that can be used for downscaling
climate models, for hydrologic modeling and for forecasting. Doing this in a
way that allows for effective statistical inference and useful model diagnos-
tics is likely to remain a challenge for the foreseeable future.

Models for measurements, both statistical and physical, are a critical issue
in many areas of the atmospheric sciences. In particular, the measurement
of precipitation is not an easy task. There are lots of devices, from tip-
ping gauges to distrometers. No particular instrument gives an unbiased
estimate of rain rate. Cardoso and Guttorp (2008) outline a hierarchical ap-
proach to combining the measurements from different devices to estimate
the true underlying rate. The approach is based on the (unobserved) drop
size distribution. In order to extend it to networks or spatial regions, one
needs to model the spatial dependence of these distributions. The Fuentes,
Reich and Lee (2008) paper avoids the physical modeling of the relation
between radar reflectivity and gauge readings, replacing it with a statistical
model. Remotely sensed observations, of which radar measurements are one
example, provide for the opportunity of excellent spatial coverage, but may
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often exhibit spatial correlation and/or spatially dependent biases in their
measurement errors, greatly complicating efforts to distinguish signal from
noise.

Another challenge in making effective use of data in the atmospheric sci-
ences is dealing with disparate data and model sources of information in a
single analysis. Hierarchical models have proven effective in this regard [Ban-
nerjee, Carlin and Gelfand (2004)] and are used in Shaddick et al. (2008)
to estimate the effect of air pollution on human health. This problem is
hugely challenging due to the small effect sizes at present pollution levels
in the developed world and the difficulty of determining exposures at the
individual level. The US Environmental Protection Agency now regularly
estimates the health benefits of regulations affecting air pollution [National
Research Council (2002)], so that determinations that there is an effect are
not sufficient. Thus, it may not be adequate to ignore the distinction between
pollution levels at monitoring sites and the actual exposures of individuals
when estimating the effect of air pollution on human health.

Meteorological datasets and the output of meteorological models are of-
ten enormous, leading to a natural desire for dimension reduction methods.
Thus, for example, principal components, generally called empirical orthog-
onal functions, or EOFs, in the atmospheric sciences, are commonly used to
reduce descriptions of the state of the atmosphere to a modest number of
dimensions [Wilks (2005)]. Similarly, a variety of clustering methods are of-
ten used to help atmospheric scientists summarize their masses of data and
model output. Sang et al. (2008) consider self organizing maps, or SOMs,
a clustering technique largely unknown to statisticians, as part of a space–
time statistical model for atmospheric states over Southern Africa. Despite
the usefulness of these various dimension reduction methods, from a statisti-
cal perspective, they are generally lacking in motivation. Specifically, other
than trying a method on many examples, can one say when a particular
method might be expected to work well? The fact that many such methods
(such as SOMs and EOFs) make no explicit use of the spatial locations and
times of the observations suggests that it might be possible to make sharper
inferences about any underlying low-dimensional structures that may exist
in such processes by taking account of spatial–temporal dependencies.

An essential ingredient to effective weather forecasting based on numerical
models is the appropriate integration of observations into the initial condi-
tions for the model, or data assimilation [Kalnay (2003)]. Objective analysis,
which statisticians might call optimal linear interpolation or simple kriging,
was an early approach to this problem [Gandin (1963), Thiébaux and Ped-
der (1987)]. Today, approaches based on various versions of the Kalman
filter are popular. Statisticians who have passed through the National Cen-
ter for Atmospheric Research (NCAR) as part of the Geophysical Statistics
Project (GSP), notably including its first two heads, Mark Berliner and
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Doug Nychka, and their many postdocs, have played a major role in draw-
ing statisticians into this line of work, which affords a wealth of statistical,
computational and scientific challenges. The GSP is represented here by
Malmberg et al. (2008), in which they explore the feasibility of combin-
ing observations and a numerical model for interpolating carbon monoxide
fields on a large spatial scale. Thus, we see data assimilation moving from
its traditional areas of application in meteorology and oceanography into
atmospheric chemistry. Because there are more substantial scientific uncer-
tainties (as opposed to uncertainties in initial and boundary conditions) in
atmospheric chemistry than in atmospheric physics, taking proper account
of these scientific uncertainties may be critical in obtaining realistic predic-
tions and especially uncertainty estimates for these predictions.

Another widespread statistical issue in atmospheric science is inference
for extremes, which is of critical importance in meteorology, hydrology and
air quality monitoring. Spatial variability in extremes presents particular
challenges, especially when, as is commonly the case, one wishes to make
inferences about extremes at locations at which no monitoring data is avail-
able. In a paper that appeared in this journal, Buishand, de Haan and Zhou
(2008) developed some theory for spatial extremes with an application to
rainfall in Holland, although they needed to make quite strong assumptions
on the nature of the spatial dependence to obtain results. There is con-
siderable interest in how future changes in climate might impact extreme
weather events. Making inferences about such quantities that include real-
istic assessments of uncertainty may seem too much to expect, but without
at least some kind of answer to this question, how should one go about
designing bridges or levees that are meant to last many decades?

The list of issues raised here only begins to touch on the many statistical
problems in the atmospheric sciences that deserve further attention. Some
others include statistical models for processes on a global scale [Jun and
Stein (2008)], statistical models that capture dynamics, multivariate models
for spatial–temporal processes and statistical models that include the verti-
cal spatial dimension. Climate change, one of the great modern challenges
to humanity, provides a myriad of statistical challenges, some of which are
summarized in the American Statistical Association’s recent Statement on
Climate Change (2008). Drignei, Forest and Nychka (2008) describe an ap-
proach to estimating climate sensitivity (the change in global temperature
due to a doubling of CO2 concentration) that combines numerical climate
model output with nonlinear regression and statistical methods for analyz-
ing computer experiments. As in many areas, a major role for statisticians in
climate change research is in appropriately quantifying uncertainties. Since
climate change projections are necessarily statements about the climate un-
der higher concentrations for greenhouse gases than have existed in historical
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times, such projections are extrapolations, which generally make statisti-
cians apprehensive. Nevertheless, these kinds of daunting questions will be
addressed with or without (but hopefully with) the statistical community’s
leadership. We look forward to publishing papers addressing this and other
critical issues in the coming years.
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Thiébaux, H. J. and Pedder, M. A. (1987). Spatial Objective Analysis: With Applica-

tions in Atmospheric Science. Academic Press, Orlando.
Wilks, D. S. (2005). Statistical Methods in the Atmospheric Sciences, 2nd ed. Wiley, New

York.

M. Fuentes

Department of Statistics

North Carolina State University

Raleigh, North Carolina 27695

USA

E-mail: fuentes@stat.ncsu.edu

P. Guttorp

Department of Statistics

University of Washington

Seattle, Washington 98195

USA

E-mail: peter@stat.washington.edu

M. L. Stein

University of Chicago

Chicago, Illinois 60637

USA

E-mail: aoas@galton.uchicago.edu

mailto:fuentes@stat.ncsu.edu
mailto:peter@stat.washington.edu
mailto:aoas@galton.uchicago.edu

	References
	Author's addresses

