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Abstract The deflection of a ray of light passing close to a gravitational
mass, is generally calculated from the null geodesic which the light ray (
photon) follows. However, there is an alternate approach, where the effect
of gravitation on the ray of light is estimated by considering the ray to be
passing through a material medium. Calculations have been done in this
paper, following the later approach, to estimate the amount of deflection
due to a static non-rotating mass. The refractive index of such a material
medium, has been calculated in a more rigorous manner in the present work
and the final expression for the amount of deflection calculated here is claimed
to be more accurate than all other expressions derived so far using material

medium approach. Based on this expression, the amount of deflection for a
sun grazing ray has been also calculated.

1 Introduction

The gravitational deflection of light is one of the important predictions of the
General Theory of Relativity (GTR) proposed by Einstein, which plays a key
role in understanding problems related to Astronomy, Cosmology, Gravita-
tional Physics and other related branches.

Newtons theory of universal gravitation had already predicted that the
path of any material particle moving at a finite speed is affected by the pull
of gravity. By the late 18th century, it was possible to apply Newtons law
to compute the deflection of light by gravity. Cavendish commented briefly
on the gravitational deflection of light in the late 1700s and Soldner gave a
detailed derivation in 1801.
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The idea of bending of light was revived by Einstein in 1911 and the quan-
titative prediction for the amount of deflection of light passing near a large
mass (M) was identical to the old Newtonian prediction, d = 2GM/(c2r⊙),
where r⊙ is the closet distance of approach and in this case approximately
the solar radius. It wasn’t until late in 1915, as Einstein completed the
general theory, he realized his earlier prediction was incorrect and the angu-
lar deflection should actually be twice the size he predicted in 1911. This
was subsequently confirmed by Eddington in 1919 through an experiment
performed during the solar eclipse.

The exact amount of deflection for a ray of light passing close to a gravi-
tational mass can be worked out from the null geodesic, which a ray of light
follows [1,2,3].

The deflection of a light ray passing close to a gravitational mass can be
alternately calculated by following an approach, where the effect of gravita-
tion on the light ray is estimated by considering the light ray to be passing
through a material medium with a value of refractive index decided by the
value of gravitational field [4].

The concept of this equivalent material medium was discussed by Balazs
[5] as early as in 1958, to calculate the effect of a rotating body, on the
polarization of an electromagnetic wave passing close to it. Plebanski [6]
had also utilized this concept in 1960, to study the scattering of a plane
electromagnetic wave by gravitational field, where the author mentioned that
this concept of equivalent material medium was first pointed out by Tamm
[7] in 1924. A general procedure for utilizing this concept, for deflection
calculation has been worked out by Felice [8]. Later this concept was also
used by Mashoon [9,10], to calculate the deflection and polarization due to the
Schwarzschild and Kerr black holes. Fischbach and Freeman [11], derived the
effective refractive index of the material medium and calculated the second
order contribution to the gravitational deflection. In a similar way Sereno
[12] has used this idea, for gravitational lensing calculation by drawing the
trajectory of the ray by Fermat’s principle. More recently Ye and Lin [13],
emphasized the simplicity of this approach and calculated the gravitational
time delay and the effect of lensing.

On the other hand, the calculation of higher order deflection terms, due to
Schwarzschild Black hole, from the null geodesic, has been performed recently
by Iyer and Petters ( [14] and references their in). Using null geodesics,
gravitational lensing calculations have been done by a number of authors in
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past [15,16].
With the above background, in the present work, we follow the mate-

rial medium approach, to calculate a more accurate value for the deflection
term due to a non-rotating sphere ( Schwarzschild geometry ). It is claimed
that the present calculated value will be more accurate than all other values
calculated in past, using material medium concept.

2 The effective refractive index and the tra-

jectory of light ray

As discussed earlier, the gravitational field influences the propagation of elec-
tromagnetic radiation by imparting to the space an effective index of refrac-
tion n(r)[4].

For a static and spherically symmetric gravitational field, the solution of
Einstein’s Field Equation was given by K. Schwarzschild in 1961, which is as
follows[4]:

ds2 = (1− rg
r
)c2dt2 − r2(sin2θdφ2 + dθ2)− dr2

(1− rg
r
)

(1)

where rg =
2km
c2

called Schwarzschild Radius, which completely defines the
gravitational field in vacuum produced by any centrally-symmetric distribu-
tion of masses. The above equation can be expressed in an isotropic form by
introducing a new radius co-ordinate ( ρ ) with the following transformation
equation [4]

ρ =
1

2
[(r − rg

2
) + r1/2(r − rg)

1/2] (2)

OR

r = ρ(1 +
rg
4ρ

)2 (3)

The resulting isotropic form of Schwarzschild equation will be now:

ds2 = (
1− rg/(4ρ)

1 + rg/(4ρ)
)2c2dt2 − (1 +

rg
4ρ

)4(dρ2 + ρ2(sin2θdφ2 + dθ2)) (4)
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Now in spherical co-ordinate system the quantity (dρ2 + ρ2(sin2θdφ2 +
dθ2)) has the dimension of square of infinitesimal length vector d−→ρ .

By setting ds = 0, the velocity of light can be identified from the ex-

pression of the form ds2 = f(ρ)dt2 − d−→ρ 2, as v(ρ) =
√

f(ρ). Therefore the

velocity of light in the present case ( characterized by Schwarzschild radius
rg ) can be expressed as :

v(ρ) =
(1− rg

4ρ
)c

(1 + rg
4ρ
)3

(5)

But this above expression of velocity of light is in the unit of length ρ per
unit time. We therefore write

v(r) = v(ρ)
dr

dρ

= v(ρ)[(1 +
rg
4ρ

)2 − rg
2ρ

(1 +
rg
4ρ

)]

= (
rg − 4ρ

rg + 4ρ
)2c (6)

Substituting the value of ρ from Eqn (2) in Eqn.(6), we get:

v(r) = (
rg/2− 2ρ

rg/2 + 2ρ
)2c

= (
rg/2− ((r − rg

2
) + r1/2(r − rg)

1/2)

rg/2 + ((r − rg
2
) + r1/2(r − rg)1/2)

)2c

= (
rg − r − r1/2(r − rg)

1/2

r + r1/2(r − rg)1/2
)2c

=
c(r − rg)

r
(7)

Therefore the refractive index n(r) at a point with spherical polar co-
ordinate (r), can be expressed by the relation:

n(r) =
c

v(r)
=

r

r − rg
(8)
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At this stage the entire problem, can become a problem of geometrical
optics, where we have to find the trajectory of a light ray travelling in a
medium, whose refractive index has spherical symmetry. The trajectory of
the light ray and the center of mass ( source of gravitational potential) will
together define a plane. The equation of such a ray in plane polar co-ordinate
system (r, θ) can be written as [17]:

θ = A.
∫

∞

r⊙

dr

r
√
n2r2 − A2

(9)

The trajectory is such that n(r).d always remains a constant, where d is
the perpendicular distance between the trajectory of the light ray from the
origin and the constant is taken here as A [17]. In our present problem the
light is coming from infinity ( r = −∞) and it is approaching the gravitational
mass, which is placed at the origin and characterized by Schwarzschild radius
rg. The closest distance of approach, for the approaching ray is b and the
ray goes to r = ∞, after undergoing certain amount of deflection (△φ).

Here, the parameter b can be replaced by solar radius r⊙. When the

light ray passes through the closest distance of approach (ie r = b or r⊙),

the tangent to the trajectory becomes perpendicular to the vector −→r ( which
is −→r ⊙). Therefore, we can write A = n(r⊙)r⊙. The trajectory of the light

ray had been already constructed before like this, by Ye and Lin [13] and the
value of deflection (△φ), can be written as :

△φ = 2
∫

∞

r⊙

dr

r
√

( n(r).r
n(r⊙).r⊙

)2 − 1
− π (10)

However, Ye and Lin [13], had in our opinion used a value of refractive
index n(r) which was approximated and somewhat ad hoc. Fischbach and
Freeman [11] also in their attempt to calculate a more accurate value of
deflection, considered terms only up to second order in the expression for
refractive index. However, in our attempt to do so we shall avoid making
any such approximation in the following. We denote the above integral in
Eqn. (10) by I and write
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I =
∫

∞

r⊙

dr

r
√

( n(r).r
n(r⊙).r⊙

)2 − 1

= n(r⊙)r⊙
∫

∞

r⊙

dr

r
√

(n(r).r)2 − (n(r⊙).r⊙)2

= n(r⊙)r⊙
∫

∞

r⊙

dr

r

√

√

√

√ r4

(r−rg)2
−

r4⊙

(r⊙−rg)2

= n(r⊙)r⊙
∫

∞

r⊙

dr

r2

√

√

√

√

1
(1−

rg

r
)2
−

r2⊙r−2

(1−
rg

r
⊙

)2

(11)

Now we change the variable to x = rg
r
and introduce a quantity a = rg

r⊙
.

We also denote n(r⊙) by n⊙. Accordingly we write:

I = n⊙r⊙
∫ 0

a

−x−2rgdx

r2
√

1
(1−x)2

− x2

(a(1−a))2

= n⊙r⊙
∫ 0

a

−x−2rgdx

xr2
√

1
(x(1−x))2

− 1
(a(1−a))2

=
n⊙r⊙

rg

∫ a

0

dx

x
√

1
(x(1−x))2

− 1
(a(1−a))2

=
n⊙r⊙

rg

∫ a

0

(1− x)dx
√

1− (x(1−x))2

(a(1−a))2

(12)

For our convenience we can denote the quantity 1/(a(1− a)) by D. This
also implies

D =
r2⊙

rg(r⊙ − rg)
(13)
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However, the Integral I can not be solved as a standard integral at this
stage. We split the above Integral, as a sum of two Integrals and proceed as
follows:

I = (
n⊙r⊙

rg
)[
∫ a

0

(1− 2x)dx
√

1−D2x2(1− x)2
+

∫ a

0

xdx
√

1−D2x2(1− x)2
]

= (
n⊙r⊙

rg
)
∫ a

0

(1− 2x)dx
√

1−D2x2(1− x)2
+ (

n⊙r⊙

rg
)
∫ a

0

xdx
√

1−D2x2(1− x)2

= (
n⊙r⊙

rg
)I1 + (

n⊙r⊙

rg
)I2 (14)

where I1 and I2 are used to denote the above two integrals. Now we can
identify

n⊙r⊙

rg
=

1

1− a
.
1

a
=

1

a(1− a)
= D

Changing the variable from x to y = Dx(1−x), we can write D(1−2x)dx =
dy. Accordingly the upper and lower limits x = 0 and x = a change to y = 0
and y = Da(1 − rg

r⊙
) = 1

a(1−a)
a(1 − a) = 1. Therefore for the first part in

Eqn (14) we can write :

(
n⊙r⊙

rg
)I1 =

∫ a

0

D(1− 2x)dx
√

1−D2x2(1− x)2

=
∫ 1

0

dy√
1− y2

= [sin−1y]10
= π/2 (15)

Therefore, from Eqn (10), one may write the amount of deflection as:

△φ = 2
∫

∞

r⊙

dr

r
√

( n(r).r
n(r⊙).r⊙

)2 − 1
− π

7



= 2(
n⊙r⊙

rg
)I1 + 2(

n⊙r⊙

rg
)I2 − π

= π + 2(
n⊙r⊙

rg
)I2 − π

= (
2n⊙r⊙

rg
)
∫ a

0

xdx
√

1−D2x2(1− x)2
(16)

Thus the gravitational bending for a ray of light grazing the static grav-
itational mass ( with Schwarzschild radius rg ) with the closest distance of
approach r⊙ can be expressed as:

△φ = 2D
∫ a

0

xdx
√

1−D2x2(1− x)2
(17)

The above expression for gravitational deflection has been obtained from
the Schwarzschild Equation ( Eqn(1)), with out applying any approximation
at any stage. Owing to this, it is claimed that this expression of bending
is more exact as compared to all other expressions derived till today, using
equivalent material medium concept. However, the integration of the quantity
in Eqn (17)), involves some complicated algebraic expressions containing
Elliptical functions. Using Mathematica, we obtain the following expression
after integration :

∫ xdx
√

1−D2x2(1− x)2
= 2

(
√
D +

√
D − 4)E − (2

√
D − 4)F

D(
√
D + 4−

√
D − 4)

(18)

where E ≡ E(p, q2) is the Elliptic Integral of first kind and F ≡ F (−q, p, q2)
is Incomplete Elliptic Integral of Third kind. The arguments p,q2,-q,p,q2 are
expressed by the following mathematical relations:

p = arcsin

√

√

√

√

(
√
D − 4−

√
D + 4)(

√
D − 4 + (2x− 1)

√
D)

(
√
D − 4 +

√
D + 4)(

√
D − 4− (2x− 1)

√
D)

(19)
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q =
(
√
D − 4 +

√
D + 4)

(
√
D − 4−

√
D + 4)

(20)

Finally we can write the expression for gravitational deflection (△φ) of
the light ray, due to a static mass (rg) with the closest distance of approach
r⊙ as :

△φ = 4

{

(
√
D +

√
D − 4)E − (2

√
D − 4)F

(
√
D + 4−

√
D − 4)

}x=a

x=0

(21)

where the value of D is given by Eqn.(13) as D =
r2⊙

rg(r⊙−rg)
and a =

rg/r⊙. Eqn. (21) is a general expression for bending of light, where r⊙

can be replaced by the closest distance of approach of the light ray. This
mathematical expression for deflection, derived here is claimed to be more
accurate than all other expressions derived so far using material medium

approach and it is equally valid for strong field. For a Sun grazing ray,
we can take the closest distance of approach as equal to solar radius which
is r⊙ = 695, 500 km and Schwarzschild radius corresponding to the mass

of Sun as rg = 3 km. We, therefore, get a = (rg/r⊙) = 1/231, 833 and

D = 231, 834. Finally, we get a value of △φ = 8.62690E10−6 radians or
1.77943 arc sec. This value of gravitational deflection suffered by a Sun
grazing ray, is claimed to be more accurate than all other values obtained in
past.
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