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Atmospheric Carbon Monoxide (CO) provides a window on the
chemistry of the atmosphere since it is one of few chemical con-
stituents that can be remotely sensed, and it can be used to determine
budgets of other greenhouse gases such as ozone and OH radicals. Re-
mote sensing platforms in geostationary Earth orbit will soon provide
regional observations of CO at several vertical layers with high spa-
tial and temporal resolution. However, cloudy locations cannot be
observed and estimates of the complete CO concentration fields have
to be estimated based on the cloud-free observations. The current
state-of-the-art solution of this interpolation problem is to combine
cloud-free observations with prior information, computed by a de-
terministic physical model, which might introduce uncertainties that
do not derive from data. While sharing features with the physical
model, this paper suggests a Bayesian hierarchical model to estimate
the complete CO concentration fields. The paper also provides a di-
rect comparison to state-of-the-art methods. To our knowledge, such
a model and comparison have not been considered before.

1. Introduction. Atmospheric Carbon Monoxide (CO) is an important
trace gas in the atmosphere. It is produced by both natural emissions and
human activities and is formed primarily through natural atmospheric ox-
idation processes and incomplete combustion from burning fossil fuels and
biomass. Although in the developed countries one can associate part of the
CO production with wildfires and auto emissions, developing countries also
generate CO from forest clearing and biofuels. Thus, CO is a global pollu-
tant with a variety of sources. CO has a mean lifetime of about two months
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and thus can serve as a regional and global tracer of pollution and transport.
CO is also related to the concentrations of OH radicals and ozone in the tro-
posphere, two important species that are difficult to measure directly. For
these reasons the concentrations of CO are a window on the troposphere, not
only for tracing the motion of the atmosphere and the transport of surface
emissions but also in determining budgets for other chemical constituents.

1.1. Monitoring CO. As one of the US Environmental Protection Agency
(EPA) Criteria Pollutants, CO is regularly monitored at a sparse network
of ground stations. In addition, there is a limited capability to map CO dis-
tributions from space using instruments such as the Measurement Of Pol-
lution In The Troposphere (MOPITT) aboard the NASA Terra platform;
see Edwards et al. (2004). This system is limited by the usual sampling
problems from satellite based instruments and so it is difficult to synthe-
size complete 3-dimensional fields of CO on short time scales. An observing
framework for atmospheric composition that is analogous to that achieved
for weather forecasting has been recommended to improve monitoring of
CO and other pollutants [Barrie, Borrell and Langen (2004)]. Currently, the
missing component of such an integrated observing strategy is a platform
in geostationary Earth orbit (GEO) [Edwards (2006)] that would be capa-
ble of multispectral observations with high spatial and temporal resolution.
The statistical methodology in this paper addresses how to use this next
generation of remote sensing platforms to estimate atmospheric CO.

A GEO platform is described as having a stare capability due to its fixed
position. Although this sampling is an improvement over other possible or-
bits, remote sensing of CO is also dependent on cloud-free conditions. Thus,
CO cannot be retrieved at pixels with cloud cover and so a technique for
interpolation in space and time will be required to estimate the complete CO
concentration field for all vertical layers from available satellite cloud-free
observations. In this paper we present a new method based on physical and
statistical principals.

1.2. Data assimilation for atmospheric trace gases. The current state-of-
the-art interpolation method for chemical constituents such as CO is known
in the geophysical literature as data assimilation (DA); see Lary (1999) and
Kalnay (2003). Formally, DA is a Bayesian statistical method that combines
a prior guess of the complete field with observations in an optimal fash-
ion. In the simplest case under linear and Gaussian assumptions, DA meth-
ods are derived from the Kalman filter [see Kalman and Bucy (1961) and
Shumway and Stoffer (2000)] and statisticians can recognize the updating
step where current observations are combined with the current estimate of
the state to be some variant of best linear unbiased prediction or manipulat-
ing conditional multivariate normal distributions. An important distinction
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in the geophysical context, such as assimilation of CO measurements, is the
use of a chemical transport model (CTM) for the forecast step in the Kalman
filter. Methods such as the ensemble Kalman filter and smoother actually
take advantage of the physical model to constrain the covariance function
used in the update step. Based on CTMs, DA systems have been applied to
assimilate satellite retrievals of atmospheric chemical constituents, such as
ozone, aerosols, and CO, in three-dimensional chemical transport models or
CTMs [Lary (1999), Hanea, Velders and Heemink (2004), Lamarque et al.
(2004), Eben et al. (2005), Sandu et al. (2005), Chai et al. (2006), Collins et al.
(2006), Arellano et al. (2007), among others]. CTMs are complex physical
models, and the final interpolation may contain features that are particu-
lar to the CTM rather than the true CO field. Typically, being a physical
model, a CTM does not have free parameters that are adapted to the cur-
rent dynamics of the CO process and so model biases and uncertainties can
be hard to separate from the true features of the CO field. Uncertainties of
the estimated concentrations are not easily interpreted. We believe that a
simpler and stochastic model can replace the role of a CTM in assimilation,
provided it is embedded in a statistical framework.

1.3. Bayesian hierarchical models. In contrast to the CTM-based assim-
ilation, this paper suggests a statistical model that has the advantage of
being easy to describe and provides more accurate uncertainty estimates. In
particular, a Bayesian Hierarchical Model (BHM) is built by constructing
conditional models for the observations and underlying process that deter-
mine the complete CO fields. Each conditional model is relatively simple,
but when combined they are able to describe complex systems. Furthermore,
the conditional models are designed to incorporate prior physical knowledge
about the processes. This makes the approach innovative as it contains both
physics and statistics. BHMs have been applied in a range of applications,
for example, Wikle et al. (2001) and Wikle et al. (2003) give a detailed de-
scription of a two-dimensional model based on hybrid statistical-physical
ideas.

In this work the statistical process model of CO concentration is a 3-
dimensional spatial model plus temporal dynamics. To our knowledge, this
complexity has not been considered before in a BHM. The dynamics of this
process are motivated by a physical transport model, with some stochastic
parameters introduced to reflect model uncertainties and the difficulty of
resolving vertical motions at coarse resolution. It is noteworthy that the
physical structure of the process model generates realistic spatial covariances
that support the interpolation from cloud-free to cloudy pixels.

Another important aspect of this work is a direct comparison with a state-
of-the-art assimilation from a large CTM and an ensemble Kalman filter. To
our knowledge, this is the first time a BHM has been evaluated against a
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DA currently in use and so provides an interesting benchmark for comparing
stochastic and deterministic models in the geosciences.

1.4. Outline. The next section presents the statistical model and the
three hierarchical stages. Among these, the process stage is emphasized since
it contains the description of the transport of a stochastic process on a 3-
dimensional spatial grid. Here the transport is motivated by physical as-
sumptions, merged with statistical ideas. Section 3 contains the application
of the proposed model to a hypothetical GEO satellite air-quality monitoring
scenario. Results and interpretations are presented together with a compar-
ison with an existing CTM-based DA approach. Finally, Section 4 contains
some remarks and suggestions for future applications and development.

2. Hierarchical model for CO transport. The Bayesian hierarchical model
used in this application can be outlined in three levels [Berliner (1996)]:

[Y |X,Θ] Data stage,
[X|Θ] Process stage,
[Θ] Parameter stage,

where brackets are used to denote a probability density function, Y rep-
resents the observation process, X the underlying true CO mixing ratio
on a 3-dimensional spatial grid, and Θ represents a vector of unknown pa-
rameters. The vertical line (to be read as “given”) indicates a conditional
distribution with the variables on the right being fixed. At the top level
of this hierarchical model, the data stage specifies the likelihood of observ-
ing Y = y given X and Θ. The next level, the process stage, models the
spatio-temporal dynamics of X , which in our case is a hybrid model of
physical equations and stochastic processes. The dynamical model involves
some unknown parameters, Θ, which are assigned prior distributions in the
parameter stage.

Our goal is to determine the distribution of the unknowns, X and Θ,
given the data, known as the posterior distribution. Bayes’ theorem states
that the posterior

[X,Θ|Y = y](1)

is proportional to the product of the distributions in the three hierarchical
stages. Typical for complicated models such as this application, the posterior
does not have a closed form and must be approximated by a Monte Carlo
sample. Sampling the posterior in equation (1) is implemented by Markov
Chain Monte Carlo and applying a Gibbs sampler; see Robert and Casella
(1999). Briefly, the idea behind the Gibbs sampler is to iteratively draw sam-
ples from the full conditional distributions of subsets of X and Θ. The form
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of the space-time model used in this work facilitates simple expressions for
the full conditional distributions. A general overview of the Bayesian model
approach and some applications is provided in Banerjee, Gelfand and Carlin
(2004). Finally, moments and probabilities for the posterior distribution are
approximated by the sample statistics for X and Θ, from values of the
Markov chain once it appears to be stationary.

The remainder of this section details the three stages of the model, where
the focus is on how a process with three spatial dimensions can be modeled
hierarchically.

2.1. Data model. In this application we assume that the observations are
obtained on the same regular grid on which the underlying process is sought.
(This can be generalized without any major changes in our approach.) Fur-
thermore, let the horizontal grid locations be denoted by si, for i = 1, . . . ,N ,
and let the vertical layers be denoted by l, for l = 1, . . . ,L, ordered from
bottom to top. Finally, the concentrations are observed for equally spaced
time points k ∈ {1, . . . , T}.

For a given region, the amount of cloud cover will change over time
along with the number of cloud-free pixels observed by the GEO satel-
lite. For a given time point, n out of N locations are observed. The con-
ditional model for the n-dimensional observation vector, at level l and time
k, Yk(l) = {Yk(sj, l), j = 1, . . . , n}, given the N -dimensional process vector,
Xk(l) = {Xk(si, l), i = 1, . . . ,N}, is

Yk(l) = DkXk(l) + ǫk(l),(2)

where ǫk(l) ∈ N(0,Σǫk
(l)) with Σǫk

(l) = diag(σ2
ǫk

(si, l), i = 1, . . . , n), and
σǫk

(si, l) is a prescribed measurement noise taken to be 10% of Xk(si, l);
see Pan et al. (1998). Element (j, i) in the incidence matrix Dk is 1 if ele-
ment j in Yk(l) represents an observation of element i in Xk(l).

2.2. Process stage. Atmospheric CO has a global average lifetime of
about 2 months; see Cicerone (1988). It is envisaged that GEO observa-
tions of the process will be available hourly, on time-scales of several orders
of magnitude shorter than the CO lifetime. Hence, the process can be as-
sumed to be nonreactive at the time-scales considered here and so winds
can transport CO a substantial distance, and any process model should ac-
count for transport. For example, Asian emissions can effect US regional
air quality. In a continuous formulation, transport (also termed advection)
of a nonreactive tracer by winds is described with an advection-diffusion
equation, as follows:

∂X(s, t)

∂t
= u(s, t)

∂X(s, t)

∂sx
+ v(s, t)

∂X(s, t)

∂sy
+ w(s, t)

∂X(s, t)

∂sz
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(3)

+ Θ(s)

(

∂2X(s, t)

∂s2
x

+
∂2X(s, t)

∂s2
y

+
∂2X(s, t)

∂s2
z

)

,

where s = (sx, sy, sz) for the time being is a coordinate in a three-dimensional
Euclidean space, u, v, and w, are the three wind components (east-west,
north-south, and vertical) of the actual wind field, and Θ(s) is a diffusion
coefficient. Equation (3) forms the basis of the process stage, and is a rigorous
description of how CO is transported in space and time in the absence of
sources and sinks.

The basic form of a CTM would result if terms corresponding to chemi-
cal reactions and sources were added to the right-hand side of equation (3).
However, as mentioned in the Introduction, such a model can become quite
complex, and more importantly, the final results may contain uncertainties
deriving from the dynamical model rather than the true process. For exam-
ple, the vertical wind w, which is known to be poorly observed [see Chapter
3.5 in Holton (2004)], may introduce additional uncertainty in the CO field
estimates.

Motivated by this fact, vertical dependence is modeled as a spatial auto-
regressive term. We make the assumption that the joint distribution of
Xk(L), . . . ,Xk(2),Xk(1) can be factorized as

[Xk(L), . . . ,Xk(2),Xk(1)] = [Xk(L)|Xk(L− 1)] · · · [Xk(2)|Xk(1)][Xk(1)].

Formally, layer L appears to depend only on the layer L− 1 below it. How-
ever, this form is actually symmetric and provides a compact model for
the vertical spatial dependence. In fact, this factorization could be reversed,
which would imply a forcing from above, instead of from below. This would
yield the same joint distribution, which is illustrated with the following ex-
ample.

Consider a single longitude-latitude coordinate at all layers, at a single
time point. Our assumption can then be formalized as an AR(1) model,

X(s, l) = fX(s, l− 1) + η(s, l),

where the forcing parameter f is the AR(1) coefficient, and η the innovation
process. In this model, X(s, l) will have equal correlation with X(s, l−1) and
X(s, l + 1). This implies that the process simulated under this assumption
has the same joint distribution as the following process, which is forced
from above: X(s, l) = fX(s, l + 1) + η(s, l). Furthermore, since the estimate
of X(s, l) (for 1 < l < L) is based on its full conditional distribution, which
is proportional to [X(s, l + 1)|X(s, l)][X(s, l)|X(s, l − 1)], it will depend on
the concentrations at the surrounding levels.

For the spatial scales considered here, the main part of the transport is
described by the advective terms [the right-hand terms of the top line in
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equation (3)], and the contribution of the diffusion is expected to be small.
Therefore, Θ(s) is set equal to zero in equation (3), and the remaining small
scale variations are approximated with a stochastic innovation process; see
below.

2.2.1. Discretized process model with stochastic terms. Omitting the dif-
fusion and the vertical contribution in equation (3), the remaining horizontal
advection terms are discretized using the Euler step in time and centered
differences in space, as described in Haberman (1987). For l = 2, . . . ,L and
k = 1, . . . , T − 1, this gives

Xk+1(s, l) =
∆k

2∆x
uk(s, l)(Xk(s + ∆x, l)−Xk(s−∆x, l))

+
∆k

2∆y
vk(s, l)(Xk(s + ∆y, l)−Xk(s−∆y, l))(4)

+ m(l)Xk(s, l) + f(l)Xk(s, l − 1) + ηk(s, l),

where ∆x is the longitudinal spacing, ∆y the latitudinal spacing, and ∆k

the temporal spacing. The stochastic parameters m(l) and f(l) represent
the persistence and forcing parameters, respectively. When equation (3) is
discretized, the persistence parameter is modified from being equal to one,
to be a stochastic parameter. This makes the model more flexible. Finally,
ηk(s, l) is assumed to be independent noise distributed as N(0, σ2

η(l)).
The spatio-temporal neighbors of X(s, l, tk+1), {X(s + ∆x, l, tk),X(s −

∆x, l, tk),X(s + ∆y, l, tk),X(s − ∆y, l, tk)}, have space, time, and wind de-
pendent AR(1)-parameters, that is, ∆k/2∆xuk(s, l) and ∆k/2∆yvk(s, l). The
persistence, forcing, and advection terms are believed to contribute to the
main part of the transport. Remaining small scale variations are assumed
to be modeled by η.

Discretizing equation (3), using the Euler step in time and centered dif-
ferences in space, results in an unconditionally unstable solution. That is,
letting the process evolve without constraints will result in unbounded state
vectors. The choice of using these discretization schemes is to facilitate sta-
tistical implementation since it results in a linear system. It should be noted
that more accurate discretizations of these equations can be used but will
add more complex full conditional distributions. Due to its instability, the
model is intractable to use for forecasting, but, when the model is used for
interpolation purposes, data will constrain the solution. This distinction has
been noted by other researchers in data assimilation; see Wikle et al. (2003).

Finally, the conditional process model for Xk(l), for l = 2, . . . ,L and k =
1, . . . , T − 1, is

Xk+1(l)|Xk(l),XB
k (l),Xk+1(l − 1),Θ

∼MVN (m(l)Xk(l) + f(l)Xk+1(l − 1) + AkXk(l) + AB
k XB

k (l), σ2
η(l)I),
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where XB
k (l) = {XB

k (si, l), j = 1, . . . ,NB} is a boundary process as defined
below. The sparse (band-diagonal) matrices Ak and AB

k contain the AR(1)
parameters described above. The initial field, X1(1), could be assumed to
follow a stationary distribution that describes the CO climatology for the
given area at that level. Given that, the bottom layer is then simulated [with
f(1) ≡ 0], then layer two [with X

−1(2) ≡ 0], and so on.

2.2.2. Boundary process. It is clear from equation (4) that values at
neighboring locations must be defined. However, note that for a location on
the western boundary, for example, there is no western neighbor. Our ap-
proach is that the locations at the boundaries are given neighbors that are
defined by the so called boundary process, XB . The idea of using stochastic
boundary processes in hierarchical dynamical models was originally intro-
duced in Wikle, Berliner and Milliff (2003). The dynamics of the boundary
process are chosen to follow a simple random walk,

XB
k+1(l) = XB

k (l) + ηB
k (l),

where ηB(l) ∼MVN (0, σ2
B(l)I) with variance σ2

B(l).

2.3. Parameter stage. For each level, the unknown parameters to be es-
timated are as follows: m(l), f(l), σ2

η(l), and, σ2
B(l). For the persistence and

forcing parameters, the prior distributions were chosen to be N(m0, σ
2
m)

and N(f0, σ
2
f ), respectively. These parameters could be designed to be spa-

tially dependent parameters. However, for our application it was decided
that our simple choices were found to be sufficient. The prior distributions
for the variances are taken to be inverse gamma, σ2

η(l) ∼ IG(qη , rη), and

σ2
B(l) ∼ IG(qB , rB). These prior distributions are chosen because they are

conjugate, which allows us to derive the full conditionals for all parameters.
Choices of parameters are discussed below in Section 3.

2.4. Computational implementation. The derivations of the full condi-
tional distributions are available as a supplementary document [Malmberg
et al. (2008)]. Given these, samples from equation (1) are obtained using the
Gibbs sampler. After convergence of the sample paths, posterior means and
standard deviations (among other possible statistics) can be obtained. For
choice of initial values, and results, see Section 3.

3. Application and comparison.

3.1. Application. In this section the hybrid physical/statistical model is
used to interpolate synthesized GEO satellite observations from a full CTM
simulation of the atmospheric CO states. Observations are generated for
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an air quality surveillance scenario covering the west-coast region of the
United States. It is assumed that the future satellite instrument on board
the GEO satellite will be capable of CO retrievals at several vertical layers
of the atmosphere, but only for cloud-free locations. The goal is to produce
the complete CO concentration fields for all vertical layers over the whole
region given the satellite observations for cloud-free pixels.

The Community Atmosphere Model (CAM), with simplified CO chem-
istry [Arellano et al. (2007)], is the CTM used to generate our ground truth.
CAM is a state-of-the-art atmospheric general circulation model developed
at NCAR [Collins et al. (2006)] for the research community, and is also the
atmospheric component of the NCAR climate system model. It is able to
simulate the physical and chemical processes of CO, such as emissions, ad-
vection, diffusion, deep and shallow convection, boundary layer ventilation,
and chemistry. Here, a similar setup for CAM as in Arellano et al. (2007)
is used to simulate a realistic spatiotemporal CO process. Being a complete
simulation of the atmosphere, CAM also creates clouds and these are used
to determine the cloud-free pixels at any given time.

The original horizontal resolution of global CAM data (i.e., output of
CAM simulation) is 2.0 degrees latitude × 2.5 degrees longitude and 26 ver-
tical layers from the surface up to 4 hPa (about 35 km above the surface).
In order to simulate a more regional scenario, the CAM data is interpolated
to a resolution of 1 degree latitude × 1 degree longitude and we selected our
desired spatial domain from 231.5 to 248.5 degrees longitude and from 33.5
to 48.5 degrees latitude. We also interpolated through the 26 CAM vertical
layers and selected 5 vertical layers with 100 hPa thickness centered at 850,
750, 650, 550 and 450 hPa. These levels roughly correspond to levels where
current satellite instruments can obtain useful estimates of CO concentra-
tions; see Pan et al. (1998) and Deeter et al. (2004). The CAM simulation
of the atmosphere and CO dynamics is based on a 30 minute time step. This
compares to a 3 hour interval for the synthetic satellite data.

The initial condition for the simulation of CO in CAM is based on a
scenario for a large-scale fire in Southeast Asia for April 2006. The fire is
the only source of CO in this study. The winds used for the transport were
calculated using CAM, and the same wind fields used in the statistical model.
Because CO has a lifetime of about 2 months, such a large fire can add to the
local CO concentrations in the Western US, especially above the boundary
layer at the lower atmosphere. Emissions of CO from the fire are transported
by CAM dynamics, physics, and chemistry, for 24 days, before 4 days of 3
hourly synthesized satellite observations are simulated using equation (2).
A location is defined as cloudy if its CAM vertical integrated cloud cover
fraction is between 0.5 and 1.

To initialize the Gibbs sampler, X and XB are simulated from Gaussian
distributions with expectations taken as the mean of the observations, and
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with covariances describing large-scale features that are expected in the
complete fields. For every level, the prior means for m(l) and f(l) were
chosen to be m0 = 1 and f0 = 0, respectively. The first choice is motivated by
the fact that m(l) equals 1 in the deterministic case, as mentioned in Section
2.2. The second choice is motivated by the belief that the main contribution
to the transport is across the horizontal dimensions. However, in order to
let the observations inform the final estimates, both are chosen to be σ2

m =
σ2

f = 10−3, which compared to the information in the data is a wide variance.
The hyperparameters for the variances were set to (qη, rη) = (2.8,0.28), and
(qB , rB) = (2.8,0.28), which corresponds to relatively vague prior knowledge.
Given these initializations, 6000 samples from the full conditionals were
simulated. This takes about two days. The burn-in time is about 150 samples
and the converged chains are thinned before any statistics are calculated.

3.2. Interpretation of results. Figure 1 shows samples from prior and
posterior distributions for the estimated parameters. It is clear from the
shift in the posterior samples that data do have an impact on the estimates.
For the bottom level, 850 hPa, there is no forcing from below, and for this
level, m explains more of the transport than at higher levels. A possible
explanation for the diversity among the posterior samples for m and f , at
different levels, might be that the wind fields, upon which the physical terms,
A, and AB , depend, are level dependent. This in turn makes m and f also
level dependent. The posterior samples proved to be robust against different
choices of priors.

The estimated noise parameters, ση and σB , have a clear trend in the
vertical. In this case study CO concentrations are higher in the upper levels,
and since the observation noise is proportional to the CO mixing ratio, higher
concentrations are observed with larger uncertainty. Hence, less confidence
is ascribed to the observations of the upper levels, which in turn inflates the
noise parameters as well as their spread.

The top row in Figure 2 shows the synthetic satellite data, Y , for time
points 10 through 15. Locations marked with a “/” are cloudy and unob-
served. Notice how the contiguous patterns of clouds move westward. The
second row illustrates the interpolated fields, X̂ , the posterior mean of X ,
given the observations, at all locations. Posterior means less than zero are
marked with a “<” and set to zero for plotting purposes.

Since the estimate for any given level and time point will be informed by
data from surrounding levels and time points (where existing), similar to an
estimate from a smoother, certain features in the observations may become
less apparent in the estimate. For example, the south-east area with high
CO concentrations is attenuated. Part of this bias may be due to the nature
of the observation noise, which has a standard deviation that is proportional
to the true CO concentrations.
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Fig. 1. Boxplots of prior and posterior samples of estimated parameters. Top-left: Per-
sistence parameter, m. Top-right: Forcing parameter, f . Bottom-left: Innovation standard
deviation, ση. Bottom-right: Boundary standard deviation, σB. The gray boxplots repre-
sent samples from their prior distributions, and the black boxplots represent samples from
their posteriors.

The third row illustrates the internal estimate of the prediction error,

provided by σ̂X . Compared to the observed levels, the standard deviations

are higher where higher concentrations are observed. Again, this may be due

to the nature of the observation noise. In unobserved areas, for example,

the north-east area, the uncertainty grows as there are no observations to

constrain the numerical error growth in the dynamical model.
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Fig. 2. Top row: Simulated satellite observations, Y , at 650 hPa over the west coast of
the USA. Unobserved locations are marked with “/”. Second row: Interpolations, X̂, where
estimates at locations marked with an “<” resulted in a negative estimate. Third row:
The internal estimate of the prediction error, provided by σ̂X . Bottom row: Standardized
residuals, {(X − X̂)2/σ̂2

X}1/2. Each column corresponds to a time step, and between each
column it is three hours. Negative estimates are set to zero, and the color scale reports
values of ppb.

The fourth row is a comparison of the prediction error with σ̂2
X . Plotted

are the standardized residuals,

((X(s, l, k)− X̂(s, l, k))2/σ̂2
X(s, l, k))1/2.

In places with high levels of CO the standard errors tend to underestimate
the error. We attribute this to a combination of the smoothing effect and the
high observation error. However, overall, the standard errors give reasonable
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measures of uncertainty even in areas that are masked by clouds and so not
directly observed.

As Figure 3 shows, the concentration of CO varies across the vertical.
To gauge if the vertical coupling caused too much smoothing, or bias, an
additional interpolation was done where f was set to 0. We termed this the
uncoupled model. Also, to gauge the spatial prediction skills of these models,
which both emphasize the dynamical structure, they were compared to a
simple Kriging method; see Cressie (1993). That is, for any level and time
point, the process is estimated given the observations at that instance. The
Matérn covariance function with smoothness parameter 2.5 is used, and for
each interpolation, the variance and range are estimated using maximum
likelihood. It should be noted that the spatial smoothing induced by this
model is substantially higher than for the dynamical model.

As an objective analysis of these models, the root mean-squared-error
(RMSE ) is calculated,

RMSE(l, k) =

(

1

N

N
∑

i=1

(X(si, l, k)− X̂(si, l, k))2
)1/2

.

The RMSE statistics for level 650 hPa are shown in Figure 4. The perfor-
mances of the BHMs are worse at the beginning and end of the time period,
where less data constrain the interpolations. Furthermore, at the end of
the time period, a persistent cloud cover over the north-east area probably
contributes to the increased error in the tail. Here the numerical errors in
the state vectors are allowed to grow without being constrained by observa-
tions. However, where observations constrain the interpolation, the spatial

Fig. 3. Interpolations of the two layers at 550 and 750 hPa. Notice how the concentra-
tions increase with altitude. Color scale reports values of ppb.
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Fig. 4. The RMSE statistics for level 650 hPa. Solid line: Coupled model; dashed: un-
coupled; dot-dashed: Kriging; dotted: CAM/DART.

prediction skills are comparable to the Kriging method. Furthermore, the
dynamical model makes it possible to compute forecasts.

In Table 1 the RMSE statistics for level 650 hPa are averaged across
time. To validate the prediction skills, the statistics were computed for the
unobserved (cloudy) locations as well as for all locations. Here, it shows that
the coupling is favored. Since the uncoupled model uses less data to compute
the interpolations, it will have more spread in its simulations, and a higher
RMSE than the coupled model. Due to the numerical error growth in the
tails, the Kriging method has a lower RMSE on the average. A comparison
with CAM/DART is presented in the next section.

3.3. Comparison with CAM/DART. CAM has most recently been cou-
pled with an ensemble-based data assimilation system, the Data Assimila-
tion Research Testbed (DART), also being developed at NCAR. A descrip-
tion of DART and its evaluation with aircraft measurements is described
in Arellano et al. (2007). The present CAM/DART setup has been shown
to provide significant improvements in forecast skill of global CO concen-
trations using joint assimilation of meteorological observations from exist-

Table 1
RMSE for estimated CO concentrations at 650 hPa using four different methods

Method Unobserved locations All locations

Kriging 0.74 0.47
Un-coupled 1.56 0.98
Coupled 1.28 0.81
CAM/DART 1.10 1.29
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ing meteorological network and satellite retrievals [Arellano et al. (2007)].
In this study we used the CAM/DART system as our full DA system, as-
similating the same synthesized observations as in the statistical model. It
should be noted that CAM/DART is a complex software environment and
runs reported here require several orders more of computational resources
than the BHM. Moreover, measures of uncertainty are not as well developed
as in the BHM.

In order to shift CAM away from the configuration used to simulate the
ground truth, CAM/DART is initialized with perturbed CO concentrations.
This is done by systematically overestimating the emissions of CO from the
large fire. We have also used slightly perturbed meteorological conditions for
the DA system. As such, the initial CO fields, used in CAM/DART prior to
the start of the assimilation experiment, are significantly different from the
ground truth, particularly over our spatial domain.

Returning to Table 1, we note that CAM/DART has a relatively higher
RMSE than the hybrid physical-statistical model for all locations. This indi-
cates that the statistical model has a spread in its prior, such that observa-
tions have an impact on the estimate. Conversely, CAM/DART might have
a too tight spread in its prior, such that observations are not assimilated
properly. An explanation for this might be CAM/DART’s spatio-temporal
resolution which is aimed for global applications. Typically, a large-scale
model does not model small-scale variability, which might be what is miss-
ing here. However, CAM has lower RMSE for the unobserved locations. This
is interpreted as being an artifact of the numerical errors present in the sta-
tistical model. Nevertheless, these results show that the statistical model
performs reasonably well relative to a full DA system like CAM/DART.

4. Discussion. There is strong interest in the future satellite monitor-
ing of atmospheric pollution, such as CO, from the vantage of GEO. This
paper is motivated by the fact that these observations will be affected by
cloud cover and we present a novel approach to estimating the complete CO
distribution based on the available cloud-free data.

The CO fields have dimensions in the horizontal, the vertical, and time. To
our knowledge, such a physical/statistical 4-dimensional model has not been
considered before. Under the constraints given on our test case, the com-
parison suggests that the model is comparable to existing methods such as
the more complex CAM/DART system. The comparison with CAM/DART
is, to our knowledge, the first time a Bayesian spatiotemporal method has
been compared directly to a global data assimilation system. We believe it
is a significant result that our relatively simpler hybrid physical-statistical
model has comparable performance to CAM/DART and the results further
provide motivation for the use of BHMs for regional to local applications.
We also note that the spatial Kriging method is competitive, but, as we note
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below, the dynamical BHM can easily be extended to include the kind of
spatial dependence used in the Kriging method.

The BHM used in this work was chosen partly for its computational bene-
fits. The additive models in the observation and process levels and the choice
of Gaussian innovations has simplified sampling from the posterior because
the full conditional distributions have closed forms. Given these choices, the
performance of this model is striking and we suspect that it can be improved
through several modifications.

Concentrations cannot be negative, but, because of the additive structure
of the stochastic components in the BHM, the state variable for CO can be
negative. A better approach may be to introduce multiplicative innovations
in the process model to preserve positivity. We note that in our current
model negative concentrations occur in regions of low concentrations. How-
ever, in many cases one is more interested in studying areas with higher
concentration and the risk of exceeding some threshold there.

The stochastic component of the process model (η) has been assumed to
be independent in time and space and, thus, the space and time dependence
is derived completely from the dynamical form. It is reasonable to con-
sider including some dependence among the components of the η process. In
particular, Markov random field models would be computationally efficient
and provide flexible ranges of spatial dependence. One could also include
temporal dependence so that the process model has a moving average term
reflecting persistent departures from the dynamics over several time periods.
With both of these extensions, the BHM should be able to reproduce the
kind of smooth spatial predictions provided by the Kriging approach, and
also take advantage of dynamical information. The coupling in the vertical
proved to give some improvements over the uncoupled model. However, in
this application, the levels are separated by 100 hPa, a separation where the
vertical layers can be quite different. It might be that the coupling would
prove to be even better if the vertical layers were more dense. Concerning
the boundary process, it would be possible to assume a spatial correlation
between X and XB , that is, the conditional model for XB

k+1(l) could be
extended to include Xk(l).

In addition to modifying the stochastic components, the dynamical model
can also be improved. The Eulerian finite differences scheme allowed for
simple full conditional distributions, but has the disadvantage of not being
stable. Although the stability is constrained based on conditioning the state
with observations, at the edges of the time series, where less data is available
(in time), the numerical error growth becomes a problem. Higher order and
stable difference methods such as a Runge–Kutta scheme would improve the
process model. For example, for smooth fields a higher order method will be
a more accurate solution to the transport of CO with a changing wind field.
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From a scientific point of view, GEO observations contain two problems.
The first problem, estimating data at missing locations, is treated here. The
second problem, the problem that the observations are correlated in the
vertical, has not been addressed. This problem relates to the observation
operator Dk, which here is a simplified version of a realistic observing system.
The BHM facilitates designing Dk such that the vertical correlation is taken
into account.

The DART system is designed to accommodate many different types
of models and has the capability of approximating an ensemble Kalman
smoother [Khare et al. (2008)] as well as a filter. This option is currently
not available for CAM but might give better predictions. However, it should
be noted that data assimilation systems using a smoother are a rare capa-
bility and almost all global systems use filters. Perhaps a more appropriate
comparison to a full DA system would have been to use a CTM developed
for regional applications, such as WRF-Chem [Grell et al. (2005)], although
these models would require information from global models at their bound-
aries. If a BHM can be formulated within the general ensemble Kalman
smoother framework, then DART could be used as the computational en-
gine for approximate sampling of the posterior. This marriage would have
substantial advantage, as DART is engineered for large multiprocessor sys-
tems, has good control of input and output streams, and would facilitate
incorporating more sophisticated physical models at the process level. In
this way one could continue exploit advantages of combining both physical
models and stochastic elements to improve the estimates of transport.
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