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Equations for hidden Markov models

Alexander Schönhuth

Abstract

We will outline novel approaches to derive model invariants for
hidden Markov and related models. These approaches are based on
a theoretical framework that arises from viewing random processes as
elements of the vector space of string functions. Theorems available
from that framework then give rise to novel ideas to obtain model
invariants for hidden Markov and related models.

1 Introduction

In the following, we will outline how to obtain invariants for hidden Markov
and related models, based on an approach which, in its most prevalent ap-
plication, served to solve the identifiability problem for hidden Markov pro-
cesses (HMPs) in 1992 [13]. Some of its foundations had been layed in the
late 50’s and early 60’s in order to get a grasp of problems related to that of
identifying HMPs [5, 11, 6, 7, 8, 12]. The approach can be viewed as being
centered around the definition of finite-dimensional discrete-time, discrete-
valued stochastic processes (referred to as discrete random processes in the
following)1. It Examples of finite-dimensional discrete random processes
other than HMPs are quantum random walks (QRWs). QRWs have been
brought up mostly to emulate Markov chain related algorithms (e.g. Markov
Chain Monte Carlo techniques) on quantum computers [1].

In the following, we will introduce finite-dimensional string functions and
formally describe how to view discrete random processes as string functions.

1In the literature, finite-dimensional discrete random processes are alternatively re-
ferred to as finitary [12] or linearly dependent [13] processes. In the following, we will stay
with the term finite-dimensional (discrete random processes) in accordance with the latest
contributions on the topic [14, 10, 18, 19, 20]
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We will further provide helpful characterizations and related theorems. In
sec. 3 we will determine polynomials that generate the ideal of the invariants
of the finite-dimensional model, in the usual sense of algebraic statistics. In
sec. 4, we will prove a theorem from which, as a corollary, one obtains a
proof of conjecture 11.9 in [3]. This corollary will be listed in sec. 5 where
we will draw the connections to the hidden Markov model in more detail. In
sec. 6 we will show how to obtain invariants for the Markov models, based
on the results of the preceding sections. In sec. 7 we will briefly demonstrate
that trace algebras, as well, can be viewed as certain finite-dimensional string
functions. Invariants of the finite-dimensional model are relatively easy to
obtain

2 Preliminaries: String Functions

Detailed proofs and explanations of the following results can be found from
[18]. Let Σ∗ = ∪n≥0Σ

n denote the set of all strings of finite length over the
finite alphabet Σ where the word � ∈ Σ0 of length |�| = 0 is the empty
string. Single letters are usually denoted by a, b whereas strings of arbitrary
length are denoted by v, w (for example, v = a1...an ∈ Σn, w = b1...bm ∈ Σm

where ai, bj ∈ Σ). We have the concatenation operation:

w ∈ Σm, v ∈ Σn =⇒ wv ∈ Σm+n. (1)

We denote the length of v ∈ Σn by |v| = n. We now direct our attention to
real-valued string functions

p : Σ∗ −→ R (2)

and further to RΣ∗
, that is, to the real vector space of string functions over

Σ. The notation p is due to that discrete random processes will be viewed
as string functions, which will be described in the following.

2.1 Discrete Random Processes as String Functions

Given a discrete random process (Xt) with values in the alphabet Σ, the
prescription

pX(v = a1...an) = P({X1 = a1, ..., Xn = an})
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gives rise to a string function pX associated with the random process.
pX(a1...an) then just is the probability that the associated random process
emits the string a1...an at periods t = 1, ..., n. String functions associated
with discrete random processes can be characterized as follows.

Theorem 2.1. A string function p : Σ∗ → R is associated with a discrete
random process iff the following conditions hold.

(a) p(v) ≥ 0 for all v ∈ Σ∗.

(b)
∑

a∈Σ p(va) = p(v) for all v ∈ Σ∗.

(c) p(�) = 1.

Note that (b) in combination with (c) implies

∀n ≥ 0 :
∑

v∈Σn

p(v) = 1. (3)

Definition 2.2. A string function p : Σ∗ → R is called

• stochastic string function (SSF) if it is associated with a discrete ran-
dom process, that is, iff (a), (b) and (c) of theorem 2.1 apply,

• unconstrained stochastic string function (USSF) if only (a) and (b) ap-
ply (in accordance with the terminology of [16]) and

• generalized unconstrained stochastic string function (GUSSF) if only
(b) applies.

In the following, the terms (generalized unconstrained) random process
and (GU)SSF will be used interchangeably. Furthermore, note that p(a1...an)
just is a different notation for pa1...al

which was used in [16].

2.2 Dimension of String Functions

The following definitions are fundamental for this work.

Definition 2.3. Let p : Σ∗ → R be a string function over Σ. Then

Pp := [p(wv)v,w∈Σ∗] ∈ R
Σ∗×Σ∗

(4)
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is called the Hankel matrix of p (also called prediction matrix in case of a
SSF p). We define

dim p := rk Pp (5)

to be the dimension of p. In case of dim p < ∞ the string function p is said
to be finite-dimensional.

Example 2.4. Let p : Σ∗ → R be a string function over the binary alphabet
Σ = {0, 1}.

Pp =



























p(�) p(0) p(1) p(00) p(01) p(10) p(11) . . .

p(0) p(00) p(10) p(000) p(010) p(100) p(110) . . .

p(1) p(01) p(11) p(001) p(011) p(101) p(111) . . .

p(00) p(000) p(100) p(0000) p(0100) p(1000) p(1100) . . .

p(01) p(001) p(101) p(0001) p(0101) p(1001) p(1101) . . .

p(10) p(010) p(110) p(0010) p(0110) p(1010) p(1110) . . .

p(11) p(011) p(111) p(0011) p(0111) p(1011) p(1111) . . .
...

...
...

...
...

...
...

. . .



























then is the Hankel matrix where strings of finite length have been ordered
lexicographically. Note that within a row values refer to strings that have
the same suffix whereas within a column values refer to strings that have the
same prefix. See also [4] for an example of a Hankel matrix.

The following characterization of finite-dimensional string functions is the
major source of motivation for this work.

Theorem 2.5 ([13, 14, 18]). Let p : Σ∗ → R be a string function. Then the
following conditions are equivalent.

(i) p has dimension at most d.

(ii) There exist vectors x, y ∈ Rd as well as matrices Ta ∈ Rd×d for all
a ∈ Σ such that

∀v ∈ Σ∗ : p(v = a1...an) = 〈y|Tan
...Ta1

|x〉. (6)

Fully elaborated proofs of theorem 2.5 can be found in [14, 18]. Note that
(6) can be transformed to

p(v) = tr Tan
...Ta1

C (7)

where C = xyT ∈ Rd×d.
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Example 2.6. The most prominent example for finite-dimensional SSFs are
hidden Markov chains. Let p be an SSF associated with a hidden Markov
chain on d hidden states and output alphabet Σ. Let A = (P(i → j))1≤i,j≤d

be the transition probability matrix, Eia, 1 ≤ i ≤ d, a ∈ Σ be the emission
probabilities and π be the initial probability distribution. We define

Oa := diag (Eia, i = 1, ..., d) ∈ R
d×d (8)

and further
Ta := AT Oa ∈ R

d×d.

The Ta together with y := (1, ..., 1) ∈ Rd, x := π ∈ Rd then provide a
representation corresponding to (6).

We will be particularly interested in finite-dimensional GUSSFs (we recall
definition 2.2). The following theorem provides a characterization.

Theorem 2.7. Let p : Σ∗ → R be a string function such that dim p ≤ d.
Then the following two statments are equivalent:

(i) p is a GUSSF, that is,
∑

a∈Σ p(va) = p(v) for all v ∈ Σ∗.

(ii) There exist vectors x, y ∈ Rd as well as matrices Ta ∈ Rd×d for all
a ∈ Σ such that

∀v ∈ Σ∗ : p(v = a1...an) = 〈y|Tan
...Ta1

|x〉. (9)

as well as
yT

∑

a∈Σ

Ta = yT (10)

translating to that y is an eigenvector of the eigenvalue 1 of the trans-
pose of

∑

a∈Σ Ta.

In the following, we will write

Tv := Tan
...Ta1

, Tw = Tbm
...Tb1 (11)

in case of v = a1...an ∈ Σn, w = b1...bm ∈ Σm.
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Proof. The obvious direction is “⇐”:

∑

a∈Σ

p(va)
(9)
=

∑

a∈Σ

〈y|TaTv|x〉 = 〈y|
∑

a∈Σ

Ta|Tvx〉

(10)
= 〈y|Tv|x〉 = p(v).

(12)

For “⇒”, let d∗ := dim p ≤ d be the actual dimension of p. According to
theorem 2.5, we find matrices T̃a ∈ Rd∗×d∗ , a ∈ Σ and vectors x̃, ỹ ∈ Rd∗ such
that

∀z ∈ R
d∗ : 〈ỹ|

∑

a∈Σ

T̃a|z〉 = 〈ỹ|z〉. (13)

In case of d∗ = d we will have proven the claim by putting Ta := T̃a, x =
x̃, y = ỹ. In case of d∗ < d we will obtain suitable matrices Ta ∈ Rd×d and
vectors x, y ∈ Rd by putting

(Ta)ij, xi, yi :=

{

(T̃a)ij , x̃i, ỹi 1 ≤ i, j ≤ d∗

0 else
. (14)

From theorem 2.5 we obtain matrices T̃a ∈ R
d∗×d∗ , a ∈ Σ and vectors x̃, ỹ ∈

Rd∗ such that
p(v = a1...an) = 〈y|Tv|x〉. (15)

Condition (i) then implies that

〈y|(
∑

a∈Σ

Ta)Tv|x〉 =
∑

a∈Σ

〈y|TaTv|x〉
(15)
=

∑

a∈Σ

p(va)
(i)
= p(v) = 〈y|Tv|x〉. (16)

It remains to show that

span{Tvx | v ∈ Σ∗} = R
d∗ . (17)

However, assuming the contrary would lead to the contradiction

d∗ = dim p = rk [p(wv)]v,w∈Σ∗ = rk [〈y|TvTw|x〉]v,w∈Σ∗

≤ dim span{Twx |w ∈ Σ∗} < d∗. ⋄ (18)

Matrices Ta can be computationally determined according to a procedure
which we will describe in the following. Therefore, for a string function p,
we introduce the notation

pv : Σ∗ → R

w 7→ p(wv)
resp.

pw : Σ∗ → R

v 7→ p(wv)
. (19)
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That is, the pv resp. pv are the row resp. column vectors of the Hankel matrix
Pp. These are string functions in their own right. Note that p� = p� = p.
Moreover, note that in case of a stochastic process p s.t. p(w = b1...bm) 6= 0
it holds that

1

p(w)
pw(v = a1...al)

= P({Xl′+1 = a1, ..., Xl′+l = al} | {X1 = b1, ..., Xl′ = bl′}). (20)

Therefore, 1
p(w)

pw is just the discrete random process being governed by the
probabilities of p conditioned on that w has already been emitted.

The following is a generic algorithmic strategy to infer matrices Ta ∈ Rd×d

and x, y ∈ Rd corresponding to (6) from a finite-dimensional Hankel matrix.
At this point, the algorithm needs the entire string function p as an input.
We will explain how to obtain a practical version of this generic strategy
later in this section.

Algorithm 2.8.

Input: A string function p such that dim p = d < ∞.

Output: Matrices Ta ∈ Rd×d, a ∈ Σ and vectors x, y ∈ Rd such that

p(v = a1...an) = tr Tan
...Ta1

xyT . (21)

1. Determine words v1, ..., vd resp. w1, ..., wd such that the fvi
resp. the

gwj
span the row resp. column space of Pp. Hence the matrix

V := [p(wjvi)]1≤i,j≤d (22)

has full rank d = dim p.

2. Denote by Vi resp. V j the i-th row resp. the j-th column of V and
define

x = (x1, ..., xd)
T := (p(v1), ..., p(vd))

T (23)

and y = (y1, ..., yd) ∈ Rd such that

(p(v1), ..., p(vd)) =

d
∑

i=1

yiVi (24)
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which can be done as p� = p (the uppermost row of the Hankel matrix)
is linearly dependent of the pvi

(the basis of the row space of the Hankel
matrix).

3. For each a ∈ Σ, determine matrices

Wa := [p(wjavi)]1≤i,j≤d. ∈ R
d×d. (25)

4. One can then show that x, y and Ta := (WaV
−1), a ∈ Σ are as needed

for theorem 2.5.

Clearly, the driving question behind algorithm 2.8 is its practicability. A
first clue to this is the following theorem. Therefore, we set

Σ≤n := ∪n
t=0Σ

t (26)

to be the set of all strings of length at most n and

Pp,n,m := [p(wv)]|v|≤n,|w|≤m ∈ R
Σ≤n×Σ≤m

. (27)

to be the finite minor of the Hankel matrix referring to row resp. column
vectors indexed by strings of length at most n resp. m.

Theorem 2.9. Let p : Σ → R be a string function such that dim p ≤ d.
Then it holds that

dim p = rk Pp,d−1,d−1. (28)

This means that, given an upper bound d on the dimension of p, the di-
mension of p can be determined by inspecting the finite-dimensional matrix
Pp,d−1,d−1. See [18] for a proof. Note, however, that the size of Pp,d−1,d−1 is
exponential in d such that naive approaches to determining V (22) would re-
sult in exponential runtime. The final clue to the practicability of algorithm
2.8 is an efficient algorithm to determine V which has recently been pre-
sented [19]. The algorithm applies in case one is provided with an arbitrary
generating system of the row or column space of Pp. Corresponding generat-
ing systems emerge naturally for finite-dimensional processes of interests, in
particular for hidden Markov processes and also for quantum random walks.

A consequence of theorem 2.9 is

8



Theorem 2.10 ([18]). Let p be a string function such that dim p ≤ d. Then
p is uniquely determined by the values

p(v), |v| ≤ 2d − 1. (29)

Proof Sketch. The idea is, given two string functions p1, p2 where
dim p1, dim p2 ≤ d which coincide on strings of length up to 2d − 1, to
determine matrices Ta and vectors x, y as in theorem 2.5 according to
algorithm 2.8 for both p1 and p2. Thanks to theorem 2.9, in algorithm 2.8,
V can be determined by inspecting values of p at strings of length at most
2d−2 in Pp,d−1,d−1 and, subsequently, by inspecting strings of length at most
2(d − 1) + 1 = 2d − 1 in order to obtain the Wa. As p1 and p2 coincide on
strings of length 2d−1, this will result in the same V and Wa. Hence p1 = p2.⋄

The following corollary is an obvious consequence of theorem 2.10 due
to property (b) from theorem 2.1. However, it had been well-known already
before. See e.g. [15, 4] and the references therein.

Corollary 2.11 ([15, 4]). A GUSSF p such that dim p ≤ d is uniquely de-
termined by the values

p(v), |v| = 2d − 1. (30)

In other words, a discrete random process whose dimension can be upper
bounded by d is uniquely determined by its probability distribution over the
strings of length 2d − 1.

Remark 2.12. Note that for a string function p with dim p ≤ d < ∞, rows
and columns of the Hankel matrix indexed by strings of length at least d must
necessarily be linearly dependent of their counterparts referring to strings of
length at most d−1. These observations are crucial for the core result of the
following section.

3 Finite-Dimensional Models

Finite-dimensional models over Σ are defined to be the polynomial maps

gn,d : Sd ⊂ C
|Σ|d2+2d −→ C

|Σ|n

((Ta)a∈Σ), x, y) 7→ (〈y|Tan
...Ta1

|x〉)v=a1...an∈Σn .
(31)
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where
((Ta)a∈Σ), x, y) ∈ Sd :⇔ yT

∑

a∈Σ

Ta = yT . (32)

According to theorem 2.7, Sd comprises precisely the parameterizations of
the generalized unconstrained random processes of dimension at most d. Ob-
viously,

Sd ∼= C
(|Σ|−1)d2+d(d−1)+2d. (33)

Therefore, the Zariski closure of image (gn,d) is an irreducible variety.

In the following, we will make use of the polynomial map (31) to derive a
set-theoretic theorem with a strong view towards the invariants of the Zariski
closure of the image of gn,d. In case of n ≥ 2d − 1, invariants for the image
of gn,d can be derived by inspection of the Hankel matrix. As in (27), let
Pp,n,m be the partial Hankel matrix that is filled with all values p(wv) such
that |v| ≤ n, |w| ≤ m.

Theorem 3.1. Let n ≥ 2d − 1 and (p(v))v∈Σn be an (unconstrained) proba-
bility distribution. Then it holds that

(p(v))v∈Σn ∈ image (gn,d)

if and only if the following two conditions apply where, in case of |u| < n,

p(u) =
∑

u∈Σn−k

p(uv). (34)

(a)
det [p(wjvi)]1≤i,j≤d+1 = 0 (35)

for all choices of words v1, ...vd+1, w1, ...wd+1 of length at most d − 1,
which can be equivalently put as

rk Pp,d−1,d−1 ≤ d (36)

(b)
rk Pp,⌈n

2
⌉,⌊n

2
⌋ = rk Pp,⌊n

2
⌋,⌈n

2
⌉ = rk Pp,d−1,d−1 (37)
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(37) states that rows resp. columns in Pp,⌈n
2
⌉,⌊n

2
⌋ and Pp,⌊n

2
⌋,⌈n

2
⌉ referring

to row strings v resp. column strings w where |v|, |w| ≥ d are linearly de-
pendent of their counterparts in Pp,⌈n

2
⌉,⌊n

2
⌋ and Pp,⌊n

2
⌋,⌈n

2
⌉ that refer to row

resp. column strings of length at most d − 1.

Proof. “⇒”: Let (p(v))v∈Σn be in the image of gn,d. Theorem 2.5 states
that the Hankel matrix Pp of p has rank at most d. This implies (a) as it
just expresses that some Hankel matrix minors of size d + 1 do not have full
rank.

Theorem 2.9 then states that bases of the row resp. the column space
of Pp can be obtained by inspecting row resp. column vectors referring to
strings of length at most d − 1 which implies (b).

“⇐”: Let (p(u))u∈Σn s.t. (a), (b) apply. In order to prove that (p(u))u∈Σn ∈
image gn,d, we have to provide a parameterization ((Ta)a∈Σ, x, y) ∈ Sd such
that

p(u = a1...an) = yT Tan
...Ta1

x (38)

for all strings u ∈ Σn. Therefore, we will provide a parameterization
((Ta)a∈Σ, x, y) ∈ C|Σ|d2+2d such that

p(u = a1...ak) = yT Tak
...Ta1

x (39)

for all strings u such that |u| ≤ n where p(u) is defined according to (34)
in case of |u| < n. By this definition of p(u), |u| < n, it is straightforward
to show that ((Ta)a∈Σ, x, y) ∈ Sd which completes the proof. Furthermore,
note that it suffices to provide a parameterization ((Ta)a∈Σ, x, y) ∈ Sd∗ for
arbitrary d∗ ≤ d since, in case of d∗ < d, we extend the Ta as well as x, y by
zero entries to obtain a d-dimensional parametrization from Sd. Combining
these facts, we have to show that, for suitable d∗ ≤ d, there are matrices
Ta ∈ Rd∗×d∗ and vectors x, y ∈ Rd∗ such that (39) holds.

We obtain the desired parameterization ((Ta)a∈Σ, x, y) according to the
ideas of algorithm 2.8. First, determine strings v1, ..., vd∗ and w1, ..., wd∗ of
length at most d − 1 such that

V := [p(wjvi)]1≤i,j≤d∗ (40)

has full rank d∗ := rk Pp,d−1,d−1 ≤ d. We define

x = (x1, ..., xd∗)
T := (p(v1), ..., p(vd∗))

T (41)
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and y = (y1, ..., yd∗) ∈ Rd∗ such that

(p(v1), ..., p(vd∗)) =

d∗
∑

i=1

yiVi (42)

where Vi = (p(viw1), ..., p(viwd∗)
T is the i-th row of V which can be done since

the uppermost row of Pp,n,d−1 is linearly dependent of the rows referring to
the strings vi. Furthermore, for each a ∈ Σ, we determine matrices

Wa := [p(wjavi)]1≤i,j≤d∗. ∈ R
d∗×d∗ (43)

Note that probabilities in Wa may refer to strings of length up to 2d − 1
which establishes the necessity of the assumption n ≥ 2d−1. We then claim
that defining

Ta := WaV
−1 (44)

gives rise to the desired parametrization in terms of (39). We will obtain an
easy proof of this claim by three elementary lemmata.

Lemma 3.2. For all v, w ∈ Σ∗ such that |wv| ≤ ⌈n
2
⌉ (Tv = Tak

...Ta1
, v =

a1...ak ∈ Σk):

Tv







p(wv1)
...

p(wvd∗)






=







p(wvv1)
...

p(wvvd∗)






(45)

Proof of lemma 3.2: Note first that |vi| ≤ d − 1 ≤ 2d−1
2

≤ n
2

which
implies |wvvi| ≤ n. As (p(wv1), ..., p(wvd∗))

T is contained in the column
space of V it suffices to show the statement for w = wj. We do this by
induction on |v|:
|v| = 1:

Ta







p(wjv1)
...

p(wjvd∗)






= WaV

−1







p(wjv1)
...

p(wjvd∗)






= Waej =







p(wjav1)
...

p(wjavd∗)






. (46)
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|v| → |v| + 1: Let ṽ = av where a ∈ Σ.

Tṽ







p(wjv1)
...

p(wjvd∗)






= TvTa







p(wjv1)
...

p(wjvd∗)







|v|=1
= Tv







p(wjav1)
...

p(wjavd∗)







(∗)
=







p(wjvav1)
...

p(wjvavd∗)






=







p(wj ṽv1)
...

p(wj ṽvd∗)







(47)

where (∗) follows from the induction hypothesis. ⋄

Lemma 3.3. For all v, w ∈ Σ∗ such that |w|, |v| ≤ ⌈n
2
⌉, |wv| ≤ n (Tv =

Tak
...Ta1

, v = a1...ak ∈ Σk):

yTTv







p(wv1)
...

p(wvd∗)






= p(wv). (48)

Proof of lemma 3.3: Note that the columns in Pp,⌊n
2
⌋,⌈n

2
⌉ resp. Pp,⌈n

2
⌉,⌊n

2
⌋

referring to w is contained in the span of the columns referring to the wj’s,
according to the choice of the wj. Therefore, it suffices to show the statement
for w = wj . We do this by induction on |v|:
|v| = 0 (v = �, T� = Id):

yTT�







p(wjv1)
...

p(wjvd∗)






= yT







p(wjv1)
...

p(wjvd∗)






= p(wj) (49)

follows from the choice of y.
|v| → |v| + 1: Let ṽ = av, a ∈ Σ.

yTTṽ







p(wjv1)
...

p(wjvd∗)






= yTTvTa







p(wjv1)
...

p(wjvd∗)







L. 3.2
= yT Tv







p(wjav1)
...

p(wjavd∗)







(∗)
= p(wav) = p(wṽ)

(50)
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where (∗) follows from the induction hypothesis. ⋄

Proof of theorem 3.1 (cont.): Let u ∈ Σ∗ such that |u| ≤ n. Split
u = wv into two strings w, v such that |w|, |v| ≤ ⌈n

2
⌉. We compute

yT Tux = yT TvTwx = yTTvTw







p(v1)
...

p(vd∗)






= yTTvTwyTTvTw







p(�v1)
...

p(�vd∗)







L. 3.2,|w�|≤⌈n
2
⌉

= yT Tv







p(wv1)
...

p(wvd∗)







L. 3.3
= p(wv) = p(u)

(51)

where we have replaced v resp. w of lemma 3.2 by w resp. � here in order to
obtain the fourth equation. ⋄

Due to theorem 3.1, invariants that are induced by conditions (a) and
(b) fully describe the finite-dimensional model gn,d for n ≥ 2d − 1, hence
generate the ideal of model invariants.

Example 3.4. Consider

Pp,4,2 =





















p(�) p(0) p(1) p(00) p(01) p(10) p(11)
p(0) p(00) p(10) p(000) p(010) p(100) p(110)
p(1) p(01) p(11) p(001) p(011) p(101) p(111)
p(00) p(000) p(100) p(0000) p(0100) p(1000) p(1100)
p(01) p(001) p(101) p(0001) p(0101) p(1001) p(1101)
p(10) p(010) p(110) p(0010) p(0110) p(1010) p(1110)
p(11) p(011) p(111) p(0011) p(0111) p(1011) p(1111)





















where Σ = {0, 1}. Condition (a) then translates to the only equation

det





p(�) p(0) p(1)
p(0) p(00) p(10)
p(1) p(01) p(11)



 = 0.
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The column conditions in (b) can be stated as follows:





















p(00)
p(000)
p(001)
p(0000)
p(0001)
p(0010)
p(0011)





















,





















p(01)
p(010)
p(011)
p(0100)
p(0101)
p(0110)
p(0111)





















,





















p(10)
p(100)
p(101)
p(1000)
p(1001)
p(1010)
p(1011)





















,





















p(11)
p(110)
p(111)
p(1100)
p(1101)
p(1110)
p(1111)





















∈ span{





















p(�)
p(0)
p(1)
p(00)
p(01)
p(10)
p(11)





















,





















p(0)
p(00)
p(01)
p(000)
p(001)
p(010)
p(011)









































p(1)
p(10)
p(11)
p(100)
p(101)
p(110)
p(111)





















}

The row conditions are completely analogous to the column conditions.

Clearly, invariants induced by (b) refer to polynomial rings

K[Xij , Yi, 1 ≤ i ≤ M, 1 ≤ j ≤ N ] (52)

and the smallest varieties therein that contain all points xij , yi such that
(y1, ..., yM) is linearly dependent of (x11, ..., xM1), ..., (x1N , ..., xMN). The
Zariski closure of the image of gn,d being an irreducible variety leads us
to the following conjecture.

Conjecture 3.5. Let n ≥ 2d − 1.

(p(v))v∈Σn ∈ image (gn,d)

if and only if
det [p(wjvi)]1≤i,j≤d+1 = 0

for all choices of words v1, ...vd+1, w1, ...wd+1 such that |wjvi| ≤ n.

Remark 3.6. The finite-dimensional models have to be handled with certain
care. Even if a (unconstrained) probability distribution is in the image of
gn,d the finite-dimensional string function giving rise to it might not be an
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(unconstrained) stochastic process, meaning that the string function is not
necessarily non-negative, since values referring to longer strings as computed
according to (6) might be negative. It is one of the big open problems of
the theory of finite-dimensional processes how to algorithmically determine
whether a set of matrices as in (6) gives rise to a non-negative string function.

4 String Length Complexity

In this section, we will prove a set-theoretical theorem an ideal-theoretical
counterpart of which would yield, as a corollary, a proof of conjecture 11.9,
[3]. The theorem may be of interest in its own right, as the assumptions to
be met by the models under considerations are fairly mild.

Roughly speaking, an ideal-theoretical extension of the theorem would be
about how to lift sets of generators for models describing distributions over
strings of length n to generators for distributions over strings of length n+1,
given that n is greater than the string length complexity of the underlying
models.

In the following,
M ⊂ R

Σ∗

(53)

is a class of USSFs.

Definition 4.1. Let M ⊂ RΣ∗
be a class of USSFs. We define the string

length complexity of M to be

SLC (M) :=

inf{N ∈ N | p1, p2 ∈ M : (p1)|Σn = (p2)|Σn ⇒ p1 = p2}. (54)

That is, members of M are uniquely determined by their distributions over
strings of length SLC (M).

Given a class of USSFs, let

Mn := {(p(v))v∈Σn | p ∈ M} (55)

be the set of distributions over strings of length n that are induced by the
members of M. In case of SLC (M) = n the map

πΣn : M −→ Mn

p 7→ p|Σn = (p(v))v∈Σn
(56)

is one-to-one.
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Theorem 4.2. Let M be a class of unconstrained random processes such
that

(i)
SLC (M) ≤ n − 1 < ∞. (57)

(ii)
p ∈ M ⇒ ∀a ∈ Σ : pa ∈ M. (58)

Then it holds that

(p(u), u ∈ Σn+1) ∈ Mn+1 ⇔

{

(p(av), v ∈ Σn) ∈ Mn ∀a ∈ Σ

(p(v), v ∈ Σn) ∈ Mn

(59)

where p(v) =
∑

a∈Σ p(va).

Remark 4.3. Theorem 4.2 is meant to be a first step to obtain an analo-
gous theorem resulting from replacing Mn,Mn+1 by their Zariski closures
Mn,Mn+1. Generators for the ideal of invariants of Mn+1, given generators
for the ideal of invariants of Mn, could be obtained by the following idea.
If h ∈ C[Xv, v ∈ Σn] is one of the generators for Mn where the Xv are
indeterminates for the probabilities p(v), v ∈ Σn, one obtains |Σ|+ 1 genera-
tors for Mn+1 by replacing the indeterminates Xv, v ∈ Σn by indeterminates
Xav, v ∈ Σn for all a ∈ Σ which results in new generators

ha ∈ C[Xav, v ∈ Σn] ⊂ C[Xu, u ∈ Σn+1] (60)

as well as replacing each Xv by the polynomials
∑

a Xva ∈ C[Xu, u ∈ Σn+1]
resulting in another generator

h+ ∈ C[
∑

a

Xva, v ∈ Σn] ⊂ C[Xu, u ∈ Σn+1]. (61)

The theorem would state that the generators obtained by this procedure
generate the ideal of invariants of Mn+1.

Note that in particular the maximum degree of the generators of Mn+1

would be at most that of Mn.

Proof. “⇒”: From (58) we obtain that (pa(v), v ∈ Σn) ∈ Mn for each
a ∈ Σ. The second part is just the trivial observation that (p(u), u ∈ Σn+1) ∈
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Mn+1 implies (p(v), v ∈ Σn) ∈ Mn.

“⇐”: From the second case in (59) we obtain that (p(v), v ∈ Σn) ∈ Mn. As
elements of M are uniquely determined by their values for strings of length
at least m and n ≥ m + 1 we obtain a USSF p̃ ∈ M such that

p(v) = p̃(v) for all v ∈ Σn. (62)

It remains to show that also

p(w) = p̃(w) for all w ∈ Σn+1 (63)

which amounts to showing that

p(av) = p̃(av) = p̃a(v) for all (a, v) ∈ Σ × Σn. (64)

We further observe that

(pa(v), v ∈ Σn) ∈ Mn (65)

for all a ∈ Σ, because of n ≥ m + 1 > m, implies the existence of a unique
qa ∈ M s.t.

qa(v) = pa(v) for all v, |v| ≤ n. (66)

As p̃ ∈ M, we have that p̃a ∈ M for all a ∈ Σ, due to (58). Moreover, for
u ∈ Σn−1,

p̃a(u) = p̃(au)
(62)
= p(au)

(66)
= qa(u). (67)

As n − 1 ≥ m and p̃aM and qaM coincide on strings of length n − 1 ≥ m,
we obtain

p̃a = qa (68)

because of (i). We finally compute

p(av) = pa(v)
(66)
= qa(v)

(68)
= p̃a(v) = p̃(av) (69)

which establishes (64). ⋄
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4.1 Finite-Dimensional Models

Theorem 4.2 applies for the finite-dimensional models. Eq. 57 is established
by theorem 2.10 in subsection 2.2 whose statement is that finite-dimensional
processes p of dimension at most d are uniquely determined by the values
p(v), |v| = 2d − 1.

In terms of the language introduced here, we can restate theorem 2.10 as
follows.

Theorem 4.4. Let

Md := {p ∈ R
Σ∗

; | p is USSF and dim p ≤ d}

be the class of unconstrained processes of dimension at most d. Then it holds
that

SLC (Md) = 2d − 1.

Furthermore observe that

(pa)w(v) = pa(wv) = p(awv) = paw(v) (70)

for all a ∈ Σ, v, w ∈ Σ∗ which translates to

(pa)w = paw. (71)

Hence the column space of Ppa is contained in that of Pp which yields

dim pa ≤ dim p (72)

as dim p is just the dimension of the column space of Pp.
This observation in combination with theorem 4.4 make the assumptions

of theorem 4.2 hold for Md, which yields the following corollary.

Corollary 4.5. Let n ≥ 2d. Then it holds that

(p(u), u ∈ Σn+1) ∈ image gn+1,d ⇔

{

(p(av), v ∈ Σn) ∈ image gn,d ∀a ∈ Σ

(p(v), v ∈ Σn) ∈ image gn,d

(73)

Again, an analogous ideal-theoretical result referring to the Zariski clo-
sures of image gn,d, image gn+1,d would yield that the maximum degree of the
generators would not increase for n ≥ 2d.
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5 Hidden Markov Models

In the following, let

fn,l : Cl(l−1)+l(|Σ|−1)+l −→ C|Σ|n

((Ta = AT Oa)a∈Σ), x) 7→ (tr Tan
...Ta1

x(1, ..., 1)T )v=a1...an∈Σn .

(74)
where A and the Oa as in example 2.6, be the polynomial map associated with
the unconstrained (constrained if and only if

∑l

i=1 xi = 1) hidden Markov
model referring to hidden Markov models acting on l hidden states and dis-
tributions over strings of length n, as described in [16].

The following theorem of Heller resulted from the attempts set off in the
late 50’s [11, 6, 7, 8] to give novel characterizations of hidden Markov pro-
cesses. Many of those results are based on the idea that HMPs have finite
dimension, which was noticed earlier in that series of papers without explic-
itly stating it. We give a version of Heller’s theorem that is adapted to the
language in use here. Heller’s version is formulated in the language of homo-
logical algebra—without string functions and Hankel matrices. In his paper,
discrete random processes are viewed as modules over certain rings. This
language later has never been used in the theory of stochastic processes or
related areas, probably as the required amount of prior knowledge unfamiliar
to statisticians and probabilists is high. In the following we define

Cp := span{pw |w ∈ Σ∗} (75)

to be the column space of the Hankel matrix Pp of a string function p.

Theorem 5.1 (Heller, 1965). A string function p : Σ∗ → R is associated with
a (unconstrained) hidden Markov process if and only if there are (U)SSFs
pi ∈ Cp, i = 1, ..., l s.t.

(a) p ∈ cone {pi | i = 1, ..., l},

(b) ∀w ∈ Σ∗ : (pi)
w ∈ cone {pi | i = 1, ..., l}.

Note first that this again points out that hidden Markov processes p are
finite-dimensional as Cp ⊂ span{pi | i = 1, ..., l} hence dim p ≤ l. Note fur-
ther that (a) in combination with (b) implies that pv ∈ cone {pi} for all
v ∈ Σ∗ which renders cone {pi} to be full-dimensional. It is closed due to be-
ing polyhedral and pointed due to being generated by SSFs which are strictly
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positive string functions. Collecting properties results in cone {pi} being a
proper, polyhedral cone.

Given a hidden Markov process p, the pi can be obtained as the random
processes starting from the hidden states (i.e. having initial probability distri-
bution ei). The other direction requires more work. A translation of Heller’s
proof [12] to the language of string functions can be found in [17]. A rather
straightforward consequence of Heller’s theorem is the following corollary.

Corollary 5.2. Let p be a USSF of dimension of at most 2. Then p is
associated with an unconstrained hidden Markov process acting on 2 hidden
states.

Proof Sketch: As all pw ≥ 0 the cone generated by all column vectors

cone {pw |w ∈ Σ∗} (76)

is pointed hence its closure is generated by its extremal rays. In two dimen-
sions this is equivalent to the closure of cone {pw | v ∈ Σ∗} being polyhedral.
It’s a routine exercise to check for the assumptions of Heller’s theorem to
hold for this cone. ⋄

One might be tempted to infer that the ideal of model invariants of fn,2

can be computed by computing the invariants of the 2-dimensional model, as
provided by theorem 3.1. However, a 2-dimensional process need not be as-
sociated with a hidden Markov process acting on 2 hidden states. According
to the proof of theorem 5.1, one might need up to 2|Σ| many hidden states
to describe an arbitrary 2-dimensional process by means of a hidden Markov
parameterization.

5.1 Degree of Invariants

Heller’s theorem gives rise to an application of theorem 4.2 to hidden Markov
processes where n ≥ 2l. Assumption (i) of theorem 4.2 is met since hidden
Markov processes on l hidden states, as finite-dimensional random processes
of dimension ≤ l, are determined by their distributions over the strings of
length 2l − 1. Assumption (ii) is met due to Heller’s theorem.2 The only

2Proofs for this can also be formulated in terms of the hidden Markov processes’ pa-
rameterizations. However, such proofs are lengthy and technical exercises.
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thing one has to be aware of is that the dimension of the column space of Ppa

can be lower than that of Pp itself. In this case, one obtains the necessary
cone generators by projecting Cp onto Cpa (we recall that Cpa ⊂ Cp). In sum,
the class of unconstrained hidden Markov processes meet the assumptions of
theorem 4.2, which yields

Corollary 5.3. Let n ≥ 2d. Then it holds that

(p(u), u ∈ Σn+1) ∈ image fn+1,l ⇔

{

(p(av), v ∈ Σn) ∈ image fn,l ∀a ∈ Σ

(p(v), v ∈ Σn) ∈ image fn,l

(77)

Note that an ideal-theoretic equivalent of theorem 5.3 would yield a proof
of conjecture 11.9 from [3] as a corollary. However, an ideal-theoretical equiv-
alent of theorem 5.3 would be a stronger result:

Conjecture 5.4. Let fn,l be the unconstrained hidden Markov model for l

hidden states and strings of length n. Then the maximum degree of the in-
variants d(n, l) of fn,l does not increase for n ≥ 2l, that is,

...d(n + 1, l) ≤ d(n, l) ≤ d(n − 1, l) ≤ ... ≤ d(2l, l). (78)

As d(5, 2) = 1 (see [3], table 11.1 (?)), we would obtain that d(n, l) = 1 for
n ≥ 5, that is, the ideal of invariants would be generated by linear equations
exclusively.

6 The Markov model

In the following, let (U)SSFs p be induced by Markov chains. That is,

p(v = a1...an) = π(a1)
n

∏

i=2

Mai−1ai
(79)

where π ∈ RΣ is a strictly positive vector (with entries not necessarily sum-
ming up to one in case of a USSF p) and M ∈ RΣ2

is a matrix with the
entries of a row summing up to one. Moreover, in this section, let

fn,l=|Σ| : Cl+l(l−1) −→ C|Σ|n

(π, M) 7→ (π(a1)
∏n

i=2 Mai−1ai
)v=a1...an∈Σn.

(80)
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be the polynomial map (associated with the Markov model in case of π, M

being in accordance with the laws from above) with alphabet Σ on strings of
length n. In the language of string functions and Hankel matrices, we have
the following theorem.

Theorem 6.1. A (U)SSF p is associated with a Markov chain iff

∀a ∈ Σ : dim span{pva | v ∈ Σ∗} ≤ 1. (81)

A proof can be found in [17], for example.
This can be straightforwardly exploited to obtain invariants of fn,l.

Theorem 6.2. Let (p(v), v ∈ Σn) be a (unconstrained) probability distribu-
tion such that n ≥ 2|Σ| − 1. Then (p(v), v ∈ Σn) lies in the image of fn,l=|Σ|

if and only if

det

[

p(vau) p(wau)
p(vau′) p(wau′)

]

= 0 (82)

for all choices u, u′, v, w ∈ Σ∗, a ∈ Σ such that |vau|, |vau′|, |wau|, |wau′| ≤ n

and, as usual, p(v) :=
∑

w∈Σn−|v| p(vw) for strings v such that |v| < n.

Proof. “⇒” is obvious as for a Markov chain p, (82) is a necessary
consequence of (81) in theorem 6.1.

“⇐” Clearly, (82) implies the assumptions (35) and (37) of theorem 3.1
to hold, which yields that (p(v), v ∈ Σn) lies in the image of the finite-
dimensional model. We thus find, by means of algorithm 2.8, (Ta)a∈Σ, x, y

such that the probabilities p(v) for all v up to length n ≥ 2|Σ| can be com-
puted according to (6). Note that Ta maps pv onto pva where pv, pva are
identified with a coordinate representation induced by the basis of the col-
umn spaces that one has found according to algorithm 2.8 (see remark 3.6).
In this sense, (82) translates to

dim image Ta ≤ 1 (83)

for all a ∈ Σ. Clearly, this implies (81) of theorem 6.1 from which the asser-
tion follows. ⋄

Remark 6.3. While the assumption n ≥ 2|Σ| − 1 helps to give a rather
concise proof of theorem 6.2, we feel that it is not a necessary requirement.
However, inference of Markov chain parameters giving rise to probability
distributions (p(v), v ∈ Σn) for which the determinantal invariants (82) ap-
ply is a much more technical undertaking. Moreover, it seems that some
(potentially more involved) pecularities have to be resolved.
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7 Trace algebras

In this section, we will draw some connections between trace algebras and
the theory of finite-dimensional string functions. For a rigorous introduction
to trace algebras see [9]. We recall that in Bernd’s preprint [2] the quartic
hidden Markov model invariant listed in [3] could be identified as a relation
between trace polynomials.

Here, we shall try to shed some light on the general relationships between
trace algebras and finite-dimensional models. In terms of the language of
trace algebras, we will derive some defining relations for the trace algebras.

Therefore, we introduce the following definition.

Definition 7.1. A string function p : Σ∗ → R is called traceable of order r

if there are matrices Xa ∈ Rr×r, a ∈ Σ such that

p(v = a1...an) = tr Xan
...Xa1

. (84)

Traceable string functions are finite-dimensional, as can be seen by ap-
plication of a simple lemma.

Lemma 7.2. Let pi, i = 1, ..., k be string functions of dimensions di. Let
p :=

∑k

i=1 pi. Then it holds that

dim p ≤

k
∑

i=1

di. (85)

This gives rise to

Theorem 7.3. Let p ∈ RΣ∗
be traceable of order r. Then

dim p ≤ r2. (86)

Proof. Let pi ∈ RΣ∗
, i = 1, ..., r be defined by

pi(v = a1...an) := tr Xan
...Xa1

eie
T
i . (87)

From theorem 2.5 we obtain dim pi ≤ r. As Id =
∑

i eie
T
i , which yields

p =
∑

pi (88)
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the assertion follows from application of lemma 7.2. ⋄

If the identity matrix Id =
∑

i eie
T
i was presentable in the form Id = xyT

itself, traceable string functions of order r would be of dimension at most r,
as given by theorem 2.5. As this is not the case, there are traceable string
functions of order r whose dimension is larger than r. Moreover, not every
string function of dimension r2 seems to be traceable. However, an example
of that kind is yet to be delivered.

The consequences of theorem 7.3 for the theory of trace algebras are
that invariants which can be computed for the r2-dimensional models fn,r2

also apply as defining relations for the trace algebras generated by all trace
polynomials

tr (Xin ...Xi1), 1 ≤ ij ≤ d, n ≥ 0. (89)

The exact relationships between trace algebras, hidden Markov as well as
the finite-dimensional models are yet to be determined.

8 Open Questions

1. Theorem 5.1 characterizes hidden Markov chains within the theory of
finite-dimensional random processes. Determine invariants that corre-
spond to this characterization.

2. Determine the relationships between trace algebras and the models
under consideration here in more detail.

3. Deliver a proof for a more general version of theorem 6.2, as discussed
above.

4. Determine the peculiarities of differences between the two-dimensional
models and the hidden Markov models for 2 hidden states.

5. Tropicalization of Teichmüller spaces (see [2])?
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