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testing. These performance measures are also appropriate for classification,
and in this work we develop generalization error analyses for FDR and
FNDR when learning a classifier from labeled training data. Unlike more
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FNDR are not binomial random variables but rather a ratio of binomials,
which introduces challenges not addressed in conventional analyses. We de-
velop distribution-free uniform deviation bounds and apply these to obtain
finite sample bounds and strong universal consistency.
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1. Introduction

When learning a classifier from labeled training data, minimizing the probability
of misclassification is often unsatisfactory. In a variety of applications, such as
screening medical images for cancerous lesions or detecting landmines, false
positives and negatives have different impacts. False detections of targets are
problematic because of the time, money, and other resources which are invariably
wasted as a result. Missed detections, on the other hand, may result in loss of
life or destruction. For this reason, a number of methods for cost-sensitive [3,12]
and Neyman-Pearson [6,17,18] classification have been developed that allow the
user to effect a tradeoff between false positive and negative rates.

The probability of error, false positive rate, and false negative rate are all
performance measures that reflect the performance of a classifier on a single
future test point. However, it is often the case that we desire to classify multiple
future test points. In this situation, the false positive and negative rates may
not be the most appropriate measures of performance. If a classifier has a false
positive rate of say 5%, and 1000 negative test points (e.g., no target present)
are observed, we expect 50 of them to be declared positive. This may be unac-
ceptable, especially in situations where large costs are involved in investigating
false positives.

This situation is similar to the multiple testing problem in hypothesis testing.
Consequently, many of the ideas from multiple testing are applicable in the
classification setting. The basic approach is to consider alternative measures of
size and power that are better suited to simultaneous inference, and to design
decision rules based on these new performance measures.

In this paper, we consider the false discovery rate (FDR) [20], which has
emerged as the method of choice for quantifying error rates meaningfully in
many multiple testing situations, with applications ranging from wavelet de-
noising [8] to neuroimaging [13] to the analysis of DNA microarrays [10]. Con-
trol of the FDR, i.e., the fraction of declared positives (discoveries) that are in
fact negative, ensures that follow-up investigations into declared positives must
return a certain yield of actual positives. Such control is vital in applications
where follow-up studies are time or resource consuming.

Several researchers, spurred by the seminal work of [4], have studied FDR
control in the context of multiple hypothesis testing by assuming known dis-
tributions of observed statistics under the null hypothesis. FDR control is then
achieved, typically, by adjusting p-values through single step, step-up or step-
down procedures. It is important to note that such procedures are not applicable
in the statistical learning context because we do not assume knowledge of the
null distribution and must instead rely upon training data.

We develop basic results on the analysis of generalization error in FDR con-
trolled classification, including uniform deviation bounds, finite sample perfor-
mance guarantees, and strong universal consistency. Unlike traditional perfor-
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mance probabilities, whose empirical versions are related to binomial random
variables, empirical versions of FDR and FNDR are related to ratios of binomial
variables. This necessitates the development of novel concentration inequalities
and methods of analysis.

1.1. Notation

More formally, in this paper we consider the following scenario: Let X be a
set and Z = (X, Y ) be a random variable taking values in Z = X × {0, 1}.
The variable X corresponds to a pattern or feature vector and Y to a class
label associated with X ; Y = 0 corresponds to the null hypothesis (e.g., that
no target is present) and Y = 1 corresponds to the alternative hypothesis (e.g.,
that a target is present). The distribution on Z is unknown and is denoted by P.
Assume we make n independent and identically distributed training observations
of Z, denoted Zn = (Xi, Yi)

n
i=1.

A classifier is a function h : X −→ {0, 1} mapping feature vectors to class
labels. Let H denote a collection of different classifiers. A false discovery occurs
when h(X) = 1 but the true label is Y = 0. Similarly, a false nondiscovery
occurs when h(X) = 0 but Y = 1. We define the false discovery rate (FDR)

RD(h) :=

{
P(Y = 0 |h(X) = 1), if P(h(X) = 1) > 0,
∞, else,

and the false nondiscovery rate (FNDR)

RND (h) :=

{
P(Y = 1 |h(X) = 0), if P(h(X) = 0) > 0,
∞, else.

1.2. Related Concepts

These definitions, which are natural in the classification setting, coincide with
the so-called positive FDR/FNDR of Storey [21, 22], so named because it can
be seen to equal the expected fraction of false discoveries/nondiscoveries, con-
ditioned on a positive number of discoveries/nondiscoveries having been made.
Storey makes some decision-theoretic connections to classification [22], but does
not consider learning from data.

Storey’s definition does not cover the case where the conditioning event has
probability zero. We define FDR and FNDR in these cases to be infinity. Our
convention has the effect of assigning high costs to classifiers that fail to make at
least some discoveries (and nondiscoveries). This is consistent with the multiple
testing perspective, where the goal is to generate interesting hypotheses for
further examination. A classifier that makes no discoveries is of no use for such
purposes. Further comments on the definition of FDR and FNDR are given after
the proof of Theorem 2.

In certain communities, different terms embody the idea behind FDR. In the
medical diagnostic testing literature, the positive predictive value (PPV) is de-
fined as the “proportion of patients with positive test results who are correctly
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diagnosed” [1]. In database information retrieval problems, the precision is de-
fined as the ratio of the number of relevant documents retrieved by a search
to the total number of documents retrieved by a search [23]. Both PPV and
precision are equal to 1 - FDR. Precision is discussed further is Section 5.2.

Finally, several researchers have recently investigated connections between
multiple testing and statistical learning theory. McAllester’s PAC-Bayesian learn-
ing theory may be viewed as an extension of multiple testing procedures to (pos-
sibly uncountably) infinite collections of hypotheses [16]. Blanchard and Fleuret
present an extension of the Occam’s razor principle for generalization error anal-
ysis in classification, and apply it to derive p-value adjustment procedures for
controlling FDR [5]. Arlot et al. develop concentration inequalities that apply to
multiple testing with correlated observations [2]. None of these works consider
FDR/FNDR as performance criteria for classification.

1.3. Connections to Cost-Sensitive Learning

In Sections 3 and Section 4 we consider the performance measure Eλ(h) :=
RND (h) + λRD (h). It can be shown that the global minimizers of this criterion
have the form

h(x) = 1{η(x)≥c} (1)

for some c, where η(x) := P (Y = 1|X = x) and, if necessary, this family
of classifiers is extended by a standard randomization argument if its receiver
operating characteristic (ROC) is not concave. Storey [22] gives a proof for the
case where the two class-conditional distributions are continuous. The classifiers
in (1) are also the optimal classifiers for Bayes cost-sensitive learning. That is,
they are also the minimizers of weighted Bayes costs of the form

P(h(X) = 0, Y = 1) + γP(h(X) = 1, Y = 0),

γ > 0, where c = 1/(1 + γ). Proof of this fact is a direct generalization of the
case of the probability of error, when γ = 1 [7].

Unfortunately, existing analyses for cost-sensitive classification cannot be
readily applied to our problem. Given λ, it is true that our criterion Eλ(h)
can be minimized by performing cost-sensitive classification with a certain cost
parameter γ. The critical issue is that γ is an implicit function of λ, and can-
not be determined a priori without knowledge of the underlying distribution.
Therefore, when only data are given, applying existing cost-sensitive classifica-
tion methods to our problem would require estimating γ. In practice, this would
most likely entail learning cost-sensitive classifiers ĥγi

for some grid of values
{γi} that grows increasingly dense as n → ∞. Then, the best of these candidates
would be selected by minimizing an estimate of Eλ(h). Such a procedure would
likely be expensive computationally. From an analytical standpoint, it seems
plausible that generalization error analyses for cost-sensitive classification could
be useful; however, the need to search for a γ that approximately minimizes our
criterion would significantly complicate the analysis. The objective of our work
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is to develop a much more direct approach, which does not require repeated
cost-sensitive classification.

Therefore, the distinction between our problem and cost-sensitive classifica-
tion is in some ways analogous to the difference between the Neyman-Pearson
and Bayesian theories of hypothesis testing. Even though these two problems
have a likelihood ratio as their optimal solution, the specific thresholds for the
likelihood ratios are determined in very different ways depending on which cri-
terion is employed. In our setting, the differences are further compounded by
the fact that we are learning from data.

1.4. Overview

In the next section we present and prove uniform deviation bounds for FDR
and FNDR. In Section 3, we discuss performance measures based on FDR and
FNDR, and in Section 4 we establish the strong universal consistency of a learn-
ing rule with respect to the measure Eλ. Section 5 treats performance measures
which constrain FDR, and the final section offers a concluding discussion. Sev-
eral aspects of our analysis deviate from standard techniques, a consequence of
certain unique features of FDR and FNDR, and we highlight these throughout
the paper.

2. Uniform Deviation Bounds

Define empirical analogues to the FDR and FNDR according to

R̂D(h) :=

{ 1
nD (h,Zn)

∑n
i=1 1{Yi=0,h(Xi)=1}, nD(h, Zn) > 0,

∞, nD(h, Zn) = 0,

R̂ND (h) :=

{ 1
nND (h,Zn)

∑n
i=1 1{Yi=1,h(Xi)=0}, nND (h, Zn) > 0,

∞, nND (h, Zn) = 0,

where nD (h, Zn) =
∑n

i=1 1{h(Xi)=1} and nND(h, Zn) =
∑n

i=1 1{h(Xi)=0} are bi-
nomial random variables. This section describes a uniform bound on the amount
by which the empirical estimate of FDR/FNDR can deviate from the true value.
Note that unlike the usual empirical estimates for the probability of error/false
positive rate/false negative rate, here both numerator and denominator are ran-
dom, and both depend on h.

Assume H is countable, and let JhK be a real valued functional on H such
that

∑
h∈H

2−JhK ≤ 1. Such a functional can be identified with a prefix code for

H, in which case JhK is the codelength associated to h. If
∑

h∈H
2−JhK = 1, then

2−JhK may be viewed as a prior distribution on H.
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For δ > 0, we introduce the penalty terms

φD (h, δ) :=

{ √
JhK log 2+log(2/δ)

2nD (h,Zn) , nD (h, Zn) > 0,

∞, nD (h, Zn) = 0,

φND (h, δ) :=

{ √
JhK log 2+log(2/δ)

2nND (h,Zn) , nND (h, Zn) > 0,

∞, nND (h, Zn) = 0.

The interpretation of these expressions as penalties comes from the learning
algorithms studied below, where we minimize the empirical error plus a penalty
to avoid overfitting. Note that the penalties are data dependent.

Theorem 1. With probability at least 1 − δ with respect to the draw of the
training data,

|RD (h) − R̂D(h)| ≤ φD (h, δ) (2)

for all h ∈ H. Similarly, with probability at least 1 − δ with respect to the draw
of the training data,

|RND (h) − R̂ND (h)| ≤ φND (h, δ) (3)

for all h ∈ H. The results are independent of the underlying probability distri-
bution.

Because of the form of the penalty terms, the bound is larger for classifiers h
that are more complex, as represented through the codelength JhK, and smaller
when more discoveries/nondiscoveries are made. This result leads to finite sam-
ple bounds and strong universal consistency for certain learning rules based on
minimization of the penalized empirical error, as developed in the sequel.

Proof. We prove the first statement, the second being similar. For added clarity,
write the penalty as φD (h, δ, nD(h, Zn)), where

φD (h, δ, k) :=

{ √
JhK log 2+log(2/δ)

2k , k > 0,

∞, k = 0.

Consider a fixed h ∈ H. The fundamental concentration inequality underlying
our bounds is Hoeffding’s [14], which, in one form, states that if Sk is the sum
of k > 0 independent random variables bounded between zero and one, and
µ = E[Sk], then

P(|µ − Sk| > kǫ) ≤ 2e−2kǫ2 .

To apply Hoeffding’s inequality, we need the following conditioning argu-
ment. Let V = (V1, . . . , Vn) ∈ {0, 1}n be a binary indicator vector, with
Vi = 1{h(Xi)=1}. Let Vk denote the set of all v = (v1, . . . , vn) ∈ {0, 1}n such
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that
∑n

i=1 vi = k. We may then write

P(|RD (h) − R̂D (h)| > φD (h, δ, nD(h, Zn)))

=

n∑

k=0

∑

v∈Vk

P(|RD (h) − R̂D(h)| > φD (h, δ, k)|V = v)P(V = v)

=
n∑

k=0

∑

v∈Vk

P(|kRD (h) − kR̂D(h)| > kφD (h, δ, k)|V = v)P(V = v),

First note that |RD (h) − R̂D (h)| ≤ φD (h, δ) with probability one when
nD(h, Zn) = 0. We now apply Hoeffding’s inequality for each k ≥ 1 and v ∈ Vk,

conditioning on V = v. Setting Sk = kR̂D (h), we have

µ = E[Sk|V = v]

= kE[R̂D(h)|V = v]

= E[

n∑

i=1

1{Yi=0,h(Xi)=1}|V = v]

= E[
∑

i:vi=1

1{Yi=0}|V = v]

= kP(Y = 0|h(X) = 1)

= kRD(h),

where in the next to last step we use independence of the realizations. Therefore,
applying Hoeffding’s inequality conditioned on V = v ∈ Vk yields

P(|RD (h) − R̂D (h)| > φD (h, δ, nD(h, Zn)))

≤
n∑

k=1

∑

v∈Vk

2e−2kφ2

D
(h,δ,k)P(V = v)

≤
n∑

k=1

∑

v∈Vk

δ2−JhKP(V = v)

= δ2−JhK(1 − P(
∑

Vi = 0)) ≤ δ2−JhK.

The result now follows by applying the union bound over all h ∈ H.

The technique of conditioning on the random denominator of a ratio of bino-
mials has also been applied in others settings [15,18]. Unlike those works, how-
ever, here the binomial denominator depends on the classifier h. This presents
difficulties for extending the above techniques to uncountable classes H. See the
final section for further discussion of this issue.

3. Measuring Performance

We would like to be able to make FDR/FNDR related guarantees about how

a data-based classifier ĥ performs. For this, we need to specify a performance
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measure or optimality criterion that incorporates both FDR and FNDR quan-
tities simultaneously. One possibility is to specify a number 0 < α < 1 and seek
the classifier such that RND (h) is minimal while RD(h) ≤ α. We consider this
setting in Section 5. Another is to specify a constant λ > 0 reflecting the relative
cost of FDR to FNDR, and minimize

Eλ(h) := RND (h) + λRD (h).

This measure was introduce by Storey [22], but was not studied in a learning
context. The uniform deviation bounds of the previous section immediately
imply the following computable bound on a classifier’s performance with respect
to this measure.

Corollary 1. For any δ > 0 and n ≥ 1, with probability at least 1 − 2δ with
respect to the draw of the training data,

Eλ(h) ≤ R̂ND (h) + φND (h, δ) + λ[R̂D (h) + φD (h, δ)]

for all h ∈ H.

In the next section, we analyze a learning rule based on minimizing the bound
of Corollary 1, and establish its strong universal consistency.

4. Strong Universal Consistency

Denote the globally optimal value of the performance measure by

E
∗
λ := inf

h
Eλ(h),

where the inf is over all measurable h : X → {0, 1}. We seek a learning rule ĥλ,n

such that Eλ(ĥλ,n) → E∗
λ almost surely, regardless of the underlying probability

distribution. Thus let {Hk}k≥1 be a family of finite sets of classifiers with univer-
sal approximation capability. That is, assume that limk→∞ infh∈Hk

Eλ(h) = E∗
λ

for all distributions on (X, Y ). Furthermore, assume this family to be nested,
meaning H1 ⊆ H2 ⊆ H3 · · · . For example, if X = [0, 1]d, we may take Hk to be
the collection of histogram classifiers based on a binwidth of 2−k. Recall that
we can set JhK = log2 |Hk| for h ∈ Hk, where |Hk| is the cardinality of Hk. For

histograms, we have |Hk| = 22kd

and hence JhK = 2kd log 2.
The bound of Corollary 1 suggests bound minimization as a strategy for se-

lecting a classifier empirically. However, rather than minimizing over all possible
classifiers in some Hk, we first discard those classifiers whose empirical num-
bers of discoveries or nondiscoveries are too small. In these cases, the penalties
are possibly quite large, and we are unable to obtain tight concentrations of
empirical FDR/FNDR measures around their true values. However, as n in-
creases, we are able to admit classifiers with increasingly small proportions of
(non)discoveries, so that in the limit, we can still approximate arbitrary dis-
tributions. This aspect is another unique feature of FDR/FNDR compared to
traditional performance measures.
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Formally, set δn = 1/n2 and define

Ĥn := {h ∈ Hkn
:

nND (h, Zn)

n
≥ pn,

nD (h, Zn)

n
≥ pn},

where pn := (log n)−1. Here kn is such that kn → ∞ as n → ∞ and log |Hkn
| =

o(n/ log n). For the histogram example, log |Hkn
| = 2knd log 2, and thus the

assumed conditions on the growth of kn are essentially the same (up to a loga-
rithmic factor) as for consistency of histograms in other problems. For example,
in standard classification, 2knd = o(n) is required [7].

Denote the bound of Corollary 1 by

Êλ(h) := R̂ND (h) + φND (h, δn) + λ[R̂D (h) + φD (h, δn)],

and define the classification rule

ĥλ,n := argmin
h∈Ĥn

Êλ(h).

If Ĥn = ∅, then ĥλ,n may be defined arbitrarily.

Theorem 2. For any distribution on (X, Y ), and any λ > 0,

Eλ(ĥλ,n) → E
∗
λ

almost surely. That is, ĥλ,n is strongly universally consistent.

Proof. First consider the case where there is no measurable h : X → {0, 1} such
that both P(h(X) = 0) > 0 and P(h(X) = 1) > 0. This occurs when X is

deterministic. Then E∗
λ = ∞, and trivially ĥλ,n achieves optimal performance.

So assume this is not the case.
By the Borel-Cantelli lemma [7, 9], it suffices to show that for each ǫ > 0

∞∑

n=1

P(Ωn) < ∞,

where
Ωn := {Zn : Eλ(ĥλ,n) − E

∗
λ ≥ ǫ}.

Introduce the event
Θn = {Zn : Ĥn 6= ∅}.

Then

P(Ωn) = P(Ωn|Θn)P(Θn) + P(Ωn|Θn)P(Θn) ≤ P(Ωn|Θn) + P(Θn),

and therefore
∞∑

n=1

P(Ωn) ≤
∞∑

n=1

P(Ωn|Θn) +

∞∑

n=1

P(Θn). (4)

We will bound these two terms separately.
Consider the second term.
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Lemma 1. Let ν > 0 and assume E∗
λ < ∞. There exist h′ and N1 such that

Eλ(h′) ≤ E∗
λ + ν and, for all n > N1, P(h′ ∈ Ĥn) ≥ 1 − 1/n2.

Proof. By the universal approximation assumption, there exists m and h′ ∈
Hkm

such that Eλ(h′) ≤ E∗
λ + ν. Since E∗

λ < ∞, this h′ necessarily has both
P(h′(X) = 0) > 0 and P(h′(X) = 1) > 0. Denote q := min{P(h′(X) =
1),P(h′(X) = 0)} > 0. Introduce

τn :=

√
log(2/δn)

2n
.

By Hoeffding’s inequality, with probability at least 1 − δn, |P(h′(X) = 1) −
nD(h′, Zn)/n| = |P(h′(X) = 0) − nND (h′, Zn)/n| ≤ τn. Since δn = 1/n2, we
have that τn = o(pn). Now choose N1 such that τN1

≤ pN1
and 2pN1

≤ q. Then,
for a sample of size n = N1, min{nD(h′, Zn)/N1, nND (h′, Zn)/N1} ≥ q − ǫN1

≥
2pN1

− τN1
≥ pN1

with probability at least 1 − δN1
= 1 − 1/N1

2. Since pn is
decreasing and {Hk} is nested, the same is true for all n > N1.

By this lemma we have P(Θn) ≤ δn = 1/n2 for all n > N1 (Here we only the
need the second part of the conclusion of the lemma; later we use the lemma in
its full generality). Thus

∞∑

n=1

P(Θn) ≤ N1 +
∑

n>N1

1

n2
< ∞.

Now consider the first term on the right-hand side of (4). Define the events

Ωn
1 := {Zn : Eλ(ĥλ,n) − inf

h∈Ĥn

Eλ(h) ≥
ǫ

2
}

Ωn
2 := {Zn : inf

h∈Ĥn

Eλ(h) − E
∗
λ ≥

ǫ

2
}

Since Ωn ⊂ Ωn
1

⋃
Ωn

2 , we have

∞∑

n=1

P(Ωn|Θn) ≤
∞∑

n=1

P(Ωn
1 |Θ

n) +

∞∑

n=1

P(Ωn
2 |Θ

n). (5)

We consider the two terms individually and show that each of them is finite.
To bound the first term on the right-hand side of (5) we use the following

lemma.

Lemma 2. If Ĥn 6= ∅, then

Eλ(ĥλ,n) − inf
h∈Ĥn

Eλ(h) ≤ 2 sup
h∈Ĥn

|Eλ(h) − Êλ(h)|.
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Proof. Let h′ ∈ Ĥn be arbitrary. By the definition of ĥλ,n, Êλ(ĥλ,n) ≤ Êλ(h′).
Hence

Eλ(ĥλ,n) = Eλ(ĥλ,n) − Êλ(ĥλ,n) + Êλ(ĥλ,n) − Eλ(h′) + Eλ(h′)

≤ Eλ(ĥλ,n) − Êλ(ĥλ,n) + Êλ(h′) − Eλ(h′) + Eλ(h′)

≤ 2 sup
h∈Ĥn

|Eλ(h) − Êλ(h)| + Eλ(h′).

Since h′ was arbitrary, the result now follows.

Define the events

Ωn
11 := {Zn : sup

h∈Ĥn

|RND (h) − R̂ND (h)| ≥
ǫ

16
}

Ωn
12 := {Zn : sup

h∈Ĥn

|RD (h) − R̂D(h)| ≥
ǫ

16λ
}

Ωn
13 := {Zn : sup

h∈Ĥn

|φND (h, δn)| ≥
ǫ

16
}

Ωn
14 := {Zn : sup

h∈Ĥn

|φD (h, δn)| ≥
ǫ

16λ
}

From Lemma 2 it follows that

Ωn
1 ⊂

4⋃

i=1

Ωn
1i

and hence it suffices to show

∞∑

n=1

P(Ωn
1i|Θ

n)

is finite for each i = 1, 2, 3, 4. We shall consider Ω11 and Ω13, the other two cases
following similarly.

For h ∈ Ĥn we have nND(h, Zn)/n ≥ pn and therefore

φND (h, δn) =

√
log |Hkn

| + log(2n2)

2nND (h, Zn)

≤

√
(log |Hkn

| + log(2n2))
log n

2n
<

ǫ

16

for n ≥ N2, for some N2 sufficiently large. Here we use δn = 1/n2 and log |Hkn
| =

o(n/ log n). Then
∞∑

n=1

P(Ωn
13|Θ

n) ≤ N2.

imsart-ejs ver. 2008/08/29 file: ejs_2009_363.tex date: January 27, 2009



Scott et al./FDR in Statistical Pattern Classification 12

Furthermore, by the uniform deviation bound,

∞∑

n=1

P(Ωn
11|Θ

n) ≤ N2 +
∑

n>N2

1

n2
< ∞.

Now consider the event Ωn
2 . Applying Lemma 1 with ν = ǫ/2, we have that

∞∑

n=1

P(Ωn
2 |Θn) ≤ N1 +

∑

n>N1

1

n2
< ∞.

In the definitions of RD(h) and RND (h), we define these quantities to be
infinity when the conditioning event has probability zero (see Introduction).
This forces the globally optimal classifier to have both P(h(X) = 1) > 0 and
P(h(X) = 0) > 0) whenever possible. The same property would hold provided
RD(h) > (1 + λ)/λ when P(h(X) = 1) = 0 and RND (h) > (1 + λ) when
P(h(X) = 0) = 0. Were we to define FDR or FNDR to be smaller, our con-
sistency argument would not apply universally. In particular, it might fail for
distributions where the global minimizer of Eλ has either P(h(X) = 0) = 0 or
P(h(X) = 0) = 1, such as when X is deterministic. In a preliminary version of
this work, we defined RD (h) and RND (h) to be zero when the conditioning event
is a null event, and were able to prove consistency under a very mild condition
on the underlying distribution [19].

5. Constraining FDR

In this section we apply Theorem 1 to analyze a rule that seeks to minimize
the FNDR subject to the constraint that FDR ≤ α, where α is a user-defined
significance level. In fact, we first present a more general result, and then deduce
results for this and other constrained learning problems as corollaries.

Thus, let H be a collection of classifiers as before, but not necessarily finite.
Let R0 and R1 be measures of Type I and Type II error. For example, these
may be FDR and FNDR, false positive rate and false negative rate, or some
combination thereof. Assume that for i = 0, 1, there exists a data-based estimate
R̂i of Ri, and a penalty φi(h, δ), which define a symmetric confidence interval
for Ri. That is, suppose that for any 0 < δ < 1,

PZn( sup
h∈H

[|Ri(h) − R̂i(h)| − φi(h, δ)] > 0) ≤ δ.

For 0 < α < 1 define

h∗
H,α = arg min

h∈H

R1(h)

s. t. R0(h) ≤ α.
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Consider the learning rule

ĥH,α = arg min
h∈H

R̂1(h) + φ1(h, δ) (6)

s. t. R̂0(h) ≤ α + φ0(h, δ).

Theorem 3. The learning rule defined in Eqn. (6) is such that, for any δ > 0
and any n ≥ 1, with probability at least 1 − 2δ with respect to the draw of the
training data,

R1(ĥH,α) ≤ R1(h
∗
H,α) + 2φ1(h

∗
H,α, δ)

and
R0(ĥH,α) ≤ α + 2φ0(ĥH,α, δ).

The result holds regardless of the data-generating distribution.

Proof. Assume that both

|R0(h) − R̂0(h)| ≤ φ0(h, δ) for all h ∈ H (7)

and
|R1(h) − R̂1(h)| ≤ φ1(h, δ) for all h ∈ H, (8)

which, by assumption, occurs with probability at least 1−2δ. By (7), we deduce
the second half of the theorem from

R0(ĥH,α) ≤ R̂0(ĥH,α) + φ0(ĥH,α, δ) ≤ α + 2φ0(ĥH,α, δ),

where the second inequality follows from R̂0(ĥH,α) ≤ α + φ0(ĥH,α, δ), which

follows from the definition of ĥH,α. To get the first half of the theorem, observe

that R̂0(h
∗
H,α) ≤ R0(h

∗
H,α) + φ0(h

∗
H,α, δ) ≤ α + φ0(h

∗
H,α, δ). Therefore, h∗

H,α is

among the candidates in the minimization defining ĥH,α. Then

R1(ĥH,α) ≤ R̂1(ĥH,α) + φ1(ĥH,α, δ)

≤ R̂1(h
∗
H,α) + φ1(h

∗
H,α, δ)

≤ R1(h
∗
H,α) + 2φ1(h

∗
H,α, δ).

This theorem can immediately be combined with Theorem 1 to give per-
formance guarantees for the case R0(h) = RD(h) and R1(h) = RND (h), for a
countable class H. In particular, define the rule

ĥH,α = arg min
h∈H

R̂ND (h) + φND (h, δ) (9)

s. t. R̂D (h) ≤ α + φD (h, δ).

We have the following.
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Corollary 2. Assume H is countable. For any δ > 0 and any n ≥ 1, with
probability at least 1 − 2δ with respect to the draw of the training data, the
learning rule in (9) satisfies

RND (ĥH,α) ≤ RND (h∗
H,α) + 2φND (h∗

H,α, δ)

and
RD (ĥH,α) ≤ α + 2φD (ĥH,α, δ).

To extend such a result to a universally consistent estimator, based on the
discussion of Theorem 2, it would be necessary to take H growing with the
sample size n, and to exclude classifiers making too few discoveries or nondis-
coveries. The details are similar to those of Section 4, and a formal development
is omitted.

5.1. Neyman-Pearson Classification

If we take R0 and R1 to be the false positive rate and false negative rate,
respectively, we may apply Theorem 3 to recover and generalize known results
for Neyman-Pearson classification [6, 18]. Specifically, set

RFP (h) := P(h(X) = 1 |Y = 0)

RFN (h) := P(h(X) = 0 |Y = 1).

There are several possible penalties that provide uniform bounds on the devia-
tion between these quantities and their natural empirical estimates,

R̂FP (h) :=

{
1

n0

∑n
i=1 1{Yi=0,h(Xi)=1}, n0 > 0,

0, n0 = 0,

R̂FN (h) :=

{
1

n1

∑n
i=1 1{Yi=1,h(Xi)=0}, n1 > 0,

0, n1 = 0,

where nj :=
∑n

i=1 1{Yi=j}. Examples of such penalties (e.g., VC and Rademacher
penalties) are given in [17]. As a concrete example, we state a result here for
the case of countable H. Thus define the penalties

φFP (h, δ) =

{ √
JhK log 2+log(2/δ)

2n0

, n0 > 0,

1, n0 = 0,

φFN (h, δ) =

{ √
JhK log 2+log(2/δ)

2n1

, n1 > 0,

1, n1 = 0.

Define the rule

ĥH,α = arg min
h∈H

R̂FN (h) + φFN (h, δ) (10)

s. t. R̂FP (h) ≤ α + φFP (h, δ).

We have the following.

imsart-ejs ver. 2008/08/29 file: ejs_2009_363.tex date: January 27, 2009



Scott et al./FDR in Statistical Pattern Classification 15

Corollary 3. Assume H is countable. For any δ > 0 and any n ≥ 1, with
probability at least 1 − 2δ with respect to the draw of the training data, the
learning rule in (10) satisfies

RFN (ĥH,α) ≤ RFN (h∗
H,α) + 2φFN (h∗

H,α, δ)

and
RFP (ĥH,α) ≤ α + 2φFP (ĥH,α, δ).

We note that Theorem 3, applied in the context of Neyman-Pearson classi-
fication, is a stronger result than those in [6, 18], which do not explicitly allow
penalties that depend on the classifier h.

5.2. Precision and Recall

As a final application of Theorem 3, we analyze the precision and recall per-
formance measures, common in database information retrieval problems (see
Introduction). Precision and recall can both be defined in terms of quantities
already discussed. Denote the precision

QPR(h) := P(Y = 1 |h(X) = 1) := 1 − RD(h)

and the recall

QRE(h) := P(h(X) = 1 |Y = 1) = 1 − RFN (h),

and let Q̂PR(h) := 1− R̂D (h) and Q̂RE(h) := 1− R̂FN (h) be the empirical esti-
mates. In this setting the goal is to find the classifier with the largest precision,
while maintaining a recall of at least β, where β is a user-specified level. Thus
the optimal classifier in a given class H is

h∗
H,β = argmax

h∈H

QPR(h)

s. t. QRE(h) ≥ β.

Define the rule

ĥH,β = arg max
h∈H

Q̂PR(h) − φD (h, δ) (11)

s. t. Q̂RE(h) ≥ β − φFN (h, δ).

We have the following.

Corollary 4. Assume H is countable. For any δ > 0 and any n ≥ 1, with
probability at least 1 − 2δ with respect to the draw of the training data, the
learning rule in (11) satisfies

QPR(ĥH,β) ≥ QPR(h∗
H,β) − 2φD (h∗

H,β, δ)

and
QRE(ĥH,β) ≥ β − 2φFN (ĥH,β, δ).
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Proof. To apply Theorem 3, note that maximizing QPR(h) is equivalent to min-
imizing RD (h), that the constraint QRE(h) ≥ β is equivalent to RFN (h) ≤
α := 1 − β, and similarly for the empirical objective and constraint. Further-
more, since |QPR(h) − Q̂PR(h)| = |RD (h) − R̂D (h)|, and |QRE(h) − Q̂RE(h)| =

|RFN (h) − R̂FN (h)|, we have that the assumptions of Theorem 3 are satisfied
with the stated penalties.

6. Conclusion

This paper demonstrates that FDR and FNDR control is possible in the context
of statistical learning theory, where the distribution of (X, Y ) is unknown except
through training data. We develop empirical estimates of these quantities and
derive uniform deviation bounds which assess the closeness of these empirical
estimates to the true FDR and FNDR. Unlike most other performance measures
in statistical learning theory, which are related to binomial random variables, the
FDR and FNDR measures are related to ratios of binomial random variables,
which requires the development of novel bounding techniques. These bounds
are then used to analyze learning rules that minimize a weighted combination
of FDR and FNDR, or that minimize FNDR subject to a constraint on FDR.
Our strong universal consistency result indicates that it is necessary to prevent
the learning algorithm from selecting classifiers making too few discoveries or
nondiscoveries, as error estimates for such classifiers may be poor.

Extending our results to uncountable classes H is an interesting open ques-
tion, and may require the development of new techniques. The standard proofs of
common generalization error bounds for uncountable classes, such as Rademacher
and VC penalties, rely on the introduction of an artificial “ghost” sample [7].
That technique would require every h ∈ H to have the same empirical number
of discoveries (or nondiscoveries) on both the original and ghost samples, which
is generally not the case. Recently El-Yaniv and Pechyony [11] have extended
the ghost sample technique to cases where the training and ghost samples have
different sizes (their results are stated in the context of transductive learning),
and some of their arguments may be useful in this regard.
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