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Abstract

We prove the existence of a family of initial data for Einstein equa-
tions which represent small deformations of the extreme Kerr black
hole initial data. The data in this family have the same asymptotic
geometry as extreme Kerr. In particular, the deformations preserve
the angular momentum and the area of the cylindrical end.

1 Introduction

Black holes are one of the most spectacular predictions of General
Relativity. There is growing experimental evidences that indicate that
black holes do indeed exists in nature. Among the most impressive
ones are the evidences for the existence of a supermassive black hole
in the center of our galaxy (see the review article [31]).

In vacuum, the only stationary black hole is expected to be the
Kerr black hole, characterized by the mass m and the angular mo-
mentum J (see [11] and reference therein for updated results on this
problem). The Kerr black hole satisfies the inequality m ≥

√

|J |. The
limit case m =

√

|J | is called the extreme black hole. It represents the
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stationary black hole with maximum amount of angular momentum
per mass unit. The extreme limit

√

|J | → m is singular because the
geometry of the spacetime changes at the limit. This is somehow to
be expected since the extreme case is the borderline between a black
hole and a spacetime with a naked singularity (i.e. the Kerr solution
with 0 < m <

√

|J |.)
There exists relevant reasons to study extreme black holes. The

first one is that there is good experimental evidences for the existence
of nearly extreme black holes in the universe (see [29] for experimental
evidences of a black hole with J/m2 > 0.98). Then, it is important to
understand the dynamics of black holes near the extreme limit. The
second reason is less clear but, we believe, equally important. As often
happens in physical theories, solutions that arise as asymptotic limits
are simpler than other solutions and they provide useful insight into
the theory. In the set of solutions of Einstein equation, extreme black
holes represent a kind of barrier that divide black holes and naked sin-
gularities. From the pure classical point of view, there are evidences
that extreme black holes have some special properties that make them
simpler than non-extreme ones (see the discussion in [18]). Also, from
a completely different perspective, namely holographic dualities, par-
ticular features of extreme black holes play an important role (see [4]
[24], see also the review article [3]). It appears that extreme black
holes have a deep mathematical structure that it is still uncover.

Finally, there is a third reason to study extreme black holes. In the
study of extreme black hole initial conditions (which is the subject of
this article), a particular kind of geometry appears: geometries with
cylindrical ends. This geometries have provided to be very useful in
the numerical computations of black holes collisions (they are called
’trumpet’ initial conditions in this context, see [25] [26] [27]).

As a first step to understand the dynamics near an extreme Kerr
black hole, in this article we study small deformation of the extreme
Kerr black hole initial conditions. We prove the existence of a family
of initial data that are close to extreme Kerr initial data. In particu-
lar, the asymptotic geometry of these initial data is the same as the
extreme Kerr geometry. These data are, generically, non-stationary.
It is important to emphasize that the existence of these initial condi-
tions it is a priori by no means obvious due to the character of the
extreme Kerr geometry.

The paper is organized as follows. We begin in section 2 with a
review of some of the main properties of the extreme Kerr black hole.
Then we state our main result avoiding technical details. We also
discuss how the cylindrical geometry is preserved along the evolution.
In section 3 we state our main theorem in a precise form and prove
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Figure 1: Conformal diagram of the Kerr black hole in the non-extreme case.

it. We conclude the article with a discussion of some relevant open
problems in section 4. Finally, we have included three appendices. In
appendix A we prove a decay property of the Sobolev spaces used in
our proof. In appendix B we prove a property of the extreme Kerr
initial data that plays a central role in the proof. Appendix C is
brief summary of the implicit function theorem, which is the central
analytical tool used in the proof.

2 Main Result

Consider the Kerr black hole with mass m and angular momentum
J . In the non-extreme case (i.e. m >

√

|J |) the maximal analytical
extension of the metric has the well known global structure shown in
figure 1 (see [6][7] and also [8]). Take the spacelike surface S drawn
in this figure. This surface runs from one spacelike infinity (denoted
by i0) to the other. The topology of this surface is S = S

2 × R. The
triple (S, hij ,Kij), where hij is the induced intrinsic metric on S and
Kij is the second fundamental form of S, constitute an initial data set
for Einstein equations. That is, they are solutions of the constraint
equations

DjK
ij −DiK = 0, (1)

R−KijK
ij +K2 = 0, (2)
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Figure 2: The initial data for the non-extreme case. The dark circle in the
middle represents the minimal surface.

where D and R are the Levi-Civita connection and the Ricci scalar
associated with hij , and K = Kijh

ij . In these equations the indices
are moved with the metric hij and its inverse hij .

The Riemannian manifold (S, hij) has two asymptotically flat ends
(see figure 2). This asymptotic geometry is identical to the analogous
slice of Kruskal extension for Schwarzschild black hole. The surface S
in figure 1 corresponds to a slice t = 0 of the Boyer-Lindquist coordi-
nates (t, r̃, θ, φ) in Kerr metric (see the appendix B). It intersects the
bifurcation sphere (denoted by a dark dot in figure 1 and by a dark
circle in figure 2). The slice is isometric across this sphere. The bifur-
cation sphere on the slice is both a minimal surface and an apparent
horizon. In these coordinates, spacelike infinity i0 is represented by
the limit r̃ → ∞. The intrinsic metric and the second fundamental
form satisfy the standard asymptotically flat fall-off conditions

hij = δij +O(r̃−1), Kij = O(r̃−3), as r̃ → ∞, (3)

where δij is the flat metric. The strong fall-off behavior of the second
fundamental form implies that the linear momentum of the initial data
vanishes. The angular momentum is contained in the term O(r−3) of
Kij .

The maximal development of the initial data set (S, hij ,Kij) is
shown in light gray in figure 1. This region does not cover the whole
analytical extension (as in the case of Schwarzschild’s), it has a smooth
boundary in the spacetime. This boundary is known as Cauchy hori-
zon. In dark gray the domain of outer communications is shown, which
is bounded by the black hole event horizon.

In the extreme case m =
√

|J | the global structure of the space-
time changes. The maximal analytical extension is shown in figure 3.
The spacelike surface S has the same topology S

2 × R as in the non-
extreme case, however, the asymptotic geometry of the Riemannian
manifold (S, hij) is different. It has one asymptotically flat end and
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Figure 4: The initial data for the extreme Kerr black hole.

one cylindrical end, see figure 4. The cylindrical end asymptotically
approaches the event horizon. Contrary to the asymptotically flat
case, this end is in the strong field region of the spacetime. Note that
(S, hij) is a complete Riemannian manifold without boundary which
lies completely in the black hole exterior region. Let us take a closer
look at the structure of the cylindrical end. In isotropic coordinates
(r, θ, φ), with r := r̃ −m (see appendix B), the induced metric on S
has the form

h0ij = Φ4
0h̃

0
ij , h̃0 = e2q0(dr2 + r2dθ2) + r2 sin2 θdφ2, (4)

where Φ0 and q0 are given by equation (95) in appendix B. The
extrinsic curvature is given by

K0
ij =

2

η
S(iηj), Si =

1

η
ǫijkη

j∂kω0, (5)
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where ηi is the axial Killing vector, η the square of its norm (see
equation (91)), ǫijk denotes the volume element with respect to the
metric hij and ω0 is given by (96). The advantage of this particular
form of writing K0

ij is that it is easy to check from (5) that K0
ij satisfies

the momentum constraint (1). We will discuss and use this fact in
section 3. In particular, we have that K0

ij is trace-free

K0 = 0. (6)

That is, these initial data are maximal surfaces.
In isotropic coordinates, the asymptotically flat end is given by the

limit r → ∞ and the cylindrical end by the limit r → 0. The radial
coordinate r is a good coordinate in the asymptotically flat end since
the metric and the extrinsic curvature take the asymptotic form (3).

On the other hand, in the limit r → 0 the conformal factor Φ0

blows up. This is, however, just a coordinate problem. To see this, let
s = − ln r, then the cylindrical end corresponds to s → ∞, and the
metric has the form

h0 = (
√
rΦ0)

4
(

e2q0(ds2 + dθ2) + sin2 θdφ2
)

. (7)

The functions
√
rΦ0 and q0 are smooth and uniformly bounded in

the whole range −∞ < s < ∞ (see lemma B.2). In particular, the
Riemannian manifold (S, h0ij) has bounded curvature.

It is interesting to note (although we will not make use of it) that
the metric (7) and the second fundamental form (5) have a well defined
limit s → ∞ as initial data. Namely

h0 = m2(1 + cos2 θ)
(

ds2 + dθ2
)

+
4m2 sin2 θ

(1 + cos2 θ)
dφ2, as s → ∞, (8)

where we have used the limits (99)–(100). The extrinsic curvature
Kij

0 has the form (5) where ω0 is replaced by its limiting value (101)
and all the other quantities are computed with respect to the metric
(8). These are in fact solutions of the constraint equations (1)–(2).
They isolate the cylindrical geometry cutting off the asymptotically
flat end. In particular, the metric (8) has non-negative Ricci scalar,
given by the limit (102) and it has another symmetry, namely trans-
lations in s. These limit initial data are slices t = constant of the
four dimensional vacuum geometry described in [4], known as the the
near-horizon extreme Kerr. This geometry has also been studied in
[8] (see eq. (5.63) in that reference).

A relevant parameter for extreme black hole data is the area of the
cylindrical end. Consider the area A(r) of the surfaces r = constant
of the metric (4). In the limit r → 0 we have

A0 = lim
r→0

A(r) = 8πm2. (9)
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For extreme Kerr, this corresponds to the area of the black hole event
horizon. Finally, for completeness, let us mention that the ergoregion
on S is given in these coordinates by

0 < r < m sin θ. (10)

We have described a particular class of initial data sets for the
extreme Kerr black hole which run from ic to i0. There exist similar
initial data sets in Reissner-Nordström and Kerr-Newman black hole.
Remarkably enough, for a Schwarzschild black hole there also exist
initial data that having the same asymptotic geometry (see [26] and
references therein). All these examples are stationary. Moreover, all
these data arise as a singular limit in which the geometry changes. The
first numerical evidence for the existence of non-stationary cylindrical
data with a similar structure as the one described above was given in
[21] and the first analytical proof was provided in [20], [23]. These
data are also obtained as a singular limit from non-extreme data. The
point we want to address to in this article is the following: given
extreme Kerr initial data, does there exist a neighborhood of similar
data? The following theorem, which constitutes the main result of
this article, gives an affirmative answer to this question.

Theorem 2.1. Let (S, h0ij ,K
0
ij) be the extreme Kerr data set described

above with angular momentum J and mass m =
√

|J |. Then there is
a small λ0 > 0 such that for −λ0 < λ < λ0 there exists a family of
initial data sets (S, hij(λ),Kij(λ)) (i.e., solutions of the constraints
on S) with the following properties:

(i) We have hij(0) = h0ij and Kij(0) = K0
ij. The family is differ-

entiable in λ and it is close to extreme Kerr with respect to an
appropriate norm which involves two derivatives of the metric.

(ii) The data has the same asymptotic geometry as the extreme Kerr
initial data set. The angular momentum and the area of the
cylindrical end in the family do not depend on λ, they have the
same value as in (S, h0ij ,K

0
ij), namely J and 8π|J | respectively.

(iii) The data are axially symmetric and maximal (i.e. K(λ) = 0).

In section 3 we provide a more precise version of this theorem
(theorem 3.1). Let us discuss here other relevant properties of the
initial data family (S, hij(λ),Kij(λ)).

We mention that the angular momentum of the family remains
constant, the total mass however is not. As a consequence of the
general theorems [19] [10] we have the following inequality for all λ

m(λ) ≥
√

|J |, (11)
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with equality only for λ = 0 (i.e. for extreme Kerr). This family
realizes the local minimum behavior of extreme Kerr studied in [15].

Inequality (11) allows us to define the following positive quantity

E(λ) = m(λ)−
√

|J |. (12)

The energy E provides (if we assume cosmic censorship) an upper
bound for the total amount of radiation emitted by the system at null
infinity for these initial data (see the discussion in [18]).

Let us consider now some aspects of the evolution of these data.
In the asymptotically flat case, it is well know that the asymptotic
behavior (3) is preserved by evolution if we impose appropriate fall
off conditions for the lapse and shift. This is of course important,
since it is related to conservation of total mass in the spacetime. The
natural question is whether this kind of persistence under evolution
also holds for the cylindrical asymptote. To study this question we
need non-stationary data as the ones constructed here.

Let us consider a member of the family for some λ 6= 0 (we will
suppress the λ in the notation in the following). Take a short period
of time t, then we have

hij(t) ≈ hij(0) + ḣij(0)t. (13)

Kij(t) ≈ Kij(0) + K̇ijt, (14)

where dot denotes time derivative. The time derivatives ḣij , K̇ij can
be computed using the evolution equations

ḣij = 2αKij + Lβhij , (15)

K̇ij = ∇i∇jα+ LβKij + α(2Kk
i Kjk −KKij −Rij), (16)

where α and βi are the lapse and shift of the foliation, L denotes the
Lie derivative and Rij is the Ricci tensor of hij . If we want to preserve
the cylindrical geometry under the evolution, we must have

lim
s→∞

ḣij = 0, lim
s→∞

K̇ij = 0. (17)

From equations (15)–(16) we deduce the following conditions for the
lapse

lim
s→∞

α = lim
s→∞

∂α = lim
s→∞

∂2α = 0. (18)

and the shift
lim
s→∞

βi = lim
s→∞

∂βi = 0, (19)

where ∂ denotes partial derivatives with respect to the space coordi-
nates. Note that for the particular Boyer-Lindquist foliation in ex-
treme Kerr these requirements are satisfied (see equations (97)–(98)
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in appendix B). Conditions (18) and (19) are analogous to the asymp-
totically flat conditions for lapse and shift.

In this article, we have assumed vacuum for simplicity. We expect
that an analogous result as theorem (4) holds for the Kerr-Newman
extreme black hole. In that case, inequality (11) should be replaced
by it generalized charged version recently proved in [12], [13].

3 Proof of Main Result

A particular feature of axial symmetry is that it allows one to reduce
the constraint equations (1)–(2) to just one scalar equation for a con-
formal factor (the so called Lichnerowicz equation). This procedure
is well known (see, for example, [19] and reference therein). Let us
briefly review it. Consider the metric

h̃ij = e−2q(dr2 + r2dθ2) + r2 sin2 θ dϕ2, (20)

where q = q(r, θ) is an arbitrary function. This metric will be used as
a conformal background for the physical metric hij . We first discuss
how to construct solutions of the momentum constraint (1) from an
arbitrary axially symmetric potential ω(r, θ). Consider the following
tensor

K̃ij =
2

ρ2
S̃(iηj), (21)

where

S̃i =
1

2ρ2
ǫ̃ijkηj∂kω, (22)

and ǫ̃ijk denotes the volume element with respect to h̃ij , D̃ is the
connexion with respect to h̃ij and ρ = r sin θ is the cylindrical radius.
The indices on tilde quantities are moved with h̃ij and its inverse h̃ij .
The tensor K̃ij is symmetric, trace free, and satisfies the following
equation (see, for example, the appendix in [14])

D̃iK̃
ij = 0, (23)

for arbitrary q and ω. Equation (23) essentially solves (up to a con-
formal factor) the momentum constraint (1). Assume that we have a
solution Φ of Lichnerowicz equation

∆h̃Φ− R̃

8
Φ = −K̃ijK̃

ij

8Φ7
, (24)

where ∆h̃ is the Laplacian with respect to h̃ij and R̃ is the Ricci scalar

of h̃ij . Consider the rescaling

hij = Φ4h̃ij , Kij = Φ−2K̃ij . (25)
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Then, as a consequence of (23) the pair (hij ,Kij) satisfies the con-
straints (1)–(2). That is, the problem reduces to solving equation
(24). This equation can be written in the following remarkably simple
form in axial symmetry

∆Φ = − (∂ω)2

16ρ4Φ7
− ∆2q

4
Φ, (26)

where, ∆ and ∆2 are flat Laplace operators in three and two dimen-
sions respectively (see (103)). In particular, extreme Kerr initial data
satisfies this equation, namely

∆Φ0 = − (∂ω0)
2

16ρ4Φ7
0

− ∆2q0
4

Φ0. (27)

The idea is to perturb equation (26) around the extreme Kerr solution
by taking

q0 + λq, ω0 + λω, (28)

for some fixed functions q and ω and small λ, and then to find a
solution u defined by

Φ = Φ0 + u. (29)

Inserting (28) and (29) in equation (26) and using (27) we obtain our
final equation

G(λ, u) = 0, (30)

where we have defined

G(λ, u) = ∆u+
(∂w0 + λ∂w)2

16ρ4(Φ0 + u)7
− ∂w2

0

16ρ4Φ7
0

+ λ
∆2q

4
(Φ0 + u) +

∆2q0
4

u.

(31)
Then, theorem 2.1 is a direct consequence of the following existence
theorem for equation (30).

Theorem 3.1. Let w ∈ C∞
0 (R3 \ Γ) and q ∈ C∞

0 (R3 \ {0}). Then,
there is λ0 > 0 such that for all λ ∈ (−λ0, λ0) there exists a solution
u(λ) ∈ H

′2
−1/2 of equation (30). The solution u(λ) is continuously

differentiable in λ and it satisfies Φ0 + u(λ) > 0. Moreover, for small
λ and small u (in the norm H

′2
−1/2) the solution u(λ) is the unique

solution of equation (30).

We have used the following notation: Γ denotes the axis ρ = 0,
C∞
0 (Ω) are smooth functions with compact support in Ω and H

′2
−1/2

denotes the Sobolev weighted spaces defined in appendix A.
The fact ω vanishes at the axis implies that the angular momentum

remains fixed for the whole family (see the discussion in [19]). Also,
using lemma A.1, from u ∈ H

′2
−1/2 it follows that the perturbation u

does not change the area of the cylindrical end at r = 0.
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Proof. The proof uses the Implicit Function Theorem (see theorem
C.1 in appendix C, in the rest of the proof we will follow the notation
introduced in that theorem) for the map G defined in equation (31).
The proof is divided in two steps.

In the first step, we find the appropriate Banach spaces X, Y and
Z required by theorem C.1, together with the neighborhoods U ⊂ X
and V ⊂ Y , such that G : V ×U → Z defines a C1 map. The delicate
part of this step is to take into account in the definition of the Banach
spaces the fall off behavior at infinity and the singular behavior at
the origin of the background functions Φ0, q0 and ω0. In particular,
it is clear from the equation that we can not expect the solution u to
be regular at the origin, and hence standard Sobolev spaces are not
appropriate. Also, the presence of the singular background functions
Φ0, q0 and ω0 in the map G prevents one from using standard theorems
(for example the chain rule in Sobolev spaces) to prove that G is
C1. We need to explicitly compute the functional partial derivatives
from their very definition as a limit. This makes this part of the
proof laborious. The asymptotic behavior of the background Kerr’s
functions is typical of any data with one asymptotically flat end and
one cylindrical end and that is the main ingredient needed in this step.

In the second step, we prove that the derivative D2G(0, 0) is an
isomorphism between Y and Z. In this part we use very specific
properties of extreme Kerr initial data (namely, lemma B.1) which
are not valid for generic cylindrical data. See the comment after the
proof of lemma B.1. This step represents the key part of the proof.

Step 1. To handle both the fall off behavior at infinity and the
singular behavior at the origin of the functions Φ0, q0 and ω0 we
will make use of weighted Sobolev spaces defined in appendix A. We
choose X = R, Y = H ′2

−1/2 and Z = L
′2
−5/2. We also choose U = R. It

is clear that the map G is only defined when Φ0 + u > 0. Hence, we
need to find an appropriate neighborhood V of 0 in the Banach space
Y such that this condition is satisfied. Let us consider V given by the
open ball

||u||
H

′2

−1/2
< ξ, (32)

where the constant ξ is computed as follows. From lemma A.1 we
have that for u ∈ V √

r|u| ≤ C0ξ, (33)

where the constant C0 is a Sobolev constant independent of u. By
lemma B.2 we have √

rΦ0 ≥
√
m. (34)
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Then, if we choose ξ such that
√
m

C0
> ξ > 0, (35)

we have that for all u ∈ V

√
r(Φ0 + u) ≥

√
m− C0ξ > 0. (36)

The constant ξ will remain fixed for the rest of the proof.
We first prove that G : R × V → L

′2
−5/2 is well defined as a map.

That is, we need to check that for λ ∈ R and u ∈ V we obtain
G(λ, u) ∈ L

′2
−5/2. Let us compute the norm L

′2
−5/2 of G(λ, u). Using

the definition (31) and the triangle inequality we get

‖G(λ, u)‖L′2

−5/2
≤ ‖∆u‖L′2

−5/2
+

∥

∥

∥

∥

λ∂ω (2∂ω0 + λ∂ω)

16ρ4(Φ0 + u)7

∥

∥

∥

∥

L′2

−5/2

+

+
λ

4
‖(Φ0 + u)∆2q‖L′2

−5/2
+

+

∥

∥

∥

∥

(∂ω0)
2

16ρ4

[

1

(Φ0 + u)7
− 1

Φ7
0

]
∥

∥

∥

∥

L′2

−5/2

+
1

4
‖u∆2q0‖L′2

−5/2
. (37)

From the definition of the H
′2
−1/2-norm it is clear that the first term in

the right-hand side of (37) is bounded. For the second and third terms
we use the hypothesis that ω has compact support outside the axis and
q compact support outside the origin together with the lower bound
(36) to conclude that these terms are also bounded. The delicate
terms are the last two.

For the fourth term we proceed as follows. Using the following
elementary identity for real numbers a and b

1

ap
− 1

bp
= (b− a)

p−1
∑

i=0

ai−pb−1−i. (38)

we find that

r−4

(

1

Φ7
0

− 1

(Φ0 + u)7

)

= uH, (39)

where H is given by

H =
6
∑

i=0

(
√
r(Φ0 + u))i−7(

√
rΦ0)

−1−i. (40)

Using inequalities (34) and (36) we obtain

H ≤ C, (41)
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where the constant C depends only on the mass parameter m of the
background extreme Kerr solution. In the following we will generically
denote by C constants depending at most on m. Then, we have

∥

∥

∥

∥

(∂ω0)
2

ρ4

[

1

(Φ0 + u)7
− 1

Φ7
0

]∥

∥

∥

∥

L′2

−5/2

≤
∥

∥

∥

∥

C

r6
(r4uH)

∥

∥

∥

∥

L′2

−5/2

(42)

= C ‖u‖L′2

−1/2
≤ C ‖u‖H′2

−1/2
. (43)

Where we have used the bound (109) in Lemma B.2 to bound the
factor with ω0 in the first inequality in (42). The last inequality in
(42) comes from the definition of the weighted Sobolev space H ′2

−1/2.

For the fifth term, which involves q0, we use the bound (110) in
lemma B.2, to find

‖u∆2q0‖L′2

−5/2
≤ C

∥

∥

∥

u

r2

∥

∥

∥

L′2

−5/2

= C ‖u‖L′2

−1/2
≤ C ‖u‖H′2

−1/2
. (44)

These computations show that all norms involved in ‖G(λ, u)‖L′2

−5/2

are finite, hence G : R× V → L′2
−5/2 is a well defined map.

We will now prove that G is C1 between the mentioned Sobolev
spaces. Let us denote by D1G(λ, u) the partial Fréchet derivative
of G with respect to the first argument evaluated at (λ, u) and by
D2G(λ, u) the partial derivative with respect to the second argument.
By definition, the partial derivatives are linear operators between the
following spaces

D1G(λ, u) : R → L′2
−5/2, (45)

D2G(λ, u) : H ′2
−1/2 → L′2

−5/2. (46)

We use the notation D1G(λ, u)[γ] to denote the operator D1G(λ, u)
acting on γ ∈ R. That is, D1G(λ, u)[γ] defines a function on L′2

−5/2.

In the same way we denote by D2G(λ, u)[v] the operator acting on a
function v ∈ H ′2

−1/2.
We propose as candidates for these partial derivatives the following

linear operators

D1G(λ, u)[γ] =

(

2(∂w0 + λ∂w) · ∂w
16ρ4(Φ0 + u)7

+
∆2q

4
(Φ0 + u)

)

γ, (47)

D2G(λ, u)[v] = ∆v +

(

−7(∂w0 + λ∂w)2

16ρ4(Φ0 + u)8
+ λ

∆2q

4
+

∆2q0
4

)

v. (48)

These operators arise by taking formally the following directional
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derivatives to the map G

d

dt
G(λ+ tγ, u)|t=0 = D1G(λ, u)[γ], (49)

d

dt
G(λ, u+ tv)|t=0 = D2G(λ, u)[v]. (50)

To prove that the map G : R× V → Z is C1 we need to prove the
following items:

(i) The linear operators (47) and (48) are bounded, namely

‖D1G(λ, u)[γ]‖L′2

−5/2
≤ C1|γ|, (51)

‖D2G(λ, u)[v]‖L′2

−5/2
≤ C2 ‖v‖H′2

−1/2
, (52)

where the constants C1 and C2 do not depend on γ and v re-
spectively.

(ii) The operators (47) and (48) are continuous in (λ, u) with respect
to the operator norms. That is, for every δ > 0 there exists ǫ > 0
such that

|λ1 − λ2| < ǫ ⇒ ‖D1G(λ1, u)−D1G(λ2, u)‖L(X,Z) < δ, (53)

and

‖u1 − u2‖H′2

−1/2
< ǫ ⇒ ‖D1G(λ, u1)−D1G(λ2, u2)‖L(Y,Z) < δ,

(54)
where the operator norms used in the right hand side of this
inequalities are defined in appendix C.

(iii) The operators (47) and (48) are the partial Fréchet derivatives
of G (see the definition in appendix C). That is

lim
γ→0

‖G(λ+ γ, u)−G(λ, u)−D1G(λ, u)[γ]‖L′2

−5/2

|γ| = 0, (55)

and

lim
v→0

‖G(λ, u+ v)−G(λ, u)−D2G(λ, u)[v]‖L′2

−5/2

‖v‖H′2

−1/2

= 0. (56)

By performing similar computations as above it is straightforward
to prove (i) and also the following estimate

‖D1G(λ1, u)−D1G(λ2, u)‖L′2

−5/2
≤ C|λ1 − λ2|, (57)

14



where C does not depend on λ1 and λ2. From inequality (57) the
continuity with respect to λ follows, equation (53) of item (ii). In
fact, estimate (57) is a bit stronger since it gives uniform continuity.

Continuity in the u direction is more delicate. Using again the
identity (38) we have

r−9/2

(

1

(Φ0 + u1)
− 1

(Φ0 + u2)

)

= (u2 − u1)H, (58)

where

H =
7
∑

i=0

(
√
r(Φ0 + u1))

i−8(
√
r(Φ0 + u2))

−1−i. (59)

Using that u1, u2 ∈ V and the lower bound (36) we obtain

H ≤ C. (60)

We use the upper bound (109), together with (60) to find

‖D1G(λ, u1)−D1G(λ2, u2)‖L′2

−5/2
≤ C

∥

∥

∥

∥

v(u1 − u2)

r3/2

∥

∥

∥

∥

L′2

−5/2

. (61)

We bound the right hand side of (61) as follows

∥

∥

∥

∥

v(u1 − u2)

r3/2

∥

∥

∥

∥

L′2

−5/2

=

(
∫

R3

v2(u1 − u2)
2

r
dx

)1/2

, (62)

=

(
∫

R3

(
√
rv)2(u1 − u2)

2

r2
dx

)1/2

(63)

≤ C ‖v‖H′2

−1/2

(
∫

R3

(u1 − u2)
2

r2
dx

)1/2

(64)

≤ C ‖v‖H′2

−1/2
‖u1 − u2‖H′2

−1/2
. (65)

Equation (62) is just the definition of the L′2
−5/2-norm and equation

(63) is a trivial rearrangement of factors. The crucial inequality is (64)
where we have used lemma A.1. Finally, line (65) trivially follows from
the definition of H ′2

−1/2-norms. Hence, we obtain our final inequality

‖D1G(λ, u1)−D1G(λ2, u2)‖L′2

−5/2
≤ C ‖v‖H′2

−1/2
‖u1 − u2‖H′2

−1/2
.

(66)
From this inequality, the continuity (54) follows.

We now prove (iii). The first limit (55) is straightforward. The
delicate part is the second limit (56). We will follow a similar argument

15



as in the previous calculation. We first compute

G(λ, u+ v)−G(λ, u)−D2G(λ, u)[v] =

(∂ω0 + λ∂ω)2

16ρ4

(

1

(Φ0 + u+ v)7
− 1

(Φ0 + u)7
+

7v

(Φ0 + u)8

)

(67)

We have

r−9/2

(

1

(Φ0 + u+ v)7
− 1

(Φ0 + u)7
+

7v

(Φ0 + u)8

)

= v2H, (68)

with

H =
1

(
√
r(Φ0 + u+ v))7(

√
r(Φ0 + u))8

∑

i+j+k=6
i,j,k≥0

Cijk(
√
rΦ0)

i(
√
ru)j(

√
rv)k,

(69)
where Cijk are numerical constants. To bound H we use the upper
and lower bounds for Φ0 given by (108) and the fact that u, v ∈ V
(and hence they satisfy the bound (33)). We obtain

|H| ≤ C
(r +m)6/2

(
√

(r +m)− C0ξ)15
≤ C. (70)

Then, we have

‖G(λ, u+ v)−G(λ, u)−D2G(λ, u)[v]‖L′2

−5/2
≤ C

∥

∥

∥

∥

∥

r9/2v2H

r6

∥

∥

∥

∥

∥

L′2

−5/2

,

(71)

=

∥

∥

∥

∥

v2

r3/2

∥

∥

∥

∥

L′2

−5/2

. (72)

Using the same argument as we used in equation (62)–(65) we finally
get the desired estimate

‖G(λ, u+ v)−G(λ, u)−D2G(λ, u)[v]‖L′2

−5/2
≤ C

(

‖v‖H′2

−1/2

)2
.

(73)
From (73) it follows (56).

Step 2. We will prove that D2G(0, 0) : H ′2
−1/2 → L′2

−5/2 is an
isomorphism. We write this linear operator in the following form

D2G(0, 0)[v] = ∆v − αv, (74)

where

α = 7
(∂ω0)

2

16ρ4Φ8
0

− ∆2q0
4

. (75)
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By lemma B.1 we have that α = hr−2 where h is a positive and
bounded function in R

3. In [23] it has been proved that under such
conditions for α the map (74) is an isomorphism between H ′2

−1/2 and

L′2
−5/2.
We have satisfied all the hypothesis of the Implicit Function Theo-

rem. Hence, there exists a neighborhood W = (−λ0, λ0) of the origin
in R such that the conclusion of theorem 3.1 holds.

Remarks: We have imposed the perturbation functions ω and q to
have compact support. This can be relaxed by requiring appropriate
fall off conditions at the axis and at the origin.

The axially symmetric data considered here are not the most gen-
eral one, since we are assuming in the form of the metric (20) that the
axial Killing vector is hypersurface orthogonal on the surface S (but,
of course, has a non zero twist in the spacetime). This simplification
allows one to use the explicit expression’s (21) for the second funda-
mental form. We expect that this result can be generalized without
this assumption. However, it is important to emphasize that given a
data as the one constructed in this theorem, the time evolution de-
scribed in section 2, under the condition for lapse and shift (18)–(19),
will develope initial data with the same asymptotic geometry for which
the Killing vector is not surface orthogonal. And hence we get from
our family also non-trivial initial data for which the Killing vector is
not hypersurface orthogonal.

4 Final Comments

We have prove the existence of a initial data family close to extreme
Kerr black hole initial data. This family represent the natural ini-
tial data to study the evolution near an extreme black hole in axial
symmetry, in the spirit of [17] [22].

There exists also relevant open problems that can be address at the
level of the initial data. As we have seen in section 2, the extreme Kerr
black data lies outside the black hole region and hence they contain no
trapped surfaces. Does the family (S, hij(λ),Kij(λ)) contains trapped
surfaces for λ > 0? If these data have no trapped surfaces, then there
is a chance that they also lies outside the black hole region. This
can, of course, only been answered after the whole evolution has been
analyzed. On the other hand, if there are trapped surfaces, then the
data necessarily penetrate the black hole. The formation of trapped
surfaces for arbitrary small λ > 0 will indicate that extreme Kerr
data is a very special element in the family (S, hij(λ),Kij(λ)). In
that case, these kind of data could be very useful in the study of
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geometric inequalities which relates angular momentum and area of
trapped surfaces (see section 8 in the review article [28]).
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A Weighted Sobolev spaces

The Bartnik’s weighted Sobolev spaces W ′k,p
δ [5] are appropriate for

studying geometries with one cylindrical and one asymptotically flat
end. These functional spaces have weights both at infinity and at the
origin.

The weighted Lebesgue spaces L′p
δ are defined as the completion

of C∞
0 (Rn \ {0}) functions under the norms

‖f‖′p,δ =
(

∫

R3\{0}
|f |pr−δp−ndx

)1/2

. (76)

The weighted Sobolev spaces W ′k,p
δ are defined in the usual way

‖f‖′k,p,δ =
m
∑

0

‖Djf‖p,δ−j . (77)

In this article we only use the cases n = 3 and p = 2, we have denoted
these spaces by H ′k

δ = W ′k,2
δ and the norms by ‖f‖L′2

δ
= ‖f‖′2,δ and

‖f‖H′k
δ
= ‖f‖′k,2,δ.

18



The next lemma plays a crucial role in the proof of theorem 3.1.

Lemma A.1. Assume u ∈ W ′k,p
δ with n − kp < 0, then we have the

following estimate
r−δ|u| ≤ C ‖u‖′k,p,δ . (78)

Moreover, we have

lim
r→0

r−δ|u| = lim
r→∞

r−δ|u| = 0. (79)

We will use this lemma only for the particular case p = 2, n = 3,
k = 2 and δ = −1/2, we state however the proof for the general case
since it can have other applications.

Proof. This proof is adapted from [5], Theorem 1.2, where the state-

ment is proved for weighted spaces at infinity (namely, W k,p
δ spaces in

the notation of [5]).
Let BR be the ball of radius R centered at the origin, and let AR

be the annulus AR = B2R \BR. We define the rescaled function

uR(x) := u(Rx). (80)

Then, the fundamental scaling property of the spaces W ′k,p
δ (cf. equa-

tion after equation (1.3) in [5]) is given by

‖uR‖k,p,δ;A1
= Rδ‖u‖k,p,δ;AR

, (81)

where we have used the same notation as in [5] for norms over subsets
of Rn.

We have

sup
AR

r−δ|u| = sup
A1

R−δr−δ|uR|, (82)

≤ CR−δ‖r−δuR‖k,p;A1
, (83)

≤ CR−δ‖uR‖′k,p,δ;A1
, (84)

= C‖u‖′k,p,δ;AR
. (85)

The line (82) is a trivial change of coordinates. For the inequality (83)
we have used the standard Sobolev estimate on the bounded domain
A1, which is valid for n − kp < 0. We have denoted the standard
Sobolev norm on a domain Ω by ‖ · ‖k,p;Ω. It is important to note that
the constant C does not depend on R, since the domain A1 does not
either. The inequality in (84) is trivial because on the domain A1 the
two norms (standard and weighted) are equivalent. Finally, in (85)
we applied the scaling property (81).
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Consider the set of annulus A2j and define uj = u|A
2j
. It is clear

that

u =
∞
∑

j=−∞

uj . (86)

Then, we use the estimate (82) on A2j and sum over all j

(sup r−δ|u|)p ≤
∞
∑

j=−∞

(sup r−δ|uj |)p ≤ C
∞
∑

j=−∞

‖uj‖′pk,p,δ, (87)

= C‖u‖′pk,p,δ. (88)

which proves (78).
To prove (79) we observe that the sum

∑∞
j=−∞(sup r−δ|uj |)p is an

infinite sum of positive real numbers which is bounded, hence in the
limit we must have

lim
j→±∞

(sup r−δ|uj |) = 0, (89)

which is equivalent to (79).

B Properties of extreme Kerr initial

data

The spacetime metric for extreme Kerr black hole in Boyer-Lindquist
coordinates (t, r̃, θ, φ), is given by

g = −∆sin2 θ

η
dt2 + η(dφ− Ωdt)2 +

Σ

∆
dr̃2 +Σdθ2 (90)

where η is the square norm of the axial Killing vector

ηµ =

(

∂

∂φ

)µ

, η = gνµη
µηµ, (91)

given by

η =
(r̃2 + a2)2 − a2∆sin2 θ

Σ
sin2 θ. (92)

The functions ∆ and Σ are given by

∆ = (r̃ −m)2, Σ = r̃2 + a2 cos2 θ, (93)

and Ω is the angular velocity

Ω =
2a2r̃ sin2 θ

ηΣ
. (94)
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Here a = J/m is the angular momentum per unit mass, and we con-
sider the extreme case

√

|J | = m. Note that for extreme Kerr we have
two possible values for the angular momentum J = ±m2 (and hence
a = ±m).

Take a surface t = constant, define the radius r as r = r̃ − m.
From (90) we deduce that the intrinsic metric on this surface has the
form (4) with

e2q0 =
Σsin2 θ

η
, Φ4

0 =
η

ρ2
. (95)

The twist potential of the Killing vector ηµ is given by

ω0 = 2J(cos3 θ − 3 cos θ)− 2Jm2 cos θ sin4 θ

Σ
. (96)

The lapse function and shift vector for this foliation are given by

α =
r

√

Σ+ a2(1 + 2a(r + a)/Σ) sin2 θ
, (97)

βφ = −2a2 sin2 θ(r + a)

Σ3
r2. (98)

The following asymptotic limit are interesting

lim
r→0

√
rΦ0 =

(

4m2

1 + cos2 θ

)1/4

, (99)

lim
r→0

e2q0 =

(

1 + cos2 θ

2

)2

, (100)

lim
r→0

ω0 = − 8J cos θ

1 + cos2 θ
, (101)

lim
r→0

R =
2 sin2 θ

m2(1 + cos2 θ)3
. (102)

We take the opportunity to correct a misprint in equation A.15 of [2].
There is a missing exponent 3 in the denominator of this formula, it
should be the same as equation (102).

In the following, we use ∆ to denote the flat Laplace operator in
three dimensions, the two dimensional Laplacian ∆2 is given by

∆2 =
1

r
∂r(r∂r) +

1

r2
∂2
θ . (103)

The next lemma plays a crutial role in the proof of theorem 3.1.

Lemma B.1. Let q0 and Φ0 be given by (95) and ω0 by (96). Then
the function α defined in (75), has the form α = hr−2 where h ≥ 0
and h is bounded in R

3.
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Proof. From the Hamiltonian constraint

− ∆2q0
4

=
∆Φ0

Φ0
+

(∂w0)
2

16η2
. (104)

and the stationary equation satisfied by extreme Kerr’s initial data
(see [2])

∆Φ0

Φ0
= −(∂ω0)

2

4η2
+

(∂Φ0)
2

Φ2
0

(105)

we obtain

− ∆2q0
4

= − 3

16

(∂w0)
2

η2
+

(∂Φ0)
2

Φ2
0

. (106)

Therefore

α =
(∂ω0)

2

4η2
+

(∂Φ0)
2

Φ2
0

, (107)

which is clearly a non negative quantity. By an explicit calculation it
can be seen that α is in fact a strictly positive function. Since we do
not need this property for our purposes, we omit the details. Also by
explicit means, we note that α is O(r−2) at the origin, and O(r−4) at
infinity, being otherwise bounded. Thereby, there must exist a positive
function h such that α = hr−2.

It is important to note that in the proof of lemma B.1 we have used
the fact that extreme Kerr satisfies the stationary Einstein equations
and also that the topology of extreme Kerr allows us to choose these
coordinates. In particular, the proof fails for non-extreme Kerr. See
a similar discussion in [16] at the end of page 6868.

Lemma B.2. Let Φ0, q0 and ω0 be defined by (95) and (96), and
assume that m > 0. Then we have the following bounds:

√
m ≤

√
r +m ≤

√
rΦ0 ≤

√
2
√
r +m, (108)

(∂ω0)
2

ρ4
≤ 116

m4

r6
, (109)

|∆2q0| ≤
90

r2
. (110)

Proof. Inequality (108) has been proved in [2] (see equations (10) and
(12) in this reference).

We have

(∂ω0)
2 =

4m4ρ6F

r8Σ4
(111)

where

F = 4r2a4r̃2 sin2(2θ) +
(

3r̃4 + a2r̃2 + a2(r̃2 − a2) cos2 θ
)2

(112)
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and r̃ = r +m. Then

F ≤ 4r2a4r̃2 +
(

3r̃4 + a2r̃2 + a2r̃2
)2 ≤ 29(r + a)8. (113)

We also find, bounding Σ ≥ (r + a)2 and ρ ≤ r, that

(∂ω0)
2 ≤ 4a4ρ429(r + a)8

r6(r + a)8
= 116

m4

r2
. (114)

Finally, using the explicit expressions for Φ0 and ω0 one can check,
after a laborious but straightforward calculation, the bound on |∆2q0|.

C The implicit function theorem

To facilitate the readability of the article and also to fix the notation,
we reproduce in this appendix well known results on differential cal-
culus in Banach spaces (see, for example [1], [9], and also the more
introductory text books [30], [32]).

Let X and Z be Banach spaces. Let A : X → Z be a linear
bounded operator. We denote by L(X,Z) the set of all linear and
bounded operators from X to Z. The set L(X,Z) is itself a Banach
space with the operator norm defined by

‖A‖L(X,Z) = sup
‖x‖6=0

‖A(x)‖Z
‖x‖X

. (115)

Let x be a point in X and let G be a mapping from a neighborhood
of x into Z. Then G is called Fréchet differentiable at the point x if
there exists a linear operator DG(x) ∈ L(X,Z) such that

lim
v→0

‖G(x+ v)−G(x)−DG(x)[v]‖
‖x‖X

= 0. (116)

The map G is called continuously differentiable (i.e. C1) if the deriva-
tive DG(x) as an element of L(X,Z) depends continuously on x.
Namely, for every δ > 0 there exists ǫ > 0 such that

‖x1 − x2‖X < ǫ ⇒ ‖DG(x1)−DG(x2)‖L(X,Z) < δ. (117)

Let X, Y and Z be Banach spaces and let G be a map G : X×Y → Z,
in a similar way we define the partial derivatives with respect to the
first argument by D1G(x, y) and with respect to the second argument
by D2G(x, y).
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Theorem C.1 (Implicit Function Theorem). Suppose U is a neigh-
borhood of 0 in X, V is a neighborhood of 0 in Y , and G : X×Y → Z
is C1. Suppose G(0, 0) = 0 and D2G(0, 0) : Y → Z defines a bounded
operator and it is an isomorphism. Then, there exists a neighbor-
hood W of the origin in X and a continuously differentiable mapping
f : W → Y such that G(x, f(x)) = 0. Moreover, for small x and y,
f(x) is the only solution y of the equation G(x, y) = 0.
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