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The Schrödinger picture of standard cosmology
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We consider a time independent Schrödinger type equation derived from the equa-
tions of motion that drives a single scalar field in a standard cosmology model for
inflation in a flat space-time with a Friedman-Robertson-Walker (FRW) metric with
a cosmological constant. We find that all the 1-dimensional bound state solutions of
quantum mechanics lead to at least one exact solution for the dynamical equations
of standard cosmology, and that these solutions resemble the most recurrent infla-
tionary solutions found in the literature. The analogies derived from this approach
may be used to realize a deeper understanding of the dynamics of the model.
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1 Introduction

The current approach of inflation is that it occurs at some stage in the early universe and
that its source is one or several scalar fields [1]-[2]. The different models of inflationary
cosmology consider as a general feature a rapid growth of the size of the universe at
some stage in the early universe [3]-[5], this simple definition of inflation may set the
initial conditions for the large scale structure of the universe. In this approach one must
consider an arbitrary functional form for the scalar field (SF) potential V (φ), since there
is no unique prescription or phenomenology that could help to determine it.

Following this approach, let us consider a homogeneous and isotropic Universe, i.e., a
model in a FRW background with a scalar homogenous field φ(t) minimally coupled to
gravity and nonzero cosmological constant

∫

d4x
√−g

[

R + Λ +
1

2
(∇φ)2 + V (φ)

]

, (1)

where (∇φ)2 = gµν∂µ∂ν and V (φ) is the potential energy of the field. In order to describe
the dynamics of the scalar field during inflation the usual treatment is performed [1]-[6],
finally leading to the pair of equations

3H2 =
1

2
φ̇2 + V (φ) + Λ (2)

φ̈+ 3Hφ̇ = −dV (φ)

dφ
, (3)

where dot means derivative with respect to time, and we set MP l = 1, h̄ = c = 1. The
time derivative of eq.(2) is related to eq.(3) through the momentum equation

Ḣ = −1

2
φ̇2. (4)
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With the use of eqs. (3) and (4) the dynamics of the model may be described by the
single equation:

3H2 + Ḣ = V (φ) + Λ. (5)

which can be recognized as a Riccati equation for the Hubble parameter H(t). The Riccati
equation has been one of the most useful equations of mathematical physics, specially
in supersymmetric quantum mechanics (SUSY QM.) Its appearance here immediately
suggests a QM approach to inflationary cosmology based on the second order differential
equation derived from it. This has been proposed earlier, the ansatz being to replace x for
t and to assign a(t) = ψ(x), however leading to a nonlinear Schrödinger equation [7]. In
this article we propose an alternative transformation which leads to a linear Schrödinger
equation, where the SF potential V (φ) can be easily interpreted as the QM potential
U(x), a simple scheme whose consequences seem not to have been explored up to now.
By simple algebraic comparisons we end up with a powerful method to derive particular
exact solutions that may be useful for understanding the inflationary period. A similar
approach for the case of cosmology with a perfect fluid has been proposed earlier, but in
the context of classical mechanics ([11, 12].) However, the fact that in our approach no
restriction is made on the form of the SF potential allows us to probe a deeper connection
between QM and inflationary cosmology.

2 The Schrödinger picture of Standard Cosmology

2.1 A Schrödinger type equation for inflation

By defining ψ(t) through

H ≡ 1

3

ψ̇(t)

ψ(t)
, (6)

the Riccati equation (5) can be transformed into the one dimensional Schrödinger equation

[

−d
2

dt2
+ 3 V (t)

]

ψ(t) = −3Λ ψ(t), (7)

we shall consider solutions to eq.(7) based only on the fact that the Hubble parameter
H(t) cannot be a singular function, implying that ψ(t) has to be an at least C1 class
function without zeros, but without any other restriction. For example, we may consider
all ground state solutions of known exactly solvable bound state problems in QM as
solutions to eq.(7). Hence, an immediate equivalence arises between the SF potential
V (φ) and the cosmological constant Λ, with the QM potential U(x) and ground state
energy eigenvalue Eg,

1 respectively,

3V (φ(t)) + 3Λ ↔ 2U(x)− 2Eg (8)

1 For simplicity we shall use m = 1 for the Schrödinger particle.
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This is indeed a very simple proposal, which shows that all the known exactly solvable
stationary problems of 1-dimensional QM must provide at least one exact solution to the
cosmological Schrödinger type equation. The general algebraic procedure is very simple:
for any given QM problem, use the ground state eigenfunction ψg(x) and eq.(6) to find
H(t); then, use eq.(4) to find φ(t), which together with eq.(8) defines V (φ).

For example, in the QM case of the simple harmonic oscillator (SHO), where U(x) =
ω2x2/2, the Schrödinger equation

[

− d2

dx2
+ 2

(

ω2

2
x2 − En

)]

ψn(x) = 0. (9)

has the wave functions and energy eigenvalues given by

ψn(x) =

√

1

2nn!

√

ω

π
e−

w
2
x2

Hn(
√
ω x) En =

(

n+
1

2

)

ω (10)

where Hn(y) are the Hermite polynomials. In the case n = 0, the Hermite polynomial is
H0(

√
ω x) = 1, with energy and wave function

E0 =
1

2
ω ψ0(x) =

4

√

ω

π
e−

ω
2
x2

. (11)

To construct the corresponding cosmological variables, we replace x by t in eq.(11), and
use eq.(6) to find the associated Hubble’s parameter

H(t) = −ω
3
t (12)

and with the use of eq.(4) we obtain the expression of the scalar field

φ(t) =

√

2w

3
t (13)

Finally, we use eqs.(8) and (13) to find the SF potential V (φ) and the constant Λ,

V (φ) = λφ2 , Λ = −2

3
λ (14)

where λ = ω
2
. As one can see, the scalar field potential derived from the SHO potential

turns out to be λφ2 . Surprisingly, one of the most useful and basic potentials of QM
transforms into one of the most useful potentials in this cosmological model (see [1], [13],
and references there in.) It is even more surprising that other typical QM potentials
resemble typical scalar field potentials in standard cosmology; for example, compare the
results in [8] and [14] to the ones obtained in Table 1.
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2.2 Inflationary solutions from QM central force problems

In Table 1 we have left some free parameters which can be used to fix the cosmological
variables strength, even though their overall behavior is already determined. For example,
the cosmological solutions above may be set to correspond to the half plane solutions of
the Schrödinger problem, with the initial condition a(0) 6= 0 if t = 0 when x = 0, and
it is not possible to have as initial condition a = 0. Since in the half plane not only the
QM ground state function is nodeless, but also the first excited state function is, we end
up with two exact standard cosmology solutions with different initial conditions derived
from each 1-dimensional QM problem in the half plane t ≥ 0, the second one with the
initial condition a(0) = 0.

Following this discussion, it is obvious that all ground state solutions to the radial
problem

− d2unl
dr2

+ 2

[

U(r) +
l(l + 1)

2r2
− Enl

]

unl = 0 (15)

are useful to derive exact solutions to the SF equations. Moreover, since all eigenfunc-
tions of the radial problems with angular momentum l = n − 1 are nodeless, we end up
with an infinity of exact solutions to the SF dynamics equations, paratemeterized by a
cosmological constant that belongs to the discrete set Λn = −1

3
En, with the SF potential

always including the centrifugal barrier term n(n − 1)/t2, and with the initial condition
a(0) = 0.

As an example, let us consider the Hydrogen like potential U(r) = −Zq2/r were all
the nodeless eigenfunctions are given by

un,n−1(r) ∝ rne−Zαr/n .

where the fine structure constant α and the atom number Z, are constants only used to
determine the strength of the cosmological variables. For the ground state (n = 1) the
cosmological variables are

H(t) =
1

3t
− Zα

3

φ(t) =

√

2

3
ln t (16)

V (φ) = −λe−
√

3/2φ

Λ =
λZ

2

where λ = 2Zα2/3, while for n > 1, they become

H(t) =
n

3t
− Zα

3n

φ(t) =

√

2n

3
ln t (17)
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Schrödinger picture Standard Cosmology

ψ0(x) = 4

√

ω
π e−

ω
2
x2

H(t) = −2λ
3 t, φ(t) = 2

√

λ
3 t

SHO E0 =
1
2ω Λ = −2

3λ

U(x) = 1
2ω

2x2 V (φ) = λφ2 , λ = ω
2

ψ0(x) = 8e−2e−αx
e−

3

2
αx H(t) = 32

3

√

λ
3

(

e−16
√

λ
3
t − 3

4

)

, φ(t) = − 4√
3
e−4

√

λ
3
t

MOR E0 = −9
8α

2 Λ = 16λ

U(x) = 2α2(e−2αx − 2e−αx) V (φ) = λφ4 − 32
3 λφ

2 , λ = 3α2

64

ψ0(x) =
1
2λ

cosλ(αx) H(t) = −αλ
3 tan(αt), φ(t) =

√

2λ
3 ln

√

1+sin(αt)
1−sin(αt)

PTT E0 =
α2λ2

2 Λ = −λ2α2

3

U(x) = α2

2
λ(λ−1)
cos2(αx)

V (φ) = α2

3 λ(λ− 1) cosh2
(
√

3
2λφ

)

ψ0(x) =
1

coshαx H(t) = −α
3 tanh(αt), φ(t) =

√

2
3 arcsin(tanh(αt))

PTH E0 = −α2

2 Λ = α2

3

U(x) = −α2

cosh2(αx)
V (φ) = −2α2

3 cos2
(
√

3
2φ
)

un,n−1(r) =
(2α)3/2√
2n4(2n−1)!

(

2αr
n

)n
e−αr/n H(t) = n

3t − α
3n , φ(t) =

√

2n
3 ln t

HA En = − α2

2n2 Λ = α2

3n2

Ueff (r) = −α
r + n(n−1)

2r2
V (φ) = n(n−1)

3

[

e−2
√

3

2n
φ − 2α

n(n−1)e
−
√

3

2n
φ
]

Table 1: Standard Cosmology exact solutions from six Schrödinger problems: simple
harmonic oscillator (SHO), Morse potential (MOR), Trigonometric Pöschl Teller (PTT),
Hyperbolic Pöschl Teller (PTH), and Hydrogen Atom (HA).

V (φ) =
n(n− 1)

3

[

e2
√

3/2nφ − 2Zα

n(n− 1)
e−

√
3/2nφ

]

Λ =
Z2α2

3n2

Hence, for n = 1 the SF potential becomes an exponential potential, while for n > 1,
if we choose Zα = n(n − 1) it becomes a Morse potential. The appearance of this
Morse potential is a very interesting feature of this model, since this potential is very
slowly varying for t → ±∞, has a very soft minimum, and later exponentially grows for
t → ∓∞, the sign depending on the parameters. Therefore, this potential has all the
desired features to allow a SF φ(t) slowly roll to the minimum of the SF potential V (φ)
[9]. All these results are also included in Table 1.
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2.3 QM and Standard Cosmology analogies

Looking at Table 1, the Schrödinger picture of standard cosmology seems to be a fruitful
approach to the construction of exact solutions to the inflationary equations (2,3), since
all potentials from these known QM problems resemble known SF potentials. It may seem
that there must exist further analogies between these two models of the micro and macro
cosmos than just an algebraic resemblance.

In the present analogy ψ(t) = a3(t) describes the way the universe volume is expand-
ing since in the Schrödinger picture, ψ(x) is related to probability conservation, hence
the equivalence proposed here points to energy density conservation in this expanding
universe. On the other hand, the only constant term in the QM problem is the energy E,
which therefore determines the cosmological constant Λ of eq.(7), which could be associ-
ated with the vacuum energy density. Therefore, the sign of Λ is completely determined
by the corresponding QM problem from which the SF solution is derived, becoming an
immediate check for the dynamical characteristics that one wants to determine with the
proposed SF potential.

With respect to the scalar field φ(t), following eqs.(4), (5) and (8), we can see that
wherever ȧ(t) ≃ 0,

φ(t) ≃
∫ t

dy
√

2 (E − U(y)) (18)

which resembles the action S(x) of the quantum theory.

2.4 Slow Roll and WKB approximations

One further analogy deserves special attention. Beginning with the slow roll approxima-
tion condition

∣

∣

∣

∣

∣

V ′

V

∣

∣

∣

∣

∣

2

< 1

where we should do the substitution V → V + Λ to comply with eq.(5), we can see that
since ä/a > 0 implies that V + Λ > φ̇2, we have that

∣

∣

∣V̇
∣

∣

∣

2
=
∣

∣

∣φ̇V ′
∣

∣

∣

2
< |V + Λ| |V ′|2 < |V + Λ|3

In our QM analogy, we would have to do the substitutions dV
dt

→ dU
dx

and |V + Λ| →
|E − U |, giving

∣

∣

∣

∣

∣

dU

dx

∣

∣

∣

∣

∣

2

< |E − U |3

which is just the WKB approximation
∣

∣

∣

∣

∣

d2W

dx2

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

dW

dx

∣

∣

∣

∣

∣

2

of the stationary problem, where W (x) = ±
√

2(E − U) is Hamilton’s principal function.

6



3 An ever expanding universe

All the QM problems considered here lead to two possible initial conditions for the scale
factor, a(0) = 0 or a(0) > 0, but with only one final condition, a(t) → 0 as t → ∞,
if eqs.(2,3) may be used for all the half plane t ≥ 0. If this Big Crunch could not be
attainable, as observations seem to predict, our simple approach may still be useful to
describe the expected dynamics.

If a(t) is always increasing, then a QM bound state is not the right solution. However,
as is depicted in Ref.[10], the Schrödinger equation (7) has an infinite number of wave
functions that diverge to ±∞ as t → ∞, for the continuum set of energies E, with
En < E < En+1, as is depicted in Fig.(1) for the case of the SHO.

t

aHtL

Figure 1: Different forms of a(t) obtained from one QM problem.

In Fig.(1) the dashed curves correspond to a(t) obtained from the ground state and
first excited state eigenfunctions, ψ0(x) and ψ1(x). These two curves have a(t) → 0 as
t → ∞. On the other hand, the solid curves draw the scale factor for three different
cosmological constants, derived from the energy eigenvalues, E < E0, E0 < E < E1 and
E1 < E < E2, whose wave functions diverge to +∞, −∞ and +∞ again, the first one
without nodes and the other with increasing number of nodes. Therefore, only the wave
function with E < E0 could lead to a physical solution a(t) > 0 for all t, describing a
cosmological solution for an ever expanding universe.

4 Conclusion

In this article we present a simple ansatz that links two completely separate models, one
being a cosmological model for inflation of the macrocosmos, and the other a quantum
model for the microcosmos. Surprisingly, we have found that the most common potential
functions in these two models map from one to the other, with probability conservation in
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QM reflecting into energy density conservation in the cosmological model, a cosmological
constant determined by the energy eigenvalue in the former, and the WKB approximation
reflecting into the slow roll approximation. All these analogies define deep connection
between the two models, with respect to their dynamical behaviors. Finally, our initial
proposal was to look at the bound state solutions of the QM problems to describe a non
singular Hubble variable for the cosmological model, but since present observations seem
to indicate that the universe is not receding but on the contrary accelerates with time,
we may have to recur to the unbounded solutions of the Schrödinger problem, supporting
even more the validity of the simple analogy developed in this work.
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